Supporting Information

Zajonc et al. 10.1073/pnas.0809814105

Fig. S1. CD1 sequence alignment and groove amino acid composition. (*A*) Relationship of chCD1 proteins to avian and mammalian non-classical and classical MHC molecules. (*B*) Chicken CD1–2-binding groove close-up (*gray*) with groove-forming residues colored by amino acid type as shown in the inset. The outer molecular surface of CD1–2 is removed for clarity. (*C*) Sequence alignment between chicken, mouse, and human CD1s. Identical or highly similar residues are indicated by black bars. Residues that form the chCD1–2-binding groove are colored as in *B*. The black arrows indicate chCD1–2 residues that were mutated to form the CD1a-like binding groove illustrated in Fig. 5 *A* and *B*. Red arrows indicate mutations resulting in the CD1d-like groove.

Table S1. Data collection and refinement statistics for chCD1-2

Data collection	
Resolution range (Å)	30.0–2.0 (2.07–2.00)*
Completeness (%)	93.2 (95.6)
Number of unique reflections	26,874
Redundancy	4.1
R _{sym} ⁺ (%)	8.2 (64.9)
Ι/σ ₁	23.0 (2.0)
Refinement statistics	
Number of reflections ($F > 0$)	26,843
Maximum resolution (A)	2.0
R _{cryst} [*] (%)	21.6 (25.0)
R _{free} ^s (%)	26.6 (27.0)
Number of atoms	3,214
Protein	3,005
Palmitic acid	18
N-linked carbohydrates	42
Water	149
Ramachandran statistics (%)	
Favored	96.3
Allowed	3.7
Root-mean-square deviation from ideal geometry	
Bond length (Å)	0.015
Bond angles (°)	1.6
Average B values (Å ²) [¶]	
Protein	52.5
Palmitic acid	66.1
Water molecules	48.7
Carbohydrates	92.4

*, Number in parentheses refer to the highest resolution shell.

PNAS PNAS

 $\begin{array}{l} \text{(} \text{R}_{\text{rm}} = (\Sigma_h \Sigma_l; (h) - < (lh) > (\Sigma_h \Sigma_l; (h)) \times 100, \text{ where } < l(h) > \text{ is the average intensity of i symmetry-related observations for reflections with Bragg index h.} \\ \text{'}, \text{ } \text{ } \text{R}_{\text{stryst}} = (\Sigma_{hkl} F_o \text{-} F_c / \Sigma_{hkl} F_o) \times 100, \text{ where } < l(h) > \text{ is the average intensity of i symmetry-related observations for reflections with Bragg index h.} \\ \text{'}, \text{ } \text{ } \text{R}_{\text{stryst}} = (\Sigma_{hkl} F_o \text{-} F_c / \Sigma_{hkl} F_o) \times 100, \text{ where } < l(h) > \text{ is the average intensity of i symmetry-related observations for reflections with Bragg index h.} \\ \text{'}, \text{ } \text{ } \text{R}_{\text{strest}} = (\Sigma_{hkl} F_o \text{-} F_c / \Sigma_{hkl} F_o) \times 100, \text{ where } < I_o \text{ and } F_c \text{ are the observed and calculated structure factors, respectively, for all data.} \\ \text{'}, \text{ } \text{ } \text{R}_{\text{stree}} \text{ calculated as for } \text{ } \text{R}_{\text{strest}}, \text{ but on } 4\% \text{ of data excluded from refinement.} \end{array}$

¹, B values were calculated with the CCP4 program TLSANL [Howlin B, Butler DS, Moss DS, Harris GW, Driessen HPC (1993) TLSANL: TLS parameter analysis program for segmented anisotropic refinement of macromolecular structures. J Appl Cryst 26:622-624.]

Table S2. Percent identity of chCD1–2 to MHC and CD1

PNAS PNAS

Protein (PDB code)	Species	α1-α2	α1–α3
chCD1–1	Chicken	23	48
huCD1a (1ONQ)	Human	16	24
huCD1b (1GZQ)	Human	19	25
muCD1d (1CD1)	Mouse	17	23
chBF2*21 (3BEW)	Chicken	11	22
HLA-E (1MHE)	Human	14	19