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Molecular Characterization of the Clostridium difficile Toxin A Gene
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The gene encoding the toxin A protein of Clostridium difficile (strain VPI 10463) was cloned and sequenced.
The coding region of 8,133 base pairs has a mol% G+C of 26.9 and encodes 2,710 amino acids. The deduced
polypeptide has a molecular mass of ca. 308 kilodaltons. Nearly a third of the gene, at the 3’ end, consists of
38 repeating sequences. The repeating units were grouped into two classes, I and II, on the basis of length and
the low levels of DNA sequence similarities between them. There were seven class I repeating units, each
containing 90 nucleotides, and 31 class II units, which, with two exceptions, were either 60 or 63 nucleotides
in length. On the basis of DNA sequence similarities, the class II repeating units were further segregated into
subclasses: 7 class IIA, 13 class IIB, S class IIC, and 6 class IID. The dipeptide tyrosine-phenylalanine was
found in all 38 repeating units, and other amino acid sequences were unique to a specific class or subclass. This
region of the protein has epitopes for the monoclonal antibody PCG-4 and includes the binding region for the
Gala1-3Galp1-4GIcNAc carbohydrate receptor. Located 1,350 base pairs upstream from the toxin A
translation start site is the 3’ end of the toxin B gene. Between the two toxin genes is a small open reading frame,
which encodes a deduced polypeptide of ca. 16 or 19 kilodaltons. The role of this open reading frame is

unknown.

Clostridium difficile is the major causative agent of
pseudomembranous colitis in humans (2). The organism
produces two toxins, designated toxin A and toxin B (1, 32,
33). They are both cytotoxic and lethal for animals, although
toxin B is about 1,000-fold more cytotoxic than toxin A for
most cell lines. Both toxins appear to be produced in all
toxigenic strains; however, the toxicity of strains may vary
by several orders of magnitude (20, 32). The actions of these
toxins appear to be quite complex and at present are not
understood. Although toxin A has a direct toxic effect on the
intestinal mucosa, toxin B does not cause a significant
response when given intragastrically to hamsters, unless it is
initially mixed with a small amount of toxin A (19). Alterna-
tively, toxin B is also toxic if it is given to hamsters with
bruised (injured) ceca. The results are consistent with the
initial binding and primary tissue damage being caused by
toxin A or by mechanical injury, followed by the entry of
toxin B.

Investigators in a number of laboratories have worked on
the isolation and physical properties of the toxins (1, 2, 27,
30, 32). Both toxins have been purified to homogeneity (18,
32). An interesting and controversial property of the toxins
has been their molecular weights. Initial molecular weight
estimations obtained by using native proteins have ranged
from 440,000 to 600,000 for toxin A and 360,000 to 500,000
for toxin B (1, 30, 32). However, in later studies there has
been controversy as to whether the toxins dissociate into
smaller subunits under denaturing conditions. Under these
conditions, size estimations for the toxins range from
300,000 (18) to 50,000 (27, 30) and down to 42,500 and 16,000
(29). These discrepancies have been summarized by Lyerly
et al. (16) and are difficult to explain (35). Perhaps in some of
the isolation procedures a smaller contaminating protein
copurified with the toxins and tended to mask the toxins in
the polyacrylamide gels. The best approach to resolve this
controversy is to clone and sequence the toxin genes.
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Several investigators have begun cloning these genes.
Muldrow and his collaborators (26) have reported the clon-
ing of a 0.3-kilobase-pair (kb) fragment of the toxin A gene in
the lambda bacteriophage expression vector gtll. The ex-
pressed peptides reacted with toxin A polyvalent antisera.
When the cloned fragment from toxin A was used as a
labeled probe, it reacted with a Pstl-generated fragment of
C. difficile DNA, which they estimated as 4.5 kb. We have
cloned a 4.7-kb PstI fragment into a plasmid vector (28). This
fragment has an internal Ps¢I site which is protected from
digestion in the C. difficile DNA. When this fragment is
expressed, the peptide reacts with both toxin A affinity-
purified polyclonal antisera and with the monoclonal anti-
body PCG-4 (17). Preliminary results on the sequencing of
this fragment have shown that there are many repeating
sequence units within the fragment (14). Eichel-Streiber et
al. (8) have recently cloned portions of the 4.7-kb Pstl
fragment into a plasmid expression vector and obtained an
expression product that also reacted with toxin A antisera.
Wren et al. (36) have reported the cloning of toxin A in
lambda phage. The clone expressed a protein that caused
elongation of Chinese hamster ovary cells, and this protein
had an estimated molecular weight of 235,000.

In this study, we have completed the cloning and sequenc-
ing of toxin A and its flanking regions. Nearly one-third of
the gene (from the 3’ end) consists of a series of repeating
units which appear to code for the receptor portion of the
toxin.

MATERIALS AND METHODS

Bacteria, bacteriophages, and plasmids. DNA isolated
from C. difficile VPI 10463 was used for cloning. Plasmids
pBR322, pUC18, and pUC19 were used for the primary
cloning of C. difficile DNA fragments. Subclones in the M13
phages mp18 and mp19 were used for DNA sequencing. The
plasmids, phages, and Escherichia coli host strains JM109,
DH5«, and DH5aF’ were all obtained from Bethesda Re-
search Laboratories, Inc. E. coli strain Chi 1776 was pur-
chased from the American Type Culture Collection.

Enzymes and radiolabeled compounds. Restriction endonu-
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FIG. 1. Partial endonuclease restriction map of the cloned toxin A region from C. difficile strain 10463. Also shown are the sizes and
locations of primary clones pCD11, pCD11L, pCD11R-6, pCD17, and pCD19.

clease enzymes were purchased from Bethesda Research
Laboratories, Inc., International Biotechnologies, Inc., or
Promega Biotec. Endonucleases III and VII, E. coli DNA
polymerase I, and the polymerase I Klenow fragment were
obtained from Bethesda Research Laboratories, Inc. DNA
ligase and calf alkaline phosphatase were purchased from
Boehringer Mannheim Biochemicals. The T7 DNA polymer-
ase, Sequenase, was purchased from U.S. Biochemical. The
labeled nucleotide triphosphate [a->**S]JdATP was obtained
from New England Nuclear. Random primer labeling Kits
were obtained from International Biotechnologies, Inc. All
of the enzymes were used according to the instructions
provided by the manufacturers.

DNA isolations. High-molecular-weight C. difficile DNA
was isolated by using a variation of the Marmur procedure
(13, 22). The harvested cells (12) were suspended in 50 mM
Tris-1 mM EDTA buffer (pH 8.0). After 50 pg of lysozyme
per ml was added, the cell suspension was incubated at 37°C
until the cells were susceptible to sodium dodecyl sulfate
disruption. At the time of disruption, EDTA was added to a
final concentration of 40 mM, proteinase K was added to a
final concentration of 30 to 50 pg/ml, and B-mercaptoethanol
was added to a concentration of 1% to inhibit endogenous
nuclease activity in the lysate. Plasmid DNA and the repli-
cating-form DNA of M13 phage were isolated by the Birn-
boim and Doly alkaline lysis procedure (4). DNA prepara-
tions used for probe fragment generation and nested
deletions were further purified by CsCl centrifugation. Spe-
cific DNA restriction fragments were separated from others
on low-melting-point agarose, and the individual bands were
cut from the gel for use in the random priming labeling
procedure. When restriction fragments of C. difficile DNA
were needed in a particular size range (i.e., for cloning by
chromosome walking), the gel was cut at the lower size
range and this part was removed. A well was then cut into
the gel at the upper size range, the polarity of the electro-
phoresis unit was reversed, and the fragments were electro-
eluted into the well. This tended to concentrate the frag-
ments entering the well and resulted in a lower eluate
volume. The fragments were then ethanol precipitated.

Primary cloning. Of the four primary clones used in this
study (Fig. 1), three were cloned by the chromosome walk-
ing approach. The 2.6-kb PstI fragment of pCD11 was used
as a probe for cloning pCD11L, the 0.5-kb HindIII-EcoRI
fragment of pCD11L was used as a probe for cloning pCD17,

which was then used as a probe to clone pCD19, and pCD11
was used to detect clone pCD11R-6. The cloning was carried
out under EK-2, BL-2 containment with E. coli Chi 1776 as
host. Cells were made competent by the Hanahan procedure
11, 21).

Toxicity assays. Lysates from each primary clone were
checked for animal and cell toxicity. Mouse lethality tests
were performed by injecting five 8-week-old BALB/c mice
(Dominion Laboratories, Dublin, Va.) intraperitoneally with
200 pl of lysate and observing them for illness or death.
Cytotoxicity was checked in the Chinese hamster ovary
(CHO) cell assay by following a procedure previously de-
scribed (7). Lysates of E. coli Chi 1776 transformed with
pUC18 were used as negative controls.

DNA sequencing and sequence analysis. Both strands of the
DNA were sequenced by using the dideoxy-chain termina-
tion procedure developed by Sanger et al. (3, 31). DNA
fragments were cloned into M13, and nested deletions were
generated in replicating-form DNA by using the exonuclease
IIT and exonuclease VII procedure (37). Restriction sites
used for subcloning were sequenced across by using oligo-
nucleotide primers and double-stranded sequencing. Syn-
thetic oligonucleotide primers were also used for filling
occasional sequence gaps not covered by the nested dele-
tions.

Sequence analysis was done by using the Pustell programs
from International Biotechnologies, Inc., and the Sequence
Analysis Software Package from the Genetics Computer
Group, University of Wisconsin. The data bases that were
searched included the GenBank data base and the National
Biomedical Research Foundation Protein Sequence Data
Base. Unweighted Pair Group cluster analysis was done by
using the NTSYS-pc programs (F. J. Rohlf, Exeter Publish-
ing, Ltd.).

N-terminal sequencing. Toxin A was purified from culture
filtrates of C. difficile VPI 10463 by sequential ammonium
sulfate precipitation, ion-exchange chromatography, and
precipitation at pH 5.6 as previously described (18). The
highly purified protein was denatured with a final concentra-
tion of 2.5% sodium dodecyl sulfate-5% 2-mercaptoethanol
at 100°C for 2 min and subjected to sodium dodecy! sulfate-
polyacrylamide gel electrophoresis. After electrophoresis,
the protein was transferred to polyvinylidene difluoride
membranes by electroblotting and the N-terminal amino acid
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FIG. 2. Nucleotide and deduced amino acid sequences of C. difficile toxin A gene.
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FIG. 3. Nucleotide sequence similarity cluster analysis of the
class I repeating sequences.

sequence was determined by previously described methods
(23).

RESULTS

Primary clones of toxin A. Relationships between the five
primary clones, each containing a portion of the C. difficile
toxin A gene, are shown in Fig. 1. Also included in the figure
is a partial restriction map of this 15-kb region of the C.
difficile genome. Clone pCD11 has been partially character-
ized and shown to contain a carbohydrate binding region and
antigenic epitopes which react with the monoclonal antibody
PCG-4 (28). Clone pCD11R-6, in addition to containing the
entire pCD11 insert and most of the pCD11L insert, contains
the last 80 bases of the toxin A gene and approximately 4.1
kb of additional sequences downstream from the toxin A
gene. The downstream region contains two open reading
frames (ORFs) and part of the third, one of which is shown
in Fig. 1. All of these ORFs read in the direction opposite
that of the toxin A gene (data not shown). Clone pCD11L
contains an additional 1.5 kb of sequence upstream of the
pCD11 insert. Clone pCD17 was used as a probe for cloning
pCD189. Clone pCD19 codes for the 5’ end of toxin A, a small
OREF that could code for a 16- or 19-kilodalton (kDa) protein
and 1.2 kb of toxin B. These clones were not toxic for mice
or CHO cells. The clone immediately upstream from the
pCD19 insert was found to contain the remainder of the toxin
B gene, and we have since been able to reconstruct the intact
gene in a plasmid. The recombinant protein expressed by
this plasmid is cytotoxic to tissue cells, is lethal to mice, and
has immunological identity with toxin B (D. M. Lyerly and
J. L. Johnson, unpublished data).

Nucleotide and amino acid sequences for toxin A. The
nucleotide sequence and the deduced amino acids for the
toxin A gene are shown in Fig. 2 (GenBank accession
number, M30307). The open reading frame is 8,133 nucleo-
tides long and codes for 2,710 amino acids. The gene
contains 26.9 mol% G+C, and the deduced protein has a
molecular mass of 308,103 Da. The amino acid sequence of
the N-terminal end of toxin A was determined by microanal-
ysis after electrophoresis under denaturing conditions (23),
and the first 10 amino acids agree with the first 10 deduced
amino acids of the toxin A open reading frame, indicating
that there are no posttranslational modifications involving a
signal peptide.

An interesting property of this gene is the repeating
sequences at the 3’ end. A total of 2,551 nucleotides, or
31.5% of the gene, are in 38 contiguous repeating units. This
region extends from nucleotides 5,545 to 8,106. The repeat-
ing units were grouped into two classes, I and II, on the basis
of the low levels of DNA sequence similarities between
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FIG. 4. Nucleotide sequence similarity cluster analysis of the
class II repeating sequences.

them. There are 7 class I and 31 class II repeating units.
Each of the class I repeats is 90 nucleotides long, and the
class II repeats are either 60 or 63 nucleotides long, with the
one exception being 66 nucleotides long. The class II repeats
have been subdivided into 7 class ITA, 13 class IIB, 5 class
IIC, and 6 class IID repeats.

Nucleotide sequence similarities among the class I repeats
are shown in Fig. 3. Similarities ranged from 73 to 98%, with
the average values in the cluster analysis being 80% or
greater. Nucleotide sequence similarities among the class II
repeats are shown in Fig. 4. With the exception of class IID,
clustering within each subclass is high, being 70% or higher
for class IIA, 65% or higher for class IIB, and 76% or higher
for class IIC repeats. The class IID repeats are a diverse
collection, in that all are very distinct. Two of them fit closer
to the class IIB cluster and one fits closer to the class IIC
group than to the others in class IID. This is also the only
group in which there is any size variation; repeat unit class
IID, has an extra AAA codon, while IIDs has one fewer
codon.

The deduced amino acid residues for the repeated se-
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Class I peptides

I, 1891-1920 MQL|IGVFIKGPDIGFEYFAPANTIQNNNIEGQATI
I, 2025-2054 VKIIGVFISTSNGFEYFAPANTIYNNNIEGQATI
I, 2159-2188 MQIGVFIKGPNGFEYFAPANTDAINNIEGQATI
I, 2273-2302 MVTIGVFIKGPNGFEYFAPANTHNNNIEGQATI
Ig 2407-2436 MQIIGVFIKGPNIGFEYFAPANTIDAINNIEGQATI
Ig 2520-2549 MQIIGVFIKGPDIGFEYFAPANTIDAINNIEGQATI
I, 2611-2640 PQIIGVFIKGSNGFEYFAPANTDAINNIEGQATI

CONSENSUS MQIGVFKGPNGFEYFAPANTDANNIEGQAI

FIG. 5. Deduced amino acid sequences for the class I repeating units. Unit designations (I; to I,) are listed in order from the N-terminal
to C-terminal direction. The inclusive amino acid residue numbers are given for each unit, and the conserved amino acids are boxed.

CLASS IIA PEPTIDES quences are shown in Fig. 5 and 6. The inclusive amino acid
A, 1921-1940 v[v ols x[r ][] ¢ x x[¥ ¥ £l n x[s] residue numbers are given for each repeat unit, and the
A 2055-2074 elv ols xle tlelely o x kv v elo x sls conserved amino acid residues within each class or class

? e subgroup are boxed. Seventy percent of the amino acids in
Ay 2189-2208 LY QIN E|F LIT|LIN G K K\Y Y FIGS D|S the class I peptides are conserved among the units, while
A, 2303-2322 v|y o|n k|F L|T|L|N ¢ x kX|Y ¥ F[D N D[s less than 50% are conserved within each of the class II
A, 2437-2456 Ly o|n k|F vlr|Lly ¢ k x|y ¥ Flc s bls subgroups. The dipeptide tyrosine-phenylalanine (YF) js the
A, 2550-2569 =ly ofn r|F Llyleln o N 1|y v Flo n s most conserved and can be t:ound in all 38 repeat units. It
. represents residues 14 and 15 in the class I units and residues

7 264172660 R|¥ Q¥ R|F LIK|L|L G K I|Y ¥ F|G N N|S| 15 and 16 in the class II repeats, except for unit IID,. Base

CONSENSUS VYONKFLTLNGKKYYFGNNS differences in (he regions of conserved amino ac.ids i‘nvolved

the codon’s third base as expected, whereas switching from
CLASS IIB  PEPTIDES one amino acid to another in a given position usually
B,  1849-1869 NLVITGWQT|IINGKK|YYFIDINTG involved a total codon change or at least two of the bases.
B, 1941-1961 KAV[TGWRI|IINNEK|YYFNPNNA A hydropathic index plot for the deduced toxin A protein
B, 2075-2095 kavlrclwerlilpskkly v FlNTNTaA and a map of the repeat units are shown in Fig. 7. There is no
W meanewasfecanhlocksoy rurn  griencefora sigml ppideat the amine erminal end: thi
B 2n7-n EAMTGWQTIIDGKK|IYYFNTNTA modification of the N-terminal end of the protein. The only
B,  2209-2229 KAV|TGWRIIIINNKKYYFNPNNA strongly hydrophobic region in the deduced protein is from
B, 2323-2343 KAav|rGlworT|[I[DekK[y Yy FINLNTA residues 1,050 to 1,100. There appears to be a periodicity in
B, 2344-2364 EaalTclwor|ilpekKly Yy FINLNTA the hydropathic index within each repeat region. However,
5, 2365-2385 eaaltclwar|ilockklyyelnrnre the repeat region is for the most part hydrophilic.
The 160 bases immediately upstream from the toxin A
Bro  2457-2477 KAVITGILRTIIDGKKYYFNTRNTA translation initiation site are shown in Fig. 2. There appears
B,, 2478-2498 VAV|TGWQT|IINGKKIYYFINTNTS to be a ribosomal binding site (GGAGGT) starting six bases
B,, 2570-2590 kaalrclwvr|ilpenr|]yYFlEPNTA upstream of the initiation codon. Since we do not know
e deszemnarewaslarexdlr e a O e hoh there are several TAch areas i
, -

CONSENSUS KAVTGWQTIDGKKYYFNTNTA the region of 160 bases upstream (Fig. 2). Other than these,
CLASS I1C there do not appear to be any other unique structures, such
[+ 1870-1890 A LTS|Y|KI ?N GKHFY F|N D as inverted or tandem repeats.

' i i Small protein. A small ORF (ca. 500 base pairs; Fig. 8;
C,  2004-2024 I|AIF NGIYIK TII|IDIG KHFYF|DS|DICV GenBank accession number, 30308) is located 122 bases
¢,  2138-2158 1|als T gly|T 1{1|N|c Kk H F ¥ F|N T|D|G I downstream from the stop codon of the toxin B gene.

3 . . . .

c,  2186-2406 tlals T 6lvlr s|tlnle x v F ¥ Fly T[p|e 1 Although the deduced amino acid sequence begins with the
e 2499-2519 tlals 7 clelr tltlsle k n F v ely 2lole first start codon, there are two additional ATG codons at the

s h . . -

- amino acid residue positions 25 and 27. There appear to be

CONSENSUS IASTGYTIINGKHFYFNTDGTI ribosomal binding sites in the —10 regions of the first
CLASS 11D (GGTGGA).and third (GGAGGC) ATG codons. The de-

~— duced protein would have a molecular mass of 18,798 Da by
D,  1962-1982 TAAVGLQVIDNNKYYFNPDTA using the longer sequence and a 15,878-Da molecular mass
g .
D,  1983-2003 IITSKGWQTVNGSRYYFDTDTA by using the shorter sequence. The pl values for the two
b, 2230-2250 IAAIHLCTINNDKEY|YFlsyDGI peptides are 9.22 and 9.11, respectively. The hydropathic
D, 2251-2271 LQNGYITIERNNTF|YFIDANNES SHK
Dy 2591-2611 MGANGYKTIDNKNTF|Y FRNGL . . .
FIG. 6. Deduced amino acid sequences for the class II repeating
Dy 2682-2702 MAAAGGLFEIDGVIYFIFGVDG units. Unit designations are made in the same manner as for the
CONSENSUS IAA-G--TI-N=--YYF=--Dn=-- class I units.
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indexes were determined for both versions of the ORF (data
not included). The deduced peptide is in general hydrophilic,
and there does not appear to be a signal peptide in the first 25
amino acid residues; however, for a polypeptide starting at
amino acid residue 27 (the third ATG codon), there is a short
hydrophobic region that is characteristic of other signal
sequences (24).

DISCUSSION

We report here the molecular mass of 308,103 Da for the
deduced toxin A protein of C. difficile. This is in agreement
with previous studies that reported a large size for this toxin
(1, 18, 32, 33). Although we have not been able to express
toxicity from the cloned fragments, the 2.1-kb Ps¢I fragment
at the 3’ end of the gene has been used to express the major
antigenic and carbohydrate binding sites of the toxin (15, 28).
In fact, antiserum against this portion of the protein neutral-
izes the enterotoxicity of toxin A, and this is further evi-
dence that the repeating units represent the binding portion
(D. M. Lyerly and T. D. Wilkins, unpublished data).

2250

2500
FIG. 7. Hydropathy plot and repeating unit map for C. difficile toxin A gene. Hydrophobic regions are indicated by positive values.

The mechanism of action of toxin A is unknown. In the
data base searches, we were unable to find any amino acid
sequence similarities with other characterized toxins or
enzymes. We cannot rule out a second peptide associating
with this one, for example, the small ORF protein. The loss
of such a protein would have very little effect on the
electrophoretic migration and probably would not be de-
tected if the protein existed in equimolar amounts with the
large protein. Also, after_electrophoresis under denaturing
conditions, only antigeniCity has been measured and not
toxicity. It is not yet known whether the small protein is
even expressed in C. difficile, so any presumed role for the
small protein in the toxicity of the organism will have to
await further study.

The most interesting feature of the toxin A gene is the
repeating sequences in the carbohydrate binding region,
which, as seen by the hydropathy plot, contains the most
hydrophilic portion of the molecule. This is at the carboxyl
end of the protein and includes over a third of the polypep-
tide. Proteins with repeating units have been reported from a
wide range of organisms. Some of the highly antigenic
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ATAAAAATAT GTTAAATATA TCCTCTTATA CTTAAATATA TAAAAATAAA CAAAATGATA 60
CACTACATAA AGTGTTCTAT CTAATATGAA GATTTACCAA TAAAAAGGTG GACTATGATG 120

A ATG CAC AGT AGT TCA CCT TTT TAT ATT TCT AAT GGT AAC AAA ATA TTT TTT 172
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Y I N L G G Vv M N M T I s F L s E

CAT ATA TTT ATA AAG TTA GTA ATT TTA ACT ATA TCA TTT GAT ACA TTA TTA 274
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529

TGT GGA TTA CCA GTA CCT AAG AGA TTA AAG GAA AAA ATA GCA ATT TTA
c G L P V P K R L K E K I A I L

GAT GCA A‘I'G ACA GAT GM A‘l‘G AAT GCT AAG GAT GAA AAG TAA GTAATGGT 630
N D E K END
AGATATAATA AAGATATTAA CAAATAAAAA GTGTTATCCA AATAAGAATA GCTGAAAGTT 690
ATCATAATTC ATGAAACTAA TAATGAAAAC GAGGGAGCAG ATGCCAAGAG ACACACAAGT 750
ATTAAATACA TATAATTTCG AAGCAAGTGT TCATTACTAT ATAGATGACA AGGTAGTATA 810
TCAAACATTG GTTCACAAAG ATGGTGCATG GTCAGTTGGT AAAATCTATT AAGCTACATT 870
AGTTACAGAT ATCACAAACT ATAATAGTTA AACATAGAAA TATGTGTAAA TTGTGATGGA 930
AATTATTCAA AAACACAAAA ATACGTGATG AAGGACAAAA TGATATAGAA AATAAGTATC 990
AAACCTTAAT AA TTA AT T TAAA TAT AGGAAAAATA TATAAAGAAA 1050
TAAAAACATT AAAAAAATAT AAGATATGTT TACAAATTAC TATCAGACAA TCTCCTTATC 1110
TAATAGAAGA GTCAATTAAC TAATTGAGTA TCTTTAAATT GAAATGTTAG GAAGTGATTT 1170

AAATATGAAA ACTTAAATT 1189

FIG. 8. Nucleotide and deduced amino acid sequences of the
small open reading frame located between the 3’ end of C. difficile
toxin B and the 5’ end of toxin A. Also included are the sequences
between toxin B and the open reading frame and between the open
reading frame and the first nucleotide (—160) listed in the toxin A
sequence (Fig. 1).

surface proteins of Plasmodium species have repeated se-
quences, several of which are believed to be target cell
binding proteins (25). These repeating units range from 3 to
18 amino acids in length, are repeated from S to as many as
41 times, and may consist of nearly 40% of the protein (5, 6).
Several toxin genes have been sequenced that contain re-
peating sequences at the C-terminal end of the proteins. The
C-terminal region of the E. coli hemolysin polypeptide
contains 13 8-amino-acid repeating units, which are required
for hemolytic activity (9). The calmodulin-sensitive adenyl-
ate cyclase of Bordetella pertussis contains two regions that
contain repeating units (10). Eleven repeating units of 15
amino acids have recently been reported for the insecticidal
crystal proteins of Bacillus thuringiensis (34). Although the
repeating sequences of C. difficile toxin A do not have any
sequence similarities with any of these other proteins, loca-
tion at the C-terminal end of the proteins is common, and
some may have a common role for target cell binding.
Because the repeating region constitutes about one-third of
the entire toxin molecule and the repeats are highly hydro-
philic, it would be interesting to determine the spatial
distribution of these repeats in the native protein. It remains
to be shown whether a periodicity on the surface of the toxin
molecule confers certain unique biological properties to the
protein. We are currently pursuing research in this area to
gain more understanding of the structure and function of this
toxin.
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