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Phase diagram and robustness analysis: analytical re-

sults

Here we proceed to analytically estimate a phase diagram in the parameter
space for proper functioning of the spatial toggle switch by using a Boolean
approach and assuming a 1D lattice. We focus on a subset of two cells, that
comprises a boundary cell and a neighboring non-boundary cell (i = 0 and
i = 1 respectively) as depicted in manuscript’s Fig. 2A, embedded in a multi-
cellular environment. To operate as a spatial toggle switch, the (asymptotic)
stationary activities in these cells must satisfy,

Xactivity
i Y activity

i

i = 0 1 0
i = 1 0 1

(1)

Note that since the boundary population comprises two cells with “identical”
genetic activity then i = −1 is a boundary cell and we can assume that
Ỹ−1 = Ỹ0. Therefore, according with Table 1, manuscript’s Eqs. (1) for i = 0
and i = 1 in the steady state must read,

˙̃
X0 = 0 = Λ + κ− X̃0, (2)

˙̃
X1 = 0 = Λ− X̃1,

˙̃
Y0 = 0 = −Ỹ0 + κ + D

(

Ỹ1 − Ỹ0

)

,

˙̃
Y1 = 0 = −Ỹ1 + D

(

Ỹ0 + Ỹ2 − 2Ỹ1

)

.

Equations for Ỹ correspond to the steady state solution of the discrete and
dimensionless version of the following continuous equation,

Ẏ = −γY Y + 2k′Xδ (x) + DY∇2Y .

This equation has been indeed proposed to model the establishment of mor-
phogen profiles [1, 2] and its solution reads,

Y =
k′X√
DY γY

e
−x

q

γY
DY .
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That is,

Y2 '
k′X√
DY γY

e
−2∆

q

γY
DY ⇐⇒ Ỹ2 '

κ√
D

e
−

2√
D .

In this way, the set of equations (2) become closed, leading to,

X̃0 = κ + Λ, (3)

X̃1 = Λ,

Ỹ0 = κ
D
√

De
−

2√
D + 2D + 1

D2 + 3D + 1
,

Ỹ1 = κ

√
D (1 + D) e

−
2√
D + D

D2 + 3D + 1
.

Conditions for the concentration levels in boundary and non-boundary cells
(

X̃0 > 1, Ỹ0 > α̃′, X̃1 < β̃, Ỹ1 > α̃′

)

combined with Eqs. (3) provide the set

of inequalities in terms of the model parameters that define the phase diagram
as stated in the manuscript:

β̃ > Λ > 1− κ, (4)
√

D (1 + D) e
−

2√
D + D

D2 + 3D + 1
>

α̃′

κ
.

Robustness: analytical results

Robustness to parameter variation for the values spanned in in silico ex-
periments, r, can be estimated by means of the phase diagram as the ratio
between the volume where toggle switch (unique and stable boundary for-
mation) is obtained, Vboundary, and the total explored volume, Vtotal,

r =
Vboundary

Vtotal
.

We characterize the phase diagram in terms of κ, D, and Λ where κ ∈
[κmin = 0.5, κmax = 30], D ∈ [Dmin = 0.2, Dmax = 10], and Λ ∈ [Λmin = 0.01, Λmax = 0.5].
In addition α̃′ = 0.6 and β̃ = 0.4. Note that Vtotal simply reads,

Vtotal =

∫

dDdκdΛ = (Dmax −Dmin) (κmax − κmin) (Λmax − Λmin) .
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On the other hand, Vboundary is defined by means of the inequalities (4) that
constrains the parameter space to a region Ω ⊂ Vtotal where boundary for-
mation is obtained, that is,

Vboundary =

∫

Ω

dκdΛdD =

∫ Db

Da

dD

∫ κb(D)

κa(D)

dκ

∫ Λb(D,κ)

Λa(D,κ)

dΛ,

The aforementioned inequalities do not allow for an exact solution of Vboundary.
This is a consequence of κa (D) functional form (see above) that defines a
lower integration limit. However, we can bound Vboundary since,

D

5
≥
√

De
−

2√
D ≥ 0.

That is, we can define κ±a (D) such that,

κ−a (D) =
α̃′ (D2 + 3D + 1)

D
≥ κa (D) ≥ κ+

a (D) =
5α̃′ (D2 + 3D + 1)

D (6 + D)
.

As a consequence V +
boundary > Vboundary > V −

boundary where,

V ±

boundary =

∫ Db

Da

dD

∫ κb(D)

κ
±
a (D)

dκ

∫ Λb(D,κ)

Λa(D,κ)

dΛ,

• Λ integration limits: On one hand, we notice that if α̃′ > 1
3

then
κ±a (D) > 1∀D. Thus, the inequality Λ > (1− κ) is satisfied within
Vtotal and Λa (D, κ) = Λmin . On the other hand, β̃ < Λmax within Vtotal

and therefore, since Λ < β̃ within Ω, Λb (D, κ) = β̃.

• κ integration limits: κmax must be larger than κ±a (D) within Ω
for V ±

boundary being different from zero. For the case κ−a (D) |κ+
a (D)

this implies that κmax > 5α̃′| 5
18

(

8 +
√

19
)

α̃′ (the minimum value that
κ−a (D) |κ+

a (D) can take). For the parameter sets analyzed in our sim-
ulations these conditions are granted within Vtotal (see below) and we
set κb (D) = κmax.

• D integration limits for D: The integration limits for D are deter-
mined by the intersection between the curves κ±a (D) and κmax. Hence,
for the case κ−a (D), we find that within Ω,

min
(

D+

(κmax

α̃′

)

, Dmax

)

= D−

a > D > max
(

D−

(κmax

α̃′

)

, Dmin

)

= D−

b ,
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where

D± (z) =
1

2

[

z − 3±
√

(z − 1) (z − 5)
]

.

Moreover, Dmax must be necessarily larger than D− (κmax/α̃
′) within Ω.

For the values explored in the phase diagram we find that D−

a = Dmax

and D−

b = Dmin. Likewise, for the case κ+
a (D), we find that within Ω,

Dmax > D > max
(

D′

−

(κmax

α̃′

)

, Dmin

)

= D+
b ,

where

D′

−
(z) =

6z − 15−
√

125 + 4z (9z − 40)

2 (5− z)
,

and the following condition must be satisfied: Dmax > D′

−
(κmax/α̃

′).
Since κmax > 5α̃′ within Vtotal then D−

a = Dmax and D−

b = Dmin.

Summarizing, V ±

boundary is given by,

V ±

boundary =

∫ Dmax

Dmin

dD

∫ κmax

κ
±
a (D)

dκ

∫ β̃

Λmin

dΛ.

The integrals can now be analytically evaluated and leads to,

V +
boundary =

(

β̃ − Λmin

)

(

(Dmax −Dmin) (κmax − 5α̃′) +
5

6
α̃′

(

19 ln
6 + Dmax

6 + Dmin

− ln
Dmax

Dmin

))

,

V −

boundary =
(

β̃ − Λmin

)

(

(Dmax −Dmin) (2κmax − α̃′ (6 + Dmax + Dmin))− 2α̃′ ln
Dmax

Dmin

)

.

As a consequence we obtained that 0.67 > r > 0.75.

Dishevelled lack-of-function mutant: in silico experi-

ments

As predicted by the activity-vs-concentration function, ∆XY , Dishevelled
lack-of-function mutants are able to generate a boundary in our in silico ex-
periments. However, in these mutants additional boundaries are prone to de-
velop since the toggle switch mechanism is less robust. To illustrate this, Fig.
1S shows the steady state obtained in numerical simulations for wild-type (A)
and Dishevelled lack-of-function (B) genotypic backgrounds. The simulation
parameters and color codes are the same that those in manuscript’s Fig. 7
with the exception of Λ = 0.18.
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Dynamics in two spatial dimensions: Movie 1

The spatial toggle switch mechanism and our modeling approach can be
generalized to two (or three) dimensional arrays of cells in a straightforward
way. Movie 1 shows the dynamics of boundary formation in a two dimen-
sional hexagonal lattice by means of a color density plot. Same parameters
values that in manuscript’s Fig. 7 were used. Color code for both expression
(concentration) and activity: Notch:red and Wg:blue. Notice that in bound-
ary cells the concentrations show color merging (purple=red+blue) whereas
activities do not (toggle switch). The last frame of the movie represents the
stationary state.
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Figure legends

Figure 1S.

Wild-type (A) versus Dishevelled lack-of-function (B) genotypic backgrounds.
In both cases Notch/Wingless is represented in red/blue. Left and right pan-
els correspond to expression (concentration) and activity profiles respectively.
As shown, multiple boundaries develop in the mutant case indicating the role
played by Dsh in the reliability of the switching mechanism.

6



��� ��� ��� ��� ��� ��� ����� �
	�
 �
�

� 
 �
���

��	�
 �
���

� � 
 �
	����
���������� � ��� � 
��

��� ��� ��� ��� ��� ��� ����� �

��
 	
��
 �
��
 �
��
 �
�

����� � ��� � �

��� ��� ��� ��� ��� ��� ����� �
�

���
���
���
���
����� �!�����!�" # $�" %  �!

��� ��� ��� ��� ��� ��� ����� �
��& �
��& �
��& �
��& '
�

$���" % (�% " )

Figure 1S:
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