Supporting material to "Some Step-down Procedures Controlling the False Discovery Rate under Dependence"

Yongchao Ge and Stuart C. Sealfon and Terence P. Speed

Algorithm S1 presents the detailed computations for the step-down procedure of Section 4.2 of the main text. In Algorithm S1, the *p*-value p_i before Step 1 and the *p*-values $p_{i,b}$ in Step 2 are computed based on the the null distribution of T_i . This null distribution can be an appropriate Student *t* distribution when the data are normally distributed or can be computed by further resamplings.

Algorithm S1 Resampling algorithm for computing FDR adjusted *p*-values

Compute statistic t_i , and the *p*-value $p_i = P(|T_i| \ge |t_i| | H_i)$, $i = 1, \dots, m$ for the observed data \boldsymbol{x} . Without loss of generality, label the *p*-values $p_1 \le \dots \le p_m$.

For the *b*-th step, $b = 1, \ldots, B$, proceed as follows.

- 1. Compute the resampled data matrix x^b , for example by randomly permuting the columns of matrix x.
- 2. Compute the *t*-statistics $t_{1,b}, \ldots, t_{m,b}$ for each hypothesis on the resampled data x^b and then the *p*-values $p_{i,b} = P(|T_i| \ge |t_{i,b}| \mid H_i)$.
- 3. For each $i = 1, \ldots, m$, mimic the step-down procedure:
 - (a) for j = 1, ..., m i + 1, let $p_{(j)}^{i,b}$ be the *j*-th smallest member of $\{p_{i,b}, ..., p_{m,b}\}$;
 - (b) define $R_{i,b}$ to be the unique integer k such that

$$p_{(1)}^{i,b} \le p_i, \dots, p_{(k)}^{i,b} \le p_{i+k-1} \text{ and } p_{(k+1)}^{i,b} > p_{i+k}$$

4. Compute $f_{1,b} = I(R_{1,b} > 0)$ and, for i = 2, ..., m, compute $f_{i,b} = R_{i,b}/(R_{i,b} + i - 1)$.

Steps 1-4 are carried out B times and the adjusted p-values are estimated by $\check{p}_i = \sum_{b=1}^{B} f_{i,b}/B$, with monotonicity enforced by setting

$$\tilde{p}_1 \leftarrow \check{p}_1, \qquad \tilde{p}_i \leftarrow \max(\tilde{p}_{i-1}, \check{p}_i) \qquad \text{for } i = 2, \dots, m.$$

Figure S 1: Different FDR procedures. The independent case: $\rho = 0$ and $\delta = 1$: the dotted vertical line is $x = m_1$; the dotted horizontal line is $y = m_0/m$, the overall proportion of false null hypotheses. Different panels are for different values of m_1 (100, 500, 900).

Figure S2: The positively dependent case $\rho = 0.7$ and $\delta = 1$: different FDR procedures and different values of m_1 (100, 500, 900).

Figure S3: The same setup as in Figure S2 except that total number m of genes has increased from 1,000 to 10,000. We only plot the total number of genes rejected up to 1,000 among 10,000 genes.