GEO	Platform	Reference	#Samples	Category	Notes
Series GSE75	GPL32 (MG-U74Av1)	(24)	24	Aging and development	Effect of aging on hearts from FVB mice
GSE1479	GPL1261 (Mouse 430-2.0)	(24)	30 *	Aging and development	Embryonic development (E12.5 to E18.5) in C57BL/6 mice
GSE2812	GPL81 (MG-U74Av2)	(28)	20	Cardiac teratogen	Pregnant mice were treated with varying doses of TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin, a potent cardiovascular teratogen) on gd14.5. Fetal hearts were collected on gd17.5.
GSE3440	GPL1261 (Mouse 430-2.0)	(30)	15	Drug Treatment	10mcg/kg Aldosterone treatment
GSE3067	GPL1261 (Mouse 430-2.0)	(3)	28	Drug Treatment and Transgenic	Effect of the PPARalpha ligand (WY-14643) on the heart of normal and Delta337T Trbeta1 mutated animals
GSE1471	GPL339 (Mouse 430Av2.0)		12	Knock-out	Cardiac muscle of mdx (dystrophin-deficient) mice compared to WT, two ages
GSE1988	GPL339 (Mouse 430Av2.0)	(20)	7	Knock-out	Comparing aged eNOS KO mice to aged WT mice
GSE2236	GPL1261 (Mouse 430-2.0)	(19)	4	Knock-out	Heart/muscle-specific manganese superoxide dismutase (MnSOD)-deficient mice
GSE6770	GPL1261 (Mouse 430-2.0)	(29)	4	Knock-out	Histone deacetylase-2 (Hdac2) -/- and WT mice
GSE5500	GPL1261 (Mouse 430-2.0)	(1)	21	Knock-out	Mice that express reduced levels of Gata4 at baseline and after pressure overload.
GSE528	GPL75 (Mu11K-A) & GPL76 (Mu11K-B)	(24)	12	Knock-out	E12.5 Homozygous and heterozygous mice harboring a deletion of the Nkx2.5 specific domain (Nkx2.5-SD) were compared to WT
GSE78	GPL75 (Mu11K-A) & GPL76 (Mu11K-B)	(24)	9	Knock-out	Nkx2.5 KO homozygous, heterozygous and WT E9.5 embryos

Supplementary Table 1 - Sources of microarray data used in the Module Map analysis

GSE4120	GPL339 (Mouse	(9)	10	Knock-out	plakoglobin +/- and wild type mice with/without
	430Av2.0) & GPL340				endurance training
GSE5129	GPL339 (Mouse	(4)	4	Knock-out	Pressure overload-induced cardiac hypertrophy
	430Av2.0) & GPL340				in IL-18 knockout and littermate control mice
GSE1134	GPL81 (MG-U74Av2)	(16)	4	Knock-out	Transgenic mice lacking one copy of the Na-K-
					ATPase, isoform alpha1 compared to WT
GSE4710	GPL339 (Mouse	(6)	8	Myocardial	Myocardial Infarction (MI) induced by LAD
	430Av2.0)			Infarction	ligation in Mouse hearts from C57BL/6 and
					MRL/MpJ strains
GSE775	GPL81 (MG-U74Av2)	(24)	59	Myocardial	Myocardial Infarction (MI) induced by LAD
				Infarction	ligation. Infarcted and non-infarcted regions of
					the heart checked.
GSE4648	GPL81 (MG-U74Av2) &	(7)	66	Myocardial	Myocardial Infarction (MI) induced by LAD
	GPL82 (MG-U7BAv2) &			Infarction	ligation. Infracted Region (IF), NonInfracted
	GPL83 (MG-U74C)				Region (Free Wall - FW) and InterVentricular
					Septum (IVS) were checked.
GSE415	GPL75 (Mu11K-A) &	(14)	18	Myocardial	Myocardial Infarction (MI) induced by ligation
	GPL76 (Mu11K-B)			Infarction	of the coronary artery & Mice suffering from
					Tranverse Aortic Constriction (TAC), which
					causes pressure overload.
GSE4616	GPL81 (MG-U74Av2)	(10)	12	Physiological	Diabetic and control mice with/without exercise
				Hypertrophy	
GSE77	GPL81 (MG-U74Av2)	(24)	30	Physiological	Swimming induced physiological hypertorphy.
				Hypertrophy	
GSE76	GPL32 (MG-U74Av1)	(27)	36	Pressure	Aortic banding leading to pressure induced
				induced	hypertrophy. The method for creating the model,
				overload	but not the microarray analysis, is decribed in
					the paper.
GSE1621	GPL81 (MG-U74Av2)	(31)	26	Pressure	Transverse Aortic Constriction (TAC)
				induced	

				overload	
GSE2459	GPL81 (MG-U74Av2)	(13)	15	Pressure induced overload	Transverse Aortic Constriction (TAC) assayed at 30 weeks (when compensatory hypertrophy is present)
GSE760	GPL32 (MG-U74Av1)	(24)	3	Transgenic	10week old mice transgenic with dominant negative p21ras, causing severe dilated cardiomyopathy.
GSE2355	GPL81 (MG-U74Av2) & GPL82 (MG-U7BAv2)		16	Transgenic	Overexpression of angiotensin II receptor, type 1a
GSE986	GPL81 (MG-U74Av2)	(11)	20	Transgenic	Cardiac transgenesis with the tetracycline transactivator (tTA)
GSE670	GPL75 (Mu11K-A) & GPL76 (Mu11K-B)	(2)	53	Transgenic	Differential Myocardial Gene Expression in the Development and Rescue of Murine Heart Failure
GSE591	GPL81 (MG-U74Av2)	(26)	18	Transgenic	TNFalpha over-expressing transgenic animals
GSE3530	GPL1261 (Mouse 430-2.0)	(15)	36	Transgenic	MAP kinase activation of three major MAP kinase signaling cascades, ERK, p38 and JNK. This article used conditional activation, triggered by Tamoxifen treatment.
GSE4678	GPL339 (Mouse 430Av2.0)	(21)	10	Transgenic	Familial Hypertrophic Cardiomyopathy (FHC) - two alphaTropomyosin mutants
GSE3383	GPL339 (Mouse 430Av2.0) & GPL340	(22)	18	Transgenic	Short and long-term conditional activation of Akt in the heart
GSE1457	GPL81 (MG-U74Av2)		7	Viral Infection	Infection with CVB3 (a cardiotropic virus which leads to cardiac inflammation and fibrosis within 9 days) in Male A/J mice
The following two series were unified into one series (the 3 control samples are identical) - Cardiogenomics.PI3K		18	Transgenic		

GSE558	GPL81 (MG-U74Av2)		9	Transgenic	heterozygous samples of constitutively active
					PI3K (caPI3K), dominant negative (dnPI3K)
					and non-transgenic FVB/N littermate controls
GSE1143	GPL81 (MG-U74Av2)	(12)	9	Transgenic	IGF1R overexpressing mice crossed, some of
					which were crossed with dnPI3K or caPI3K,
					(the control are the non-transgenic animals from
					GSE558).
The following three series were unified into one			27	Transgenic	
series (the 8 control samples are identical) -					
EDMD.Mutations					
GSE6397	GPL1261 (Mouse 430-2.0)	(18)	15	Transgenic	LmnaH222P Knock In Heterozygous
GSE6398	GPL1261 (Mouse 430-2.0)	(18)	14	Transgenic	LmnaH222P Knock In Homozygous
GSE6399	GPL1261 (Mouse 430-2.0)	(17)	14	Knock-out	Emerin KO

All series were downloaded using the data as processed and presented in the GEO. An exception is the series GSE1988, which was downloaded as raw CEL files from the GEO, and processed locally with the RMA algorithm (8) (using R 2.4, Biocondcutor 1.9 and affy 1.12) (5). All series were then processed further before module creation (see Methods).

GSE558 & GSE1143 were unified to one series. GSE6397, GSE6398 & GSE6399 were unified into one series, since they use the same control samples.

GSE1479 was used without samples from embryonic stages E10.5, E11.5 since they were processed in this manner: "At stages 10.5 and 11.5, we have removed the rostral and caudal parts of the embryo and subjected the middle part, which *includes* the heart, for expression analysis" $((23, 25)^1)$ (emphasis added). Such samples which "include" the heart may also include other organs. Preliminary results using these samples raised some questions about their purity and indicated a possible contamination by liver. To avoid confusion, these samples were removed.

¹ The website describing this experiment (schinke, c57bl/6 patterns) has an apparently incorrect description of these samples. The GEO entry (schinke, sample) has a description which seems correct, and this one was used.

1. **Bisping E, Ikeda S, Kong SW, Tarnavski O, Bodyak N, McMullen JR, Rajagopal S, Son JK, Ma Q, Springer Z, Kang PM, Izumo S, and Pu WT**. Gata4 is required for maintenance of postnatal cardiac function and protection from pressure overload-induced heart failure. *Proc Natl Acad Sci U S A* 103: 14471-14476, 2006.

2. Blaxall BC, Spang R, Rockman HA, and Koch WJ. Differential myocardial gene expression in the development and rescue of murine heart failure. *Physiol Genomics* 15: 105-114, 2003.

3. **Buroker NE, Young ME, Wei C, Serikawa K, Ge M, Ning XH, and Portman MA**. The dominant negative thyroid hormone receptor beta-mutant {Delta}337T alters PPAR{alpha} signaling in heart. *Am J Physiol Endocrinol Metab* 292: E453-460, 2007.

4. Colston JT, Boylston WH, Feldman MD, Jenkinson CP, de la Rosa SD, Barton A, Trevino RJ, Freeman GL, and Chandrasekar B. Interleukin-18 knockout mice display maladaptive cardiac hypertrophy in response to pressure overload. *Biochem Biophys Res Commun* 354: 552-558, 2007.

5. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, and Zhang J. Bioconductor: open software development for computational biology and bioinformatics. *Genome Biol* 5: R80, 2004.

6. Haris Naseem R, Meeson AP, Michael Dimaio J, White MD, Kallhoff J, Humphries C, Goetsch SC, De Windt LJ, Williams MA, Garry MG, and Garry DJ. Reparative myocardial mechanisms in adult C57BL/6 and MRL mice following injury. *Physiol Genomics* 30: 44-52, 2007.

7. Harpster MH, Bandyopadhyay S, Thomas DP, Ivanov PS, Keele JA, Pineguina N, Gao B, Amarendran V, Gomelsky M, McCormick RJ, and Stayton MM. Earliest changes in the left ventricular transcriptome postmyocardial infarction. *Mamm Genome* 17: 701-715, 2006.

8. **Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, and Speed TP**. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. *Biostatistics (Oxford, England)* 4: 249-264, 2003.

9. Kirchhof P, Fabritz L, Zwiener M, Witt H, Schafers M, Zellerhoff S, Paul M, Athai T, Hiller KH, Baba HA, Breithardt G, Ruiz P, Wichter T, and Levkau B. Age- and training-dependent development of arrhythmogenic right ventricular cardiomyopathy in heterozygous plakoglobin-deficient mice. *Circulation* 114: 1799-1806, 2006.

10. Lehti TM, Silvennoinen M, Kivela R, Kainulainen H, and Komulainen J. Effects of streptozotocin-induced diabetes and physical training on gene expression of titin-based stretch-sensing complexes in mouse striated muscle. *Am J Physiol Endocrinol Metab* 292: E533-542, 2007.

11. McCloskey DT, Turnbull L, Swigart PM, Zambon AC, Turcato S, Joho S, Grossman W, Conklin BR, Simpson PC, and Baker AJ. Cardiac transgenesis with the tetracycline transactivator changes myocardial function and gene expression. *Physiol Genomics* 22: 118-126, 2005.

12. McMullen JR, Shioi T, Huang WY, Zhang L, Tarnavski O, Bisping E, Schinke M, Kong S, Sherwood MC, Brown J, Riggi L, Kang PM, and Izumo S. The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110alpha) pathway. *J Biol Chem* 279: 4782-4793, 2004.

13. **Mirotsou M, Dzau VJ, Pratt RE, and Weinberg EO**. Physiological genomics of cardiac disease: quantitative relationships between gene expression and left ventricular hypertrophy. *Physiol Genomics* 27: 86-94, 2006.

14. **Mirotsou M, Watanabe CM, Schultz PG, Pratt RE, and Dzau VJ**. Elucidating the molecular mechanism of cardiac remodeling using a comparative genomic approach. *Physiol Genomics* 15: 115-126, 2003.

15. **Mitchell S, Ota A, Foster W, Zhang B, Fang Z, Patel S, Nelson SF, Horvath S, and Wang Y**. Distinct gene expression profiles in adult mouse heart following targeted MAP kinase activation. *Physiol Genomics* 25: 50-59, 2006.

16. **Moseley AE, Huddleson JP, Bohanan CS, James PF, Lorenz JN, Aronow BJ, and Lingrel JB**. Genetic profiling reveals global changes in multiple biological pathways in the hearts of Na, K-ATPase alpha 1 isoform haploinsufficient mice. *Cell Physiol Biochem* 15: 145-158, 2005.

17. **Muchir A, Pavlidis P, Bonne G, Hayashi YK, and Worman HJ**. Activation of MAPK in hearts of Emd null mice: similarities between mouse models of X-linked and autosomal dominant Emery-Dreifuss muscular dystrophy. *Hum Mol Genet* 2007.

18. **Muchir A, Pavlidis P, Decostre V, Herron AJ, Arimura T, Bonne G, and Worman HJ**. Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy. *J Clin Invest* 117: 1282-1293, 2007.

19. Nojiri H, Shimizu T, Funakoshi M, Yamaguchi O, Zhou H, Kawakami S, Ohta Y, Sami M, Tachibana T, Ishikawa H, Kurosawa H, Kahn RC, Otsu K, and Shirasawa T. Oxidative stress causes heart failure with impaired mitochondrial respiration. *J Biol Chem* 281: 33789-33801, 2006.

20. **Ojaimi C, Li W, Kinugawa S, Post H, Csiszar A, Pacher P, Kaley G, and Hintze TH**. Transcriptional basis for exercise limitation in male eNOS-knockout mice with age: heart failure and the fetal phenotype. *Am J Physiol Heart Circ Physiol* 289: H1399-1407, 2005.

21. **Rajan S, Williams SS, Jagatheesan G, Ahmed RP, Fuller-Bicer G, Schwartz A, Aronow BJ, and Wieczorek DF**. Microarray analysis of gene expression during early stages of mild and severe cardiac hypertrophy. *Physiol Genomics* 27: 309-317, 2006.

22. Schiekofer S, Shiojima I, Sato K, Galasso G, Oshima Y, and Walsh K. Microarray analysis of Akt1 activation in transgenic mouse hearts reveals transcript expression profiles associated with compensatory hypertrophy and failure. *Physiol Genomics* 27: 156-170, 2006.

23. Schinke M. C57BL/6 Benchmark Set for Early Cardiac Development

http://cardiogenomics.med.harvard.edu/groups/proj1/pages/embryo_home.html. [18 May, 2007, 2007].

24. **Schinke M**. Genomics of Cardiovascular Development, Adaptation, and Remodeling. NHLBI Program for Genomic Applications, Harvard Medical School <u>http://www.cardiogenomics.org</u>. [3 Jul, 2007, 2007].

25. Schinke M. Sample GSM25150 <u>http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM25150</u>. [18, May, 2007, 2007].

26. Tang Z, McGowan BS, Huber SA, McTiernan CF, Addya S, Surrey S, Kubota T, Fortina P, Higuchi Y, Diamond MA,

Wyre DS, and Feldman AM. Gene expression profiling during the transition to failure in TNF-alpha over-expressing mice demonstrates the development of autoimmune myocarditis. *J Mol Cell Cardiol* 36: 515-530, 2004.

27. **Tarnavski O, McMullen JR, Schinke M, Nie Q, Kong S, and Izumo S**. Mouse cardiac surgery: comprehensive techniques for the generation of mouse models of human diseases and their application for genomic studies. *Physiol Genomics* 16: 349-360, 2004.

28. **Thackaberry EA, Jiang Z, Johnson CD, Ramos KS, and Walker MK**. Toxicogenomic profile of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the murine fetal heart: modulation of cell cycle and extracellular matrix genes. *Toxicol Sci* 88: 231-241, 2005.

29. Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, Floss T, Goettlicher M, Noppinger PR, Wurst W, Ferrari VA, Abrams CS, Gruber PJ, and Epstein JA. Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. *Nat Med* 13: 324-331, 2007.

30. **Turchin A, Guo CZ, Adler GK, Ricchiuti V, Kohane IS, and Williams GH**. Effect of acute aldosterone administration on gene expression profile in the heart. *Endocrinology* 147: 3183-3189, 2006.

31. **Zhao M, Chow A, Powers J, Fajardo G, and Bernstein D**. Microarray analysis of gene expression after transverse aortic constriction in mice. *Physiol Genomics* 19: 93-105, 2004.