Supplementary Table Oligonucleotide primers used in PCR-based experiments

Gene name	Amplified region	Experiment	Forward primer (5' to 3')	Reverse primer (5' to 3')
Mapk14	Downstream loxP	Genotyping	atgagatgcagtacccttggagaccagaag	agccagggctatacagagaaaaaccctgtg
Cre	ORF	Genotyping	ggtcgatgcaacgagtgatgaggt	cagcattgctgtcacttggtcgtg
Mapk14	Exon 2	KO efficiency	ggtcagcagcctcgatgcac	gactgcccctccaaccgttc
Mapk14	Exon 12	KO efficiency	gccctccctcacttcaggag	tgtgctcggcactggagacc
Dusp1	Promoter	ChIP	gtctttgcttttggctttgg	cgcggttttatgtagcctct
II10	Promoter	ChIP	cagaagttcattccgaccagt	ccttcctggcaaaggttttt
Nfkbia	Promoter	ChIP	aaagttccctgtgcatgacc	ggaatttccaagccagtcag
Areg	cDNA	qPCR	atgggactgtgcacgccatt	atttccggtgtggcttggcaat
Bcl2a1	cDNA	qPCR	tgtggcagaattcataatgaataacaca	aaacttctttatgaagccatcttccc
Bcl3	cDNA	qPCR	ttactctaccccgacgatgg	ggtgagtaggcaggttcagc
Birc2	cDNA	qPCR	ggaaattgactccacgttatatgaaaact	gctcttccaatgacaagcctga
Birc3	cDNA	qPCR	ggaaattgaccctgcgttatacaga	tctcggtccatacacactttacacatt
Ccl2	cDNA	qPCR	gccagctctctcttcctcca	cccagaagcatgacagggac
Ccl3	cDNA	qPCR	ccaagtcttctcagcgccat	tccggctgtaggagaagcag
Ccl4	cDNA	qPCR	gacttggagttgaactgagcagc	aggcctctcctgaagtggc
Ccl5	cDNA	qPCR	aatcccctactcccactcgg	ttcttgggtttgctgtgcag
Ccrl2	cDNA	qPCR	tgctcttcctctgctggttt	gaagetetgeetteteetea
Cd38	cDNA	qPCR	ggaaagatgttcaccctgga	ccacctgagatcatcagcaa
Cflar	cDNA	qPCR	tttgtcatgcgactgggtaa	gggtcacagaaattggtggc
Ch25h	cDNA	qPCR	ccacgacatgcatcactctc	gcattttgtcccagtgtgtg
Cish	cDNA	qPCR	cccagaggaagtgacagagg	ggtctagcaccttcggttca
Csf2	cDNA	qPCR	ggccttggaagcatgtagag	gcatgtcatccaggaggttc
Cxcl1	cDNA	qPCR	gccaatgagctgcgctgt	ccttcaagctctggatgttcttg
Cxcl10	cDNA	qPCR	gaatccggaatctaagaccatcaa	gtgcgtggcttcactccagt
Cxcl2	cDNA	aPCR	atccagagcttgagtgtgacgc	aaggcaaactttttgaccgcc
Dusp1	cDNA	aPCR	ccatctqccttqcttacctc	aagctgaagttcggggagat
Edn1	cDNA	aPCR	aaggcatcttttcgtgttgc	ttgtgcgtcaacttctggtc
G1p2	cDNA	aPCR	accetttecagtetgggtet	tcgctgcagttctgtaccac
Gadd45b	cDNA	aPCR	tatttgacagccccctcatc	cccagaaggtatcacgggta
Gpr109a	cDNA	aPCR	atgaaaacatcgccaaggtc	ccaggagtccgaacacaaat
Hdc	cDNA	aPCR	agcacaagctgtcgtccttt	acattatcttcctcatattc
lcam1	cDNA	aPCR	tggccctgcaatggctt	gcaggaaggcttctctgggat
Icosl	cDNA	aPCR	ctccagggatcaatgtggac	atggagtccagggacagatg
lfnb1	cDNA	aPCR	agetecaagaaaggacgaacat	accetataaataaaattaatet
<i>II10</i>	cDNA	aPCR	gaagetgaagaecetcagga	ttttcacaggggagagaaatcg
ll12a	cDNA	aPCR	cagaaacctcctgtgggaga	agagetcagatageccatca
ll12b	cDNA	aPCR	atccagcgcaagaaagaaaa	ggaacgcacctttctggtta
115	cDNA	aPCR	atcctgctgtgtttggaagg	atactttaaaaaaccaaaaa
ll1a	cDNA	aPCR	tccaqqqcaqaqaqqqaqt	ggaactttggccatcttgattt
ll1b	cDNA	aPCR	qtqqctqtqqaqaaqctqtq	qaaqqtccacqqqaaaqacac
116	cDNA	aPCR	ccagaaaccgctatgaagttcc	ttotcaccagcatcagtccc
Krt14	cDNA	aPCR	agcaagagtgagatttctgagc	tttcatgctgagctgggact
Mapk11	cDNA	aPCR	taccatgaccctgacgatga	tccttggcctcaacactttc
Mapk12	cDNA	aPCR	cccctcctgagtttgttcag	aggaggccttccatgtagt
Mapk13	cDNA	qPCR	gtctgttggttgcatcatgg	tccttgcccttgaagagtgt
Mapk14	cDNA	, qPCR	gcatcgtgtggcagttaaga	gtccttttggcgtgaatgat
Mmp13	cDNA	qPCR	tttattgttgctgcccatga	ggtccttggagtgatccaga
Nfkbia	cDNA	qPCR	ctcacggaggacggagactc	ctcttcgtggatgattgcca
Nos2	cDNA	qPCR	caagcaccttggaagaggag	ccaaatgtgcttgtcaccac
Pde4b	cDNA	, qPCR	gagggaatggagattagcc	tgggatttttccacagaagc
Pml	cDNA	qPCR	ggaaacagaggagcgagttg	cagattctcggtgtccgaat
Ppia	cDNA	qPCR	atggtcaaccccaccgtgt	ttcttgctgtctttggaactttgtc
Ptgs2	cDNA	, qPCR	cccccacagtcaaagacact	ggttctcagggatgtgagga
Sdc4	cDNA	qPCR	atctggatgacacggaggag	gcattctcagggatgtgatt
Serpina3a	cDNA	qPCR	ccaaatggtgaqqqtqcttct	gcatagcggatcaccaaaaca
Serpinb2	cDNA	qPCR	tttctttctgaggtgttccatcaa	ccagctgccacagtgcc
Serpine1	cDNA	aPCR	atetttecaaceaagaacaa	caaaggctgtggaggaagac
Sod2	cDNA	aPCR	gaccaaggagagatattacaa	aatatgtcccccaccattga
Tnf	cDNA	aPCR	acagaaagcatgatccocg	acccccatcttttaaa
Tnfaip3	cDNA	aPCR	cagttccgagagatcatccacaaag	catgaggcagtttccatcacca
Tnfsf10	cDNA	aPCR	agatatagcctagctotaga	attccaactacctttctatc
Usp18	cDNA	aPCR	gacgcaaagcctctgaaaac	cacatotcogagettoctaa
Vcam1	cDNA	aPCR	aacogtactttogatactotttoca	acaaataaagaccataaa
Zc3h12a	cDNA	qPCR	caacgctctcctctcacctc	ggaaggcctctaactacttt

SUPPLEMENTARY FIGURE LEGENDS

Supplementary Figure 1 $p38\alpha^{\Delta M}$ and $p38\alpha^{\Delta K}$ mice exhibit efficient, cell type-specific *Mapk14* ablation. (a) WT and cell type-specific $p38\alpha$ knockout mice used in the study. (b) Genomic DNA from WT and $p38\alpha^{\Delta M}$ BMDMs was analyzed by qPCR with primer pairs specific to exon 2 and exon 12 of the $p38\alpha$ gene *Mapk14*. Relative copy numbers of exon 2, which is flanked by loxP sites, versus exon 12 are shown as percent dosage. (c) Genomic DNA from the liver and epidermis of WT and $p38\alpha^{\Delta K}$ mice were analyzed as in (b). Data are representative of analysis of three independently generated BMDM preparations (b) or five litters (c).

Supplementary Figure 2 p38 α deletion does not affect the expression of other p38 isoforms. Expression of p38 isoforms in BMDMs, PEMs, keratinocytes (Kc), MEFs, B16 (mouse melanoma) cells, and splenic T cells (TC) was analyzed by qPCR. p38 α , p38 β , p38 γ , and p38 δ are encoded by *Mapk14*, *Mapk11*, *Mapk12*, and *Mapk13*, respectively. Data are from analysis of the same set of cDNA samples in duplicate.

Supplementary Figure 3 Cre recombinase does not perturb gene expression in macrophages and keratinocytes. (a) Gene expression in WT and *LysMCre* BMDMs (n=2) after 4 h of LPS treatment was analyzed by qPCR. (b) The shaved back skin of WT and *K14Cre* mice (one animal of each genotype) was irradiated with UVB (160 mJ/cm²). After 96 h, gene expression in the epidermal tissues in two separate skin areas was analyzed by qPCR.

Supplementary Figure 4 Myeloid p38 α signaling is essential for induction of keratotic lesions in SDS-treated skin. The shaved back skin of the indicated mice was treated daily with 5% SDS, and photographed on day 7. Data are representative of five independent experiments involving a group of three to five mice.

Supplementary Figure 5 UVB-induced skin injury depends on epithelial $p38\alpha$ signaling. The shaved back skin of the indicated mice was irradiated with UVB (160 mJ/cm²), and photographed on day 4. Arrowheads (red) indicate 'sunburn' lesions. Data are representative of six independent experiments involving a group of three to five mice.

Supplementary Figure 6 $p38\alpha^{\Delta M}$ PEMs are defective in LPS induction of the same set of $p38\alpha$ target genes identified from experiments using BMDMs. Expression of genes in WT and $p38\alpha^{\Delta M}$ PEMs (*n*=3) after 0, 2, and 4 h of LPS treatment was analyzed by qPCR.

Supplementary Figure 7 $p38\alpha^{\Delta M}$ neutrophils do not exhibit impaired migration toward KC and MIP-2. (a) Whole cell lysates from WT and $p38\alpha^{\Delta M}$ neutrophils (isolated from one animal of each genotype) were analyzed by immunoblotting with anti-p38 α and anti-actin. (b) Migration of WT and $p38\alpha^{\Delta M}$ neutrophils was analyzed by a transwell assay (*n*=2) without or with the chemokines indicated.

Supplementary Figure 8 Removal of p38 α does not impair NF- κ B activation. (**a**, **b**) Cytoplasmic (Cyto) and nuclear (Nuc) extracts from BMDMs treated with LPS (**a**), and

keratinocytes irradiated with UVB (**b**) were prepared at the indicated time points and analyzed by immunoblotting with antibodies against the proteins indicated on the left. Data are representative of two independent experiments.

Supplementary Figure 9 Removal of p38α in macrophages does not lead to a change in ROS production. BMDMs were left untreated or treated with LPS for 30 min, and then incubated with dichlorodihydrofluorescein diacetate for additional 30 min. ROS production (fluorescence) was analyzed by confocal microscopy. Fluorescence and bright field images are shown in pair. The numbers represent relative fluorescence intensities. Data are representative of at least three independent images.

Supplementary Figure 10 Stability of mRNA in WT and $p38\alpha^{AM}$ BMDMs was analyzed by qPCR. Cells were treated with LPS for 2 h and then incubated with actinomycin D (actD) for the indicated durations before RNA isolation. Data are from one experiment.

Supplementary Figure 11 p38α signaling plays cell type-specific roles in regulation of inflammation. The thickness of lines indicates the relative strength of the signaling events that they denote. (a) SDS-induced chronic skin inflammation. (b) UVB or TPA-induced acute skin inflammation.

a

 WT
 Mapk14^{fl/fl}

 p38α^{ΔM}
 Mapk14^{fl/fl};LysMCre

 p38α^{ΔK}
 Mapk14^{fl/fl};K14Cre

p38α wild type Myeloid-specific knockout Keratinocyte-specific knockout

WΤ

 ΔM

b

