Synthesis of 2,3-Disubstituted Benzo[*b*]furans by the Palladium-Catalyzed Coupling of *o*-Iodoanisoles and Terminal Alkynes, Followed by Electrophilic Cyclization

Dawei Yue, Tuanli Yao and Richard C. Larock*

Department of Chemistry, Iowa State University, Ames, IA 50011

larock@iastate.edu

	Page
General	S2-S2
Preparation of o-(1-alkynyl)anisoles	S2-S7
Iodocyclization of o-(1-alkynyl)anisoles	S7-S 10
<i>p</i> -O ₂ NC ₆ H ₄ SCl and PhSeCl cyclizations of <i>o</i> -(1-alkynyl)anisoles	S10-S11
References	S11-S12
Copies of ¹ H and ¹³ C NMR spectra	S13-S72

General. ¹H and ¹³C NMR spectra were recorded at 300 and 75.5 MHz or 400 and 100 MHz respectively. Thin layer chromatography was performed using commercially prepared 60-mesh silica gel plates, and visualization was effected with short wavelength UV light (254 nm) or a basic KMnO₄ solution [3 g of KMnO₄ + 20 g of K₂CO₃ + 5 mL of NaOH (5 %) + 300 mL of H₂O]. All melting points are uncorrected. Low resolution mass spectra were recorded on a Finnigan TSQ700 triple quadrupole mass spectrometer. High resolution mass spectra were recorded on a double focusing magnetic sector mass spectrometer using EI at 70 eV. All reagents were used directly as obtained commercially unless otherwise noted. Anhydrous forms of ethyl ether, hexanes, ethyl acetate, CH₂Cl₂ and DMF, 2-iodoanisole, 2-bromo-1,4-dimethoxybenzene, 1-bromo-2,4dimethoxybenzene, 2-iodo-4-nitroanisole, 2-iodo-5-nitroanisole, resorcinol, 4iodoanisole, 4-nitroiodobenzene, phenylacetylene, 1-decyne, 1-cyclohexenyl acetylene, 1-octyne, *tert*-butyl acetylene, trimethylsilyl acetylene, the palladium salts and Et₃N were purchased from supplier.

General procedure for the palladium/copper-catalyzed formation of the *o*-(1alkynyl)anisoles. To a solution of Et_3N (12.5 mL), $PdCl_2(PPh_3)_2$ (2 mol %), 5 mmol of *o*-iodoanisole and 6 mmol of terminal acetylene (stirring for 5 min beforehand), CuI (1 mol %) was added and stirring was continued for another 2 min before flushing with Ar and the flask was then sealed. The mixture was allowed to stir at room temperature for 3-6 h and the resulting solution was filtered and washed with a saturated aq NaCl solution and extracted with diethyl ether (2 x 15 mL). The combined ether fractions were dried

over anhydrous Na_2SO_4 and concentrated under vacuum to yield the crude product. The crude product was purified by flash chromatography on silica gel using ethyl acetate/hexane as the eluent.

2-(Phenylethynyl)anisole (1). The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 3.90 (s, 3H), 6.89 (d, *J* = 8.4 Hz, 1H), 6.93 (t, *J* = 7.6 Hz, 1H), 7.29-7.33 (m, 4H), 7.50 (d, *J* = 7.2 Hz, 1H), 7.55-7.57 (m, 2H); ¹³C NMR (CDCl₃) δ 56.0, 85.9, 93.6, 110.9, 112.6, 120.7, 123.7, 128.2, 128.3, 129.9, 131.8, 133.7, 160.1; IR (neat, cm⁻¹) 3058, 2926, 2855, 2226; HRMS calcd for C₁₅H₁₂O 208.0888, found 208.0894. The spectral properties were identical to those previously reported.¹

2-[(Cyclohex-1-enyl)ethynyl]anisole (5). The product was obtained as a yellow oil: ¹H NMR (CDCl₃) 7.05-7.26 (m, 4H), 6.20 (s, 1H), 3.77 (s, 3H), 2.09-2.35 (m, 4H), 1.20-1.67 (m, 4H); IR (neat, cm⁻¹) 3048, 2944, 2222; HRMS calcd for $C_{15}H_{16}O$ 212.1201, found 212.1206. The spectral properties were identical to those previously reported.²

2-[(4-Methoxyphenyl)ethynyl]anisole (8). The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 3.77 (s, 3H), 3.87 (s, 3H), 6.83-6.93 (m, 4H), 7.26 (t, *J* = 8.0 Hz, 1H), 7.46-7.50 (m, 3H); ¹³C NMR (CDCl₃) δ 55.4, 55.9, 84.5, 93.6, 110.8, 112.8, 114.0, 115.8, 120.6, 129.6, 133.2, 133.5, 159.6, 159.9; IR (neat, cm⁻¹) 2227; HRMS calcd for C₁₆H₁₄O₂ 238.0994, found 238.1000. The spectral properties were identical to those previously reported.³

4-Methoxy-2-(phenylethynyl)anisole (11). The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 3.76 (s, 3H), 3.86 (s, 3H), 6.80-6.84 (m, 2H), 7.05 (s, 1H), 7.30-7.34 (m, 3H), 7.56 (d, *J* = 6.0 Hz, 2H); ¹³C NMR (CDCl₃) δ 56.0, 56.7, 85.9, 93.6, 112.3, 113.1, 115.9, 118.3, 123.6, 128.4, 128.4, 131.8, 153.4, 154.7; IR (neat, cm⁻¹) 3058, 2926,

2855, 2227, 1464, 1435, 749; HRMS calcd for $C_{16}H_{14}O_2$ 238.0994, found 238.0999. The spectral properties were identical to those previously reported.⁴

4-Nitro-2-(phenylethynyl)anisole (14). The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 4.01 (s, 3H), 6.96 (d, *J* = 9.2 Hz, 1H), 7.36-7.38 (m, 3H), 7.56-7.58 (m, 2H), 8.20 (dd, *J* = 9.2, 2.8 Hz, 1H), 8.38 (d, *J* = 2.4 Hz, 1H); ¹³C NMR (CDCl₃) δ 56.8, 83.5, 95.6, 110.5, 113.9, 122.7, 125.7, 128.6, 129.1, 129.2, 132.0, 141.3, 164.6; IR (neat, cm⁻¹) 3058, 2926, 2855, 2225; HRMS calcd for C₁₅H₁₁NO₃ 253.0739, found 253.0742.

5-Nitro-2-(phenylethynyl)anisole (16). The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 4.01 (s, 3H), 7.37-7.38 (m, 3H), 7.57-7.62 (m, 3H), 7.75 (d, *J* = 2.0 Hz, 1H), 7.83 (dd, *J* = 8.4, 2.0 Hz, 1H); ¹³C NMR (CDCl₃) δ 56.6, 84.3, 98.6, 105.8, 115.9, 119.9, 122.7, 128.6, 129.3, 132.1, 133.7, 148.2, 160.3; IR (neat, cm⁻¹) 3047, 2215; HRMS calcd for C₁₅H₁₁NO₃ 253.0739, found 253.0741.

3-Methoxy-6-methyl-2-(phenylethynyl)pyridine (18). The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 2.52 (s, 3H), 3.90 (s, 3H), 7.06-7.15 (m, 2H), 7.33-7.36 (m, 3H), 7.61-7.64 (m, 2H); ¹³C NMR (CDCl₃) δ 21.0, 55.8, 85.7, 93.7, 118.8, 122.9, 123.5, 128.4, 128.9, 132.3, 150.6, 155.3; IR (neat, cm⁻¹) 2217; HRMS calcd for C₁₅H₁₃NO 233.0997, found 233.1002.

2-Acetoxy-2'-methoxydiphenylacetylene (**20**). The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 2.37 (s, 3H), 3.87 (s, 3H), 6.88 (d, *J* = 8.7 Hz, 1H), 6.92 (td, *J* = 7.5, 0.9 Hz, 1H), 7.11 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.20 (td, *J* = 7.5, 1.5 Hz, 1H), 7.26-7.35 (m, 2H), 7.46 (dd, *J* = 7.5, 1.8 Hz, 1H), 7.59 (dd, *J* = 7.5, 1.8 Hz, 1H); ¹³C NMR (CDCl₃) δ 21.0, 55.8, 88.3, 90.9, 110.9, 112.3, 118.0, 120.6, 122.4, 126.0, 129.4,

130.2, 133.1, 133.7, 151.6, 160.1, 169.1; IR (neat, cm⁻¹) 2213, 1770; HRMS calcd for C₁₇H₁₄O₃ 266.0943, found 266.0946.

1,4-Bis[(2-methoxyphenyl)ethynyl]benzene (22). The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 3.91 (s, 6H), 6.88-6.96 (m, 4H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.48-7.53 (m, 6H); ¹³C NMR (CDCl₃) δ 56.0, 87.7, 93.4, 110.8, 112.4, 120.7, 123.4, 130.1, 131.7, 133.7, 160.1; IR (neat, cm⁻¹) 2210; HRMS calcd for C₂₄H₁₈O₂ 338.13068, found 338.13150.

2,5-Dimethoxy-1,4-di(phenylethynyl)benzene (24). The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 3.90 (s, 6H), 7.04 (s, 2H), 7.32-7.37 (m, 6H), 7.56-7.59 (m, 4H); ¹³C NMR (CDCl₃) δ 56.7, 85.9, 95.2, 113.6, 115.9, 123.4, 128.5, 128.6, 131.9, 154.1; IR (neat, cm⁻¹) 2227; HRMS calcd for C₂₄H₁₈O₂ 338.13068, found 338.13151. The spectral properties were identical to those previously reported.⁵

2,4-Dimethoxy-1-(phenylethynyl)benzene (26). The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 3.79 (s, 3H), 3.87 (s, 3H), 6.45 (s, 1H), 6.48 (d, *J* = 6.0 Hz, 1H), 7.27-7.34 (m, 3H), 7.42 (d, *J* = 9.0 Hz, 1H), 7.54 (d, *J* = 9.0 Hz, 2H); ¹³C NMR (CDCl₃) δ 55.5, 56.0, 86.0, 92.1, 98.6, 105.0, 105.1, 124.0, 127.9, 128.4, 131.6, 134.5, 161.3, 161.4; IR (neat, cm⁻¹) 3058, 2926, 2855, 2227, 1464, 1435, 749; HRMS calcd for C₁₆H₁₄O₂ 238.0994, found 238.1000. The spectral properties were identical to those previously reported.⁴

2-(1-Octynyl)anisole (27). The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 0.88-0.93 (m, 3H), 1.30-1.34 (m, 4H), 1.46-1.50 (m, 2H), 1.60-1.65 (m, 2H), 2.47 (t, *J* = 7.2 Hz, 2H), 3.87 (s, 3H), 6.85 (d, *J* = 8.4 Hz, 1H), 6.88 (td, *J* = 7.5, 0.9 Hz, 1H), 7.24 (td, *J* = 8.1, 1.8 Hz, 1H), 7.37 (dd, *J* = 7.5, 1.8 Hz, 1H); HRMS calcd for

 $C_{15}H_{20}O$ 216.1514, found 216.1519. The spectral properties were identical to those previously reported.²

2-[(4-Nitrophenyl)ethynyl]anisole (28). The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 3.92 (s, 3H), 6.92-6.99 (m, 2H), 7.37 (t, *J* =8.4 Hz, 1H), 7.50 (d, *J* = 8.0 Hz, 1H), 7.70 (d, *J* = 8.8 Hz, 2H), 8.19 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (CDCl₃) δ 56.0, 91.6, 91.4, 110.9, 111.4, 120.8, 123.7, 130.8, 131.1, 132.4, 133.9, 147.0, 160.4; HRMS calcd for C₁₅H₁₁NO₂ 253.0739, found 253.0745.

2-(Trimethylsilylethynyl)anisole (29). The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 0.08 (s, 9H), 3.68 (s, 3H), 6.64-6.71 (m, 2H), 7.08 (td, *J* = 8.4, 2.0 Hz, 1H), 7.24 (dd, *J* = 7.6, 1.6 Hz, 1H); ¹³C NMR (CDCl₃) δ 0.3, 56.0, 98.6, 101.5, 110.8, 112.5, 120.5, 130.2, 134.4, 160.5. The spectral properties were identical to those previously reported.⁶

2,4-Dimethoxy-5-(phenylethynyl)pyrimidine (30). The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 4.01 (s, 3H), 4.06 (s, 3H), 7.32-7.35 (m, 3H), 7.51-7.54 (m, 2H), 8.40 (s, 1H); ¹³C NMR (CDCl₃) δ 54.6, 55.2, 80.8, 95.5, 100.2, 122.9, 128.4, 128.6, 131.6, 161.3, 164.2, 170.4; IR (neat, cm⁻¹) 2207 cm⁻¹; HRMS calcd for C₁₄H₁₂N₂O₂ 240.0899, found 240.0901. The spectral properties were identical to those previously reported.⁷

2-(1-Decynyl)-3-methoxy-6-methyl-pyridine (32). The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 0.88 (t, *J* = 6.8 Hz, 3H), 1.28-1.33 (m, 8H), 1.43-1.48 (m, 2H), 1.61-1.68 (m, 2H), 2.47 (s, 3H), 2.49 (t, *J* = 7.2 Hz, 2H), 3.85 (s, 3H), 7.10 (d, *J* = 8.7 Hz, 1H), 7.73 (d, *J* = 8.7 Hz, 1H); ¹³C NMR (CDCl₃) δ 14.2, 19.9, 22.8, 23.5, 28.6,

29.2, 29.2, 29.3, 31.9, 56.0, 77.1, 95.7, 118.5, 122.7, 133.0, 150.1, 154.8; IR (neat, cm⁻¹) 2217; HRMS calcd for C₁₇H₂₅NO 259.1936, found 259.1941.

General procedure for the iodocyclizations. To a solution of 0.25 mmol of the o-(1-alkynyl)anisole and 3 mL of CH₂Cl₂, 2 equiv of I₂ or 1.2 equiv of ICl dissolved in 2 mL of CH₂Cl₂ was added gradually. The reaction mixture was flushed with Ar and allowed to stir at room temperature for 3 h or 12 h. The excess I₂ or Br₂ was removed by washing with a satd aq Na₂S₂O₃ solution. The mixture was then extracted by diethyl ether (2 x 10 mL). The combined ether layers were dried over anhydrous Na₂SO₄ and concentrated under vacuum to yield the crude product, which was purified by flash chromatography on silica gel using ethyl acetate/hexanes as the eluent.

3-Iodo-2-phenylbenzo[*b*]**furan (2)**. The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 7.28-7.51 (m, 7H), 8.16-8.19 (m, 2H); ¹³C NMR (CDCl₃) δ 61.3, 111.4, 122.1, 123.7, 125.9, 127.7, 128.7, 129.4, 130.2, 132.7, 153.2, 154.1; IR (neat, cm⁻¹) 3058, 1450; HRMS calcd for C₁₄H₁₈INO₃ 364.9549, found 364.9551. The spectral properties were identical to those previously reported.⁸

2-(Cyclohex-1-enyl)-3-iodobenzo[*b***]furan (6)**. The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 1.66-1.70 (m, 2H), 1.77-1.79 (m, 2H), 2.25-2.29 (m, 2H), 2.59-2.64 (m, 2H), 6.77-6.79 (m, 2H), 7.24-7.28 (m, 2H), 7.35-7.38 (m, 2H); ¹³C NMR (CDCl₃) δ 21.9, 22.7, 25.9, 26.9, 59.1, 111.0, 121.7, 123.3, 125.2, 128.2, 132.0, 132.2, 153.5, 155.3; IR (neat, cm⁻¹) 3058, 2199, 1475; HRMS calcd for C₁₄H₁₃IO 324.0011, found 324.0020.

3-Iodo-2-(4-methoxyphenyl)benzo[*b*]**furan (9)**. The product was obtained as a yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 3.84 (s, 3H), 6.99 (d, *J* = 8.0 Hz, 2H), 7.28-

7.31 (m, 2H), 7.39-7.45 (m, 2H), 8.10 (d, J = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 55.5, 59.7, 111.2, 114.1, 121.7, 122.8, 123.6, 125.4, 129.2, 132.8, 153.4, 153.9, 160.5; IR (neat, cm⁻¹) 3058, 2227, 1464; HRMS calcd for C₁₅H₁₁IO₂ 349.98038, found 349.98100.

3-Iodo-5-methoxy-2-phenylbenzo[*b*]**furan** (**12**). The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 3.89 (s, 3H), 6.88 (s, 1H), 6.94 (d, *J* = 8.5 Hz, 1H), 7.36 (d, *J* = 8.8 Hz, 1H), 7.41 (t, *J* = 7.2 Hz, 1H), 7.48 (t, *J* = 7.6 Hz, 2H), 8.14 (d, *J* = 7.2 Hz, 2H); ¹³C NMR (CDCl₃) δ 56.2, 61.3, 104.1, 112.1, 114.9, 127.6, 128.7, 129.4, 130.3, 133.3, 149.0, 154.0, 156.9; IR (neat, cm⁻¹) 3058, 2926, 2855, 2227, 1464, 1435, 749; HRMS calcd for C₁₅H₁₁O₂I 349.9804, found 349.9810.

3-Iodo-5-nitro-2-phenylbenzo[*b*]**furan** (**15**). The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 7.50-7.58 (m, 4H), 8.15-8.18 (m, 2H), 8.27 (dd, *J* = 12.0, 3.2 Hz, 1H), 8.37 (d, *J* = 3.2 Hz, 1H); ¹³C NMR (CDCl₃) δ 60.9, 111.9, 118.7, 121.5, 127.8, 128.9, 129.0, 130.4, 133.6, 144.9, 156.5, 157.0; IR (neat, cm⁻¹) 3058, 2926; HRMS calcd for C₁₄H₁₈INO₃ 364.9549, found 364.9551.

3-Iodo-6-nitro-2-phenylbenzo[*b*]**furan** (**17**). The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 7.50-7.56 (m, 4H), 8.18-8.21 (m, 2H), 8.23 (dd, *J* = 8.4, 2.0 Hz, 1H), 8.39 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (CDCl₃) δ 60.6, 107.8, 119.5, 122.1, 128.0, 129.0, 129.0, 130.7, 138.5, 146.1, 152.6, 158.4; IR (neat, cm⁻¹) 3058, 2926; HRMS calcd for C₁₄H₁₈INO₃ 364.9549, found 364.9552.

3-Iodo-5-methyl-2-phenylfuro[3,3-*b***]pyridine (19)**. The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 2.73 (s, 3H), 7.14 (d, *J* = 8.4 Hz, 1H), 7.46-7.54 (m, 3H), 7.62 (d, *J* = 8.4 Hz, 1H), 8.21-8.24 (m, 2H); ¹³C NMR (CDCl₃) δ 24.7, 64.4, 118.5,

120.6, 127.8, 128.8, 129.9, 130.0, 145.8, 148.9, 156.0, 156.2; IR (neat, cm⁻¹) 1775; HRMS calcd for C₁₄H₁₀NIO 334.9808, found 334.9809.

2-(2-Acetoxyphenyl)-3-iodobenzo[*b*]**furan (21)**. The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 2.21 (s, 3H), 7.25 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.32-7.40 (m, 3H), 7.44-7.53 (m, 3H), 7.82 (dd, *J* = 7.8, 1.8 Hz, 1H); ¹³C NMR (CDCl₃) δ 21.3, 65.4, 111.4, 122.1, 123.3, 123.7, 123.8, 126.0, 126.1, 131.2, 131.7, 131.9, 148.8, 152.3, 154.6, 169.4; IR (neat, cm⁻¹) 1771; HRMS calcd for C₁₆H₁₁IO₃ 377.9753, found 377.9758.

2,2'-(1,4-Phenylene)-bis-3-iodobenzofuran (23). The product was obtained as a white solid: mp > 210 °C (decompose); ¹H NMR (CDCl₃) δ 7.34-7.42 (m, 4H), 7.47-7.53 (m, 4H), 8.36 (s, 4H); ¹³C NMR (CDCl₃) δ 62.3, 111.5, 122.2, 123.9, 126.3, 127.5, 130.7, 132.8, 152.5, 154.2; IR (CH₂Cl₂) 3058, 2926; HRMS calcd for C₂₂H₁₂I₂O₂ 561.8927, found 561.8934.

3,7-Diiodo-2,6-diphenyl-benzo[**1,2-***b*;**4,5-***b*')**difuran** (**25**). The compound was obtained as a white solid: mp > 320 °C (decompose); ¹H NMR (CD₂Cl₂) δ 7.48-7.59 (m, 7H), 8.23-8.26 (m, 5H); HRMS calcd for C₂₂H₁₂I₂O₂ 561.8927, found 561.8934. ¹³C NMR could not be obtained because of the poor solubility of the product; IR (CH₂Cl₂) 3058, 2926.

2-(1,2-Diiodo-1-decenyl)-3-methoxy-6-methylpyridine (33). The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 0.88-0.92 (m, 3H), 1.25-1.44 (m, 10H), 1.65-1.70 (m, 2H), 2.50 (s, 3H), 2.72-2.77 (m, 1H), 2.84-2.89 (m, 1H), 3.86 (s, 3H), 7.10 (dd, *J* = 13.5, 8.4 Hz, 2H); ¹³C NMR (CDCl₃) δ 14.3, 22.9, 23.7, 28.5, 28.6, 29.4, 29.7, 32.1, 49.1, 56.1, 91.0, 107.4, 120.1, 124.1, 149.5, 149.7, 151.9; IR (neat, cm⁻¹) 1715.

The products in entries 17, 19 and 24 could not be fully characterized because of their instability.

General procedure for the *p*-O₂NC₆H₄SCl and PhSeCl cyclizations. To a solution of 0.25 mmol of the *o*-(1-alkynyl)anisole and CH₂Cl₂ (5 mL), 0.375 mmol of *p*-O₂NC₆H₄SCl or PhSeCl dissolved in CH₂Cl₂ (2 mL) was added. The mixture was flushed with Ar and allowed to stir at 25 °C for 3 h. The reaction mixture was then washed with 20 mL of water and extracted with diethyl ether. The combined ether layers were dried over anhydrous Na₂SO₄ and concentrated under vacuum to yield the crude product, which was further purified by flash chromatography on silica gel using ethyl acetate/hexanes as the eluent.

2-Phenyl-3-(phenylselenyl)benzo[*b*]**furan (3)**. The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 7.13-7.17 (m, 3H), 7.22 (t, *J* = 4.0 Hz, 1H), 7.27-7.32 (m, 4H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.51 (d, *J* = 8.0 Hz, 1H), 7.54 (d, *J* = 8.0 Hz, 1H), 8.19-8.21 (m, 2H); ¹³C NMR (CDCl₃) δ 99.9, 111.4, 121.4, 123.6, 125.4, 126.4, 128.0, 128.7, 129.4, 129.5, 130.3, 131.6, 132.1, 154.3, 157.4; IR (neat, cm⁻¹) 3058, 2926; HRMS calcd for C₂₀H₁₄OSe 350.0211, found 350.0220.

2-Phenyl-3-(*p***-nitrophenylsulfenyl)benzo**[*b*]**furan** (**4**). The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 7.22 (d, *J* = 8.8 Hz, 2H), 7.26 (d, *J* = 7.6 Hz, 1H), 7.35-7.46 (m, 5H), 7.60 (d, *J* = 8.0 Hz, 1H), 8.02 (d, *J* = 8.8 Hz, 2H), 8.13 (d, *J* = 7.2 Hz, 2H); ¹³C NMR (CDCl₃) δ 102.1, 111.9, 120.1, 124.1, 124.4, 125.9, 126.0, 127.6, 128.9, 129.3, 130.1, 130.1, 145.6, 146.4, 154.2, 158.6; IR (neat, cm⁻¹) 3058, 2926; HRMS calcd for C₂₀H₁₃NO₃S 347.0617, found 347.0622. **2-(Cyclohex-1-enyl)-3-(phenylselenyl)benzofuran (7)**. The product was obtained as a yellow oil: ¹H NMR (CDCl₃) δ 1.64-1.66 (m, 2H), 1.72-1.74 (m, 2H), 2.19-2.21 (m, 2H), 2.50-2.51 (m, 2H), 6.09-6.10 (m, 1H), 7.10-7.15 (m, 5H), 7.28-7.31 (m, 2H), 7.76-7.78 (m, 2H); ¹³C NMR (CDCl₃) δ 21.9, 23.0, 25.9, 30.4, 114.0, 122.2, 124.7, 125.0, 126.0, 129.3, 131.7, 132.0, 133.3, 138.4, 142.0, 152.1; IR (neat, cm⁻¹) 3025; HRMS calcd for C₂₀H₁₈OSe 354.05240, found 354.05330.

2-(4-Methoxyphenyl)-3-(phenylselenyl)benzo[*b*]**furan (10**). The product was obtained as a yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 3.82 (s, 3H), 6.95 (d, *J* = 8.0 Hz, 2H), 7.11-7.23 (m, 4H), 7.26-7.53 (m, 3H), 7.48-7.53 (dd, *J* = 8.4, 7.6 Hz, 2H), 8.15 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 55.1, 98.0, 111.2, 114.1, 121.1, 123.0, 123.5, 125.0, 126.3, 129.1, 129.5, 131.8, 132.3, 154.1, 157.7, 160.6; HRMS calcd for C₂₁H₁₆SeO₂ 380.0317, found 380.0328.

5-Methoxy-2-phenyl-3-(phenylselenyl)benzo[*b*]**furan (13)**. The product was obtained as a yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 3.75 (s, 3H), 6.90-6.93 (m, 2H), 7.12-7.17 (m, 3H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.36-7.44 (m, 4H), 7.18 (d, *J* = 2.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 56.0, 99.6, 103.3, 112.0, 114.5, 126.4, 127.9, 128.6, 129.3, 129.4, 129.5, 130.4, 131.6, 132.9, 149.2, 156.7, 158.2; IR (neat, cm⁻¹) 3058, 2926, 2855, 2227, 1464, 1435, 749; HRMS calcd for C₂₁H₁₆O₂Se 380.03166, found 380.03279.

The product in entry 18 could not be fully characterized because of its instability.

References

- 1. Larock, R. C.; Harrison, L. W. J. Am. Chem. Soc. 1984, 106, 4218.
- Ma, Y.; Song, C.; Jiang, W.; Wu, Q.; Wang, Y.; Liu, X.; Andrus, M. B. Org. Lett.
 2003, 5, 3317.

- Nishihara, Y.; Ikegashira, K.; Hirabayashi, K.; Ando, J.-I.; Mori, A.; Hiyama, T. J. Org. Chem. 2000, 65, 1780.
- 4. Wadsworth, D. H.; Donatelli, B. A. Synthesis, 1981, 285.
- 5. Strukelj, M.; Jordan, R. H.; Dodabalapur, A. J. Am. Chem. Soc. 1996, 118, 1213.
- 6. Huang, Qinhua; Larock, Richard C. J. Org. Chem. 2003, 68, 980.
- 7. Pal, M.; Kandu, N. G. J. Chem. Soc., Perkin Trans. 1 1996, 449.
- 8. Arcadi, A.; Cacchi, S.; Giancarlo, F.; Marinelli, F.; Moro, L. Synlet. 1999, 1432.

S38

S39

S44

