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Materials and Methods
Describing Protein Function. We describe protein function with a
collection of probability distributions over Gene Ontology (GO)
annotations. Here, the set of possible terms is a new subset of the
biological process GO annotations (BP) that form leaves of the
GO directed acyclic graph (DAG). To distinguish incomplete-
ness in the ontology from uncertainty in annotation assignment,
we create a conditional unknown for each BP, that is, a new term
that represents a more specific but undescribed child of the
parent BP term. As we allow each BP to have exactly one
conditional unknown, each represents the set of all currently
undescribed terms. For BP that are currently leaves in the GO
hierarchy, the addition of the conditional unknown is only a
formality that allows us to dispense with distinguishing between
conditional unknown leaves and existing leaves. For general
terms (i.e., those that are not leaves), this extension provides the
opportunity to represent the uncertainty about function that may
have been expressed in annotating a protein with a general term,
separately from the possibility that the appropriate more specific
GO term did not exist, either due to choices made in structuring
the GO DAG (a situation encountered in the mapping between
GO and another ontology, such as Interpro), or because the
function has yet to be described by biology. Here we make no
attempt to determine on an individual protein basis an estimate
of the conditional probability, but make a single estimate for
each BP by checking for redundancy in the mapping between GO
and Interpro, finding the fraction of times both a parent and
child Interpro accession mapped (24) to the same GO term. We
used a prior count of one so that all annotations had some
conditional unknown probability.

With the addition of the conditional unknown leaf, any GO
term can be viewed as a distribution over its leaves. We represent
protein function as a collection of such distributions over BP

� � �f:f � C�

where C is the subset of conditional unknown BP leaves (known
from here on as simply leaves, unless otherwise specified) of
primary annotations among a reference set of proteins, here all
annotated proteins found in any Fungi. We define a primary
annotation, b, as the most specific annotation previously as-
signed to a protein along a single path in the GO DAG from
among all annotations assigned to the protein in that path with
identical GO evidence codes. A protein is often assigned several
primary annotations: these could be identical BP with different
evidence codes, or different BP with the same evidence codes if
they lie on separate DAG paths. By designating primary anno-
tations we remove redundant information and identify C. We
assume that each primary annotation represents independent
information about a protein: in well-curated organisms such as
S. cerevisiae this is less troublesome than in organisms that are
annotated largely by automated means; these may require
additional filtering to select C.

Each primary annotation of a protein generates a probability
distribution over its leaves f according to the frequency of the
leaves among C and a simple separate procedure to make a first
approximation of the probability for conditional unknowns of
primary annotations.
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where F is a probability vector such that

�j�cfj � 1.

The formation of F assumes that each primary annotation b can be
represented by a single best leaf. A protein is described by a
collection of N such distributions, �F1,F2, · · · ,FN�, each weighted by
the probability that the primary annotation is correct, given the
evidence code I: Pr�b�Ib�, so that the probability that f is a correct
best leaf of b is, assuming independence,

Pr(Fb � f � b is cor rect) � Pr(Fb � f)Pr(b �Ib).

The probability that f is a correct annotation for the protein
among the N primary annotations is then

Pr(f)� � �F1

� f � b1 is cor rect�

� F2 � f � b2 is correct)

� � �FN � f � bN is correct�

which we calculate by finding the complement of the probability
that all f are false

Pr(f)� � 1 � �q�0
N 	1 � Pr(Fq � f�Pr(bq�Ibq

)
 .

We also create the error probability vector E for the protein with
a uniform distribution over all f. E contributes only to the extent
that f is incorrect on all F:

Pr(f) � Pr(f)� � �1 � Pr(f��)Ef.

The Likelihood. Our likelihoods are estimates of the probabilities
of observing a linked protein with its BP and their evidence
codes linked with a given score (here zorch) to the target protein,
given the hypothesis that a particular leaf BP is the best
description of the biological process of the target. The likeli-
hoods are based on empirical counts of linked proteins with
given BP in S. cerevisiae. To describe the general relationship
between the linkage score (e.g., zorch) and function, we first
counted each linked pair of annotated proteins in S. cerevisiae at
their nearest discretized GO distance and linkage score. For
each pair of GO annotations, we corrected for the graph
structure of GO with the probability of choosing the BP f from
among all BP at the linkage score l and GO distance d from Hi

Pr(f , l �d ,Hi) � Pr(l �d)Pr(f �d ,Hi)

where Hi is the hypothesis, another leaf of BP that best describes
the target.

We then estimated the more specific relationship between each
individual BP pair and the linkage score, Pr(f,l�Hi), by counting
observations of the pairwise BP of linked proteins, initializing these
sparse counts with a prior count guided by the general probability
relationship between GO distance and the linkage score.

We followed our principle of measuring the functional simi-
larity of proteins only at their closest BP in estimating the
likelihood. Unlike a typical likelihood, we construct ours to deal
with the high dimensionality (the many BP of the linked protein)
and uncertainty by allowing each hypothesis to focus on the data
to its best advantage. We do so by finding the probability of
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observing the BP fk of the linked protein that maximizes the
normalized likelihood z for the hypothesis Hi,

z � Pr(f , l �H)�Pr(f , l).

The normalization is necessary for fair competition among
hypotheses: the fact that a linked protein has a rarely observed
BP, for example, should not affect the choice of the best BP for
the hypothesis. If the linked protein were to have only one BP
rather than a distribution F, this likelihood would lead to a
standard Bayesian update with typical normalization by the
probability of the data. The practical effect of our likelihood is
to translate uncertainty in the data differentially to the hypoth-
eses, rather than to all hypotheses equally.

If the linked protein had a single distribution represented by
F1, we could estimate the likelihood Li for Hi with the expected
value

Li � �
j�0

n

zjPr(F1 � f j)Pr(b1�Ib1
).

To accommodate the many distributions generated by all pri-
mary annotations and the error, �F1,F2, ,FNE� , we cannot rely
on the mutual-exclusivity of a single distribution to find the best
leaf f for Hi. Instead we find the expected maximum normalized
likelihood over all distributions by first ordering f by z so that
fg � f j if zg � zj. For fk to be the best leaf BP of the linked
protein to support the hypothesis Hi, it must be the first correct
f along the order of z across all distributions.

We wish to find the probability pk that fk is correct from any
distribution, and that no other fj is correct, where j � k ordered
by z,

pk � Pr(fk is correct � no other f j is correct where j � k).

Considering many distributions adds combinatorial complex-
ity, especially when dealing with ties. We avoid the computa-
tional burden by finding pk through the change in the cumu-
lative distribution of the probability that fj in at least one
distribution in the set D �F1,F2, ,FNE�, is correct where j � k
ordered by z.

cdfk � 1 � �
j�0

k

�1 � Pr(f j�)

and

pk � cdfk � cdfk�1

where cdf�1�0.
We then estimate the likelihood using the expected maximum

normalized likelihood for the hypothesis Hi:

Li � �
k�0

n

pkzk.

The construction of the likelihood required binning zorch values
and GO distances; we binned manually to balance having
adequate counts in each while distinguishing protein pairs with
high zorch values and strong functional similarity from the bulk
of the data.

Voting. We made two optimized alterations to a majority voting
procedure to compare it more favorably to GFL. Each linked
protein was given only one vote, so that if it has more than one
BP these cast fractional votes. We also limited the linked
proteins to those within 75% of the probability of individual
success of the best, as voting was less successful when many
linked proteins were used.
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Other Supporting Information Files

Table S1 (PDF)
Table S2 (PDF)
Table S3 (XLS)

Fig. S1. Predicting unannotated yeast proteins. To estimate the accuracy of zorch-defined links integrated by Generalized Functional Linkages (GFL) for those
yeast proteins without biological process annotations (BP), we grouped these by their expected accuracies inferred from the ten-fold cross validation of
annotated proteins. The counts of unannotated proteins in each group are shown below the error bars that give one standard deviation from the mean. If more
than one choice among the 206 classifiers was chosen from the posterior, the expected accuracy that at least one was correct increased, especially for lower ranked
targets: one, two, and three choices, rising, are shown for each prior and ranked group. Many yeast proteins of unknown biological process have cellular
component annotations (CC); fewer have molecular function (MF). Those with neither annotation used a uniform prior.
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