Supporting Information

Mechanistic Studies of the Oxidative *N*-Dealkylation of a Substrate Tethered to Carboxylate-Bridged Diiron(II) Complexes, [Fe₂(μ -O₂CAr^{Tol})₂(O₂CAr^{Tol})₂(*N*,*N*-Bn₂en)₂]

Sungho Yoon and Stephen J. Lippard* Contribution from the Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Received February 00, 2006; lippard@ mit.edu

Synthesis of Benzyl(4-R-benzyl)aminoacetonitrile Compounds. The general reaction pathway is shown in Scheme 2. A solution of 4-R-benzaldehyde (0.100 mole), where R = Cl, F, CH₃, *t*-Bu, or OCH₃, in 27 mL of benzene was cooled to 0 °C. To this solution was added 10.8 g (0.101 mol) of benzylamine in 17 mL of benzene. The solution was warmed to ambient temperature. The flask was connected to a Dean-Stark water separator, followed by heating at reflux overnight, resulting in separation of ca 1.5 mL of water. The volatile portion was removed under reduced pressure, resulting in a light yellow oil, which was dissolved in 150 mL of methanol. The solution was cooled to 0 °C and 5.4 g (0.14 mol) of NaBH₄ was added slowly. The reaction mixture was allowed to warm to ambient temperature and stored overnight. The volume was reduced to half under partial vacuum and water (200 mL) was added. The product was extracted with 3 × 50 mL portions of dichloromethane, dried using anhydrous MgSO₄ and filtered

through Celite. The volatile portion of the filtrate was removed under reduced pressure, resulting in a light yellow oil. To a rapidly stirred DMF (50 mL) solution of *N*,*N*-benzyl(4-R-benzyl)amine (96.7 mmol) were added first triethylamine (13.5 mL) and then 6.8 mL of chloroacetonitrile in a dropwise manner. The solution turned cloudy and was stirred overnight. DMF was removed under reduced pressure and 40 mL of water were added. Anhydrous Na₂CO₃ was added to increase the pH of the solution to ca 14. The product was extracted with 3×50 mL portions of dichloromethane, dried with MgSO₄, and filtered through Celite. The targeted compound was isolated by using silica column chromatography with ethylacetate as the eluent.

Benzyl(4-*chlorobenzyl*)*aminoacetonitrile*. Yield (77 %). ¹H NMR (CDCl₃, 400 MHz): δ 7.41-7.32 (9 H, mm), 3.74 (2 H, s), 3.72 (2 H, s), 3.37 (2 H, s). ¹³C NMR (CDCl₃, 100 MHz): δ 137.08, 135.84, 133.78, 130.43, 129.13, 129.05, 128.91, 128.11, 114.69, 58.43, 57.72, 40.99. FT-IR (NaCl disk, cm⁻¹) 3063 (w), 3030 (w), 2933 (w), 2831 (m), 2228 (w, v_{C=N}), 1598 (w), 1492 (s), 1453 (m), 1419 (w), 1369 (w), 1324 (w), 1119 (w), 1090 (m), 1015 (m), 858 (w), 800 (m), 743 (m), 699 (m). GC/MS (EI) M⁺: Calcd for C₁₆H₁₅ClN₂, 270; Found, 270.

Benzyl(4-fluorobenzyl)aminoacetonitrile. Yield (72 %). ¹H NMR (CDCl₃, 400 MHz): δ 7.41-7.31 (7 H, mm), 7.07 (2H, t, 8.7 Hz), 3.74 (2 H, s), 3.72 (2 H, s), 3.37 (2 H, s). ¹³C NMR (CDCl₃, 100 MHz): δ 162.57 (d, ¹*J*_{CF} = 246.1 Hz), 137.16, 133.02 (d, ⁴*J*_{CF} = 3.1 Hz), 130.7 (d, ³*J*_{CF} = 7.9 Hz), 129.01, 128.90, 128.08, 115.74 (d, ²*J*_{CF} = 21.4 Hz), 114.74, 58.40, 57.66, 40.90. FT-IR (NaCl disk, cm⁻¹) 3031 (w), 2935 (w), 2826 (m), 2228 (w, v_{C=N}), 1602 (w), 1509 (s), 1454 (w), 1419 (w), 1369 (w), 1350 (w), 1324 (w), 1294 (w), 1223 (s), 1156 (w), 1119 (w), 1093 (w), 976 (w), 855 (m), 820 (m), 743 (m), 699 (m), 504(w). GC/MS (EI) M⁺: Calcd for C₁₆H₁₅FN₂, 254; Found, 254.

Benzyl(4-*methylbenzyl*)*aminoacetonitrile*. Yield (69 %). ¹H NMR (CDCl₃, 400 MHz): δ 7.43-7.29 (7 H, mm), 7.18 (2 H, d, 7.9 Hz), 3.75 (2 H, s), 3.73 (2 H, s), 3.38 (2 H, s), 2.37 (3 H, S). ¹³C NMR (CDCl₃, 100 MHz): δ 137.67, 137.41, 134.24, 129.50, 129.13, 129.10, 128.82, 127.94, 114.91, 58.39, 58.21, 40.86, 21.34. FT-IR (NaCl disk, cm⁻¹) 3028 (m), 2923 (m), 2826 (m), 2230 (w, $v_{C=N}$), 1603 (w), 1515 (s), 1496 (m), 1454 (s), 1419 (m), 1369 (m), 1349 (w), 1324 (w), 1303 (w), 1249 (w), 1204 (w), 1179 (w), 1117 (m), 1105 (m), 1075 (w), 1022 (w), 975 (m), 858 (m), 803 (m), 758 (m), 742 (s), 699 (s), 488(m). ESI-MS (M+H)⁺: Calcd for C₁₇H₁₉N₂, 251.3; Found, 275.3.

Benzyl(4-*tert-butylbenzyl*)*aminoacetonitrile*. Yield (87 %). ¹H NMR (CDCl₃, 400 MHz): δ 7.43-7.30 (9 H, mm), 3.76 (2 H, s), 3.74 (2 H, s), 3.39 (2 H, s), 1.33 (9 H, S). ¹³C NMR (CDCl₃, 100 MHz): δ 150.96, 137.45, 134.26, 129.13, 128.84, 128.83, 127.94, 125.73, 114.95, 58.45, 58.11, 40.96, 34.74, 31.55. FT-IR (NaCl disk, cm⁻¹) 3087 (w), 3062 (w), 3029 (w), 2963 (s), 2904 (m), 2868 (m), 2826 (m), 2228 (w, $v_{C=N}$), 1513 (w), 1496 (w), 1454(m), 1417 (w), 1363 (m), 1393 (w), 1323 (w), 1269 (w), 1111 (m), 1076 (w), 1028 (w), 859 (m), 740 (m), 737 (m), 699 (m). GC/MS (EI) M⁺: Calcd for C₂₀H₂₄N₂, 292; Found, 292.

Benzyl(4-methoxybenzyl)aminoacetonitrile. Yield (76 %). ¹H NMR (CDCl₃, 400 MHz): δ 7.43-7.32 (7 H, mm), 6.92 (2 H, d, 8.4 Hz), 3.83 (3 H, s), 3.75 (2 H, s), 3.71 (2 H, s), 3.37 (2 H, S). ¹³C NMR (CDCl₃, 100 MHz): δ 159.35, 137.39, 130.31, 129.25, 129.08, 128.78, 127.90, 114.87, 114.13, 58.28, 57.80, 55.42, 40.72. FT-IR (NaCl disk, cm⁻¹) 3062 (w), 3030 (w), 3004 (w), 2934 (w), 2835 (m), 2230 (w, v_{C=N}), 1611 (m), 1512 (s), 1454 (m), 1419 (w),

1302 (m), 1250 (s), 1173 (m), 1105 (w), 1076 (w), 1034 (m), 854 (w), 813 (w), 743 (m), 700 (m). GC/MS (EI) M⁺: Calcd for C₁₇H₁₈N₂O, 266; Found, 266.

Synthesis of Benzyl(4-R-benzyl)ethylenediamine Compounds (*N*,*N*-(4-R-Bn)Bnen). To a rapidly stirred diethylether (25 mL) suspension of lithium aluminum hydride (LAH) (1.5 g, 36 mmol) was added a diethylether solution (25 mL) of benzyl(4-R-benzyl)aminoacetonitrile (19 mmol) at -78 °C. The reaction mixture was stirred for 10 min, warmed to ambient temperature, and stirred overnight under argon. The sequential addition of 1.5 g of water, 1.5 g of 15 % NaOH(aq), and 3 × 1.5 g of water was performed cautiously. The product was extracted with CH₂Cl₂, dried over MgSO₄, filtered through Celite, and evaporated under reduced pressure to afford light yellow oil.

N,*N*-*Benzyl*(4-*chlorobenzyl*)*ethylenediamine* (*N*,*N*-(4-*Cl*-*Bn*)*Bnen*). Yield (88 %). ¹H NMR (CDCl₃, 400 MHz): δ 7.35-7.25 (9 H, mm), 3.57 (2 H, s), 3.54 (2 H, s), 2.75 (2 H, t, J = 6.0 Hz), 2.50 (2 H, t, J = 6.0 Hz). ¹³C NMR (CDCl₃, 100 MHz): δ 139.42, 138.27, 132.76, 130.30, 128.57, 128.50, 127.24, 58.74, 58.10, 56.81, 39.72. FT-IR (NaCl disk, cm⁻¹) 3084 (w), 3061 (w), 3027 (w), 2939 (m), 2801 (s), 1597 (w), 1490 (s), 1452 (m), 1407 (w), 1366 (m), 1244 (w), 1126 (w), 1088 (m), 1028 (w), 1015 (m), 978 (w), 908 (w), 841 (m), 804 (m), 739 (m), 699 (m), 671 (w). ESI-MS (M+H)⁺: Calcd for C₁₆H₂₀ClN₂, 275.4; Found, 275.4.

N,N-Benzyl(4-fluorobenzyl)ethylenediamine (N,N-(4-F-Bn)Bnen). Yield (87 %). ¹H NMR (CDCl₃, 400 MHz): δ 7.34-7.25 (7 H, mm), 7.01 (2H, t, 8.7 Hz), 3.57 (2 H, s), 3.54 (2 H, s), 2.75 (2 H, t, J = 6.0 Hz), 2.51 (2 H, t, J = 6.0 Hz). ¹³C NMR (CDCl₃, 100 MHz): δ 162.06 (d, ¹J_{CF} = 244.7 Hz), 139.56, 135.36 (d, ⁴J_{CF} = 3.0 Hz), 130.43 (d, ³J_{CF} = 7.9 Hz),

128.98, 128.46, 127.19, 115.21 (d, ${}^{2}J_{CF} = 21.3 \text{ Hz}$), 58.69, 58.01, 56.77, 39.74. FT-IR (NaCl disk, cm⁻¹) 3028 (w), 2939 (w), 2802 (m), 1602 (w), 1508 (s), 1452 (w), 1366 (w), 1292 (w), 1220 (s), 1154 (w), 1126 (w), 1091 (w), 1070 (w), 1028 (w), 1015 (w), 978 (w), 824 (m), 791 (w), 767 (w), 739 (m), 699 (m), 502 (w). ESI-MS (M+H)⁺: Calcd for C₁₆H₂₀FN₂, 259.3; Found, 259.4.

N,N-Benzyl(4-*methylbenzyl*)*ethylenediamine* (*N,N-*(4-*Me-Bn*)*Bnen*). Yield (78 %). ¹H NMR (CDCl₃, 400 MHz): δ 7.40-7.27 (7 H, mm), 7.16 (2 H, d, 7.5 Hz), 3.61 (2 H, s), 3.58 (2 H, s), 2.77 (2 H, t, J = 6.0 Hz), 2.53 (2 H, t, J = 5.9 Hz), 2.37 (3 H, s). ¹³C NMR (CDCl₃, 100 MHz): δ 139.82, 136.62, 136.56, 129.10, 129.00, 128.98, 128.39, 127.05, 58.70, 58.45, 56.84, 39.82, 21.28. FT-IR (NaCl disk, cm⁻¹) 3372 (w), 3084 (w), 3025 (m), 2924 (s), 2798 (s), 1602 (w), 1513 (m), 1494 (m), 1452 (m), 1365 (m), 1104 (w), 1070 (w), 1027 (m), 845 (m), 737 (s), 698 (s), 486 (w). ESI-MS (M+H)⁺: Calcd for C₁₇H₂₃N₂, 255.4; Found, 255.4.

N,*N*-*Benzyl*(4-*tert-butylbenzyl*)*ethylenediamine* (*N*,*N*-(4-^{*t*}*Bu*-*Bn*)*Bnen*). Yield (85 %). ¹H NMR (CDCl₃, 400 MHz): δ 7.38-7.24 (9 H, mm), 3.59 (2 H, s), 3.57 (2 H, s), 2.76 (2 H, t, J = 6.0 Hz), 2.52 (2 H, t, J = 6.0 Hz), 1.32 (9 H, S). ¹³C NMR (CDCl₃, 100 MHz): δ 149.97, 139.88, 136.60, 129.03, 128.66, 128.43, 127.09, 125.34, 58.95, 58.38, 56.85, 39.82, 34.65, 31.61. FT-IR (NaCl disk, cm⁻¹) 3375 (w), 3085 (w), 3060 (w), 3026 (w), 2961 (s), 2903 (m), 2868 (m), 2798 (m), 1602 (w), 1512 (w), 1494 (w), 1453 (m), 1362 (m), 1269 (w), 1109 (w), 1070 (w), 1027 (w), 834 (m), 741 (m), 698 (m), 546 (w). ESI-MS (M+H)⁺: Calcd for C₂₀H₂₉N₂, 297.5; Found, 297.5.

N,N-Benzyl(4-methoxybenzyl)ethylenediamine (N,N-(4-OMe-Bn)Bnen). Light brown yellow crystals. Yield (83 %). ¹H NMR (CDCl₃, 400 MHz): δ 7.34-7.22 (7 H, mm), 6.86 (2

H, d, 8.6 Hz), 3.79 (3 H, s), 3.57 (2 H, s), 3.53 (2 H, s), 2.76 (2 H, t, J = 6.0 Hz), 2.59 (2 H, t, J = 5.9 Hz). ¹³C NMR (CDCl₃, 100 MHz): δ 158.88, 139.36, 131.12, 130.29, 129.11, 128.55, 127.26, 113.92, 58.54, 58.01, 55.44, 54.92, 39.09. FT-IR (NaCl disk, cm⁻¹) 3027 (w), 2998 (w), 2933 (w), 2833 (m), 1611 (w), 1584 (w), 1511 (s), 1494 (w), 1452 (w), 1366 (w), 1301 (w), 1248 (s), 1178 (w), 1104 (w), 1035 (w), 819 (w), 740 (w), 699 (w). ESI-MS (M+H)⁺: Calcd for C₁₇H₂₃N₂O, 271.4; Found, 271.4.

 $\alpha_1 \alpha' - d_2 - N_1 N$ -Dibenzylethylene-1,2-diamine ((C₆H₅CDH)₂en). To a stirred anhydrous suspension of lithium aluminum deuteride (2.6 g, 62 mmol) in diethylamine (25 mL) was added a solution of benzaldehyde oxime (3.0 g, 25 mmol), using a pressure-compensated dropping funnel at -78 °C. The mixture was warmed to room temperature and stirred for 6 h before being carefully hydrolyzed by sequential addition of 2.6 g of water, 2.6 g of 15 % NaOH (aq), and 3 × 2.6 g of water. Inorganic salts were removed by filtration and washed with 200 mL of ethylacetate. The filtrate was dried over MgSO₄ and concentrated. The amine product was separated from the starting oxime by extraction with CHCl₃, resulting in a turbid solution. The solution was filtered through Celite and concentrated. To a solution of d_1 -benzylamine (1.6 g, 15) mmol) in 5 mL of benzene in a 50 mL round-bottom flask, cooled to 0 °C, was added a solution of PhCHO (2.0 g, 19 mmol) in 5 mL of benzene. The solution was warmed to room temperature, resulting in a turbid suspension. After 1 h of stirring, the flask was connected to a Dean-Stark water separator and heated at reflux overnight at 92 °C. The solution was concentrated under vacuum and, without further purification, the resulting Schiff base was taken up in 60 mL of methanol and the solution was cooled to

0 °C. A 0.8 g (19 mmol) portion of solid NaBD₄ was carefully added, and the reaction mixture was allowed to warm to room temperature and then stirred for an additional 12 h. The solvent was concentrated under vacuum, 100 mL of water was added, and the solution was extracted with 4 × 50 mL portions of ethylacetate. The solution was dried (MgSO₄) and concentrated. With the resulting d_2 -N,N-dibenzylamine, (C₆H₅CDH)₂en was prepared as a colorless oil in the manner described for the synthesis of benzyl(4-R-benzyl)ethylenediamine. Yield (54 %). ¹H NMR (CDCl₃, 400 MHz): δ 7.38-7.24 (9 H, mm), 3.59 (1 H, s), 3.57 (1 H, s), 2.76 (2 H, t, J = 6.0 Hz), 2.52 (2 H, t, J = 6.0 Hz). ¹³C NMR (CDCl₃, 100 MHz): δ 138.49, 129.14, 128.57, 127.37, 58.13 (t, ¹J_{CD} = 18.98 Hz), 52.48, 38.04. FT-IR (NaCl disk, cm⁻¹) 3059 (w), 3025 (w), 2938 (w), 2080 (w), 1662 (m), 1603 (m), 1494 (s), 1449 (s), 1397 (w), 1342 (w), 1313 (w), 1213 (w), 1155 (w), 1075 (w), 1028 (w), 924 (w), 738 (s), 698 (s), 614 (w). ESI-MS (M+H)⁺: Calcd for Cl₆H₁₉D₂N₂, 243.4; Found, 243.4.

 α, α - d_2 -N,N-Dibenzylethylene-1,2-diamine ((C₆H₅CD₂)(C₆H₅CH₂)en). The chemical α, α - d_2 -benzylamine was prepared by reduction of cyanobenzene using lithium aluminum deuteride as described in the literature.¹⁰ With the resulting α, α - d_2 -benzylamine, the colorless oil (D₂-Bn)Bnen was prepared as described in synthesis of benzyl-(4-R-benzyl)ethylenediamine. Yield (71 %). ¹H NMR (CDCl₃, 400 MHz): δ 7.38-7.24 (9 H, mm), 3.60 (2 H, s), 2.76 (2 H, t, J = 6.0 Hz), 2.52 (2 H, t, J = 6.0 Hz). ESI-MS MH⁺: Calcd for C₁₆H₁₉D₂N₂, 243.4; Found, 243.4.

 Table S1. Summary of X-ray Crystallographic Data

Compound	$2 \cdot 2CH_2Cl_2$	$3 \cdot 2CH_2Cl_2$	$4.2CH_2Cl_2$	$5.2CH_2Cl_2$
empirical formula	Fe ₂ C ₁₁₈ H ₁₁₀ N ₄ O ₈ Cl ₆	Fe ₂ C ₁₁₈ H ₁₁₀ N ₄ O ₈ Cl ₄ F ₂	Fe ₂ C ₁₂₀ H ₁₁₆ N ₄ O ₈ Cl ₄	Fe ₂ C ₁₂₆ H ₁₂₈ N ₄ O ₈ Cl ₄
weight	2036.50	2003.60	1993.65	2079.82
space group	P1	P1	Pī	P2 ₁ /c
a,Å b, Å c, Å	13.341(3) 14.160(3) 16.147(3) 68.22(2)	13.2882(18) 14.107(2) 16.170(2) 102.129(2)	13.373(2) 14.135(3) 16.105(3) 68.256(2)	12.044(2) 21.855(4) 21.563(4)
α , deg β , deg γ , deg V Å ³	68.32(3) 66.26(3) 79.14(3) 2591.7(9)	102.139(2) 114.168(2) 100.610(2) 2576.5(6)	68.356(2) 66.356(2) 79.231(3) 2589.6(7)	103.068(2) 5528.7(16)
$Z_{\rho_{calc}, g/cm^3}$	1	1	1	2
	1.305	1.291	1.280	1.249
crystal size, mm	0.15×0.15×0.10	0.20×0.10×0.10	0.15×0.15×0.10	0.15×0.12×0.10
<i>T</i> , °C	-70	-90	-100	-100
µ (Mo K), mm ⁻¹	0.494	0.449	0.443	0.418
total no. of data no. of unique data points	14296 9536 638	16297 9458 636	20062 9540 638	41700 10284 675
R1 (%) ^{<i>a</i>}	5.34	4.33	5.49	5.52
wR2 (%) ^{<i>b</i>}	11.32	11.63	13.99	14.37
max, min peaks, $e/Å^3$	0.587, -0.529	0.795, -0.731	0.764, -0.703	0.930, -0.794

^{*a*} R1 = $\Sigma \mid |F_o| - |F_c| \mid / \Sigma \mid F_o \mid$. ^{*b*} wR2 = { $\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]$ }^{1/2}

Table S1 Continued

Compound	6 2CH ₂ Cl ₂	7	8 ·CH ₂ Cl ₂
empirical formula weight space group a, Å b Å c Å a, deg β, deg γ, deg $V, Å^3$ Z $\rho_{calc}, g/cm^3$ crystal size, mm T, °C μ (Mo K α), mm ⁻¹ total no. of data no. of unique data points no. of parameters R1 (%) ^{<i>a</i>} wR2 (%) ^{<i>b</i>}	$\begin{array}{c} Fe_{2}C_{119}H_{114}N_{4}O_{10}Cl_{2}\\ 1942.74\\ P\overline{l}\\ 13.444(2)\\ 14.246(2)\\ 16.066(3)\\ 68.220(3)\\ 66.366(3)\\ 77.837(3)\\ 2610.8(7)\\ 1\\ 1.236\\ 0.10\times0.10\times0.08\\ -80\\ 0.390\\ 16598\\ 9619\\ 656\\ 6.77\\ 16.96\\ \end{array}$	Fe ₂ C ₁₁₆ H ₁₀₄ N ₄ O ₈ D ₄ 1801.79 PI 11.3905(10) 14.7167(13) 15.2859(14) 77.822(2) 72.178(2) 82.189(2) 2377.5(4) 1 1.258 0.10×0.07×0.02 -75 0.367 18881 8802 600 7.79 20.18	Fe ₂ C ₁₁₇ H ₁₀₆ N ₄ O ₈ D ₄ Cl ₂ 1886.71 PI 11.620(3) 12.720(3) 18.030(5) 77.717(6) 84.601(5) 87.871(6) 2592.1(12) 1 1.209 $0.20 \times 0.20 \times 0.10$ -90 0.389 16592 9562 615 7.34 16.13
max, min peaks, e/ Å ³	0.767, -0.706	0.476, -0.379	0.404, -0.366

^{*a*} R1 = $\Sigma \mid |F_o| - |F_c| \mid /\Sigma \mid F_o|$. ^{*b*} wR2 = { $\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]$ }^{1/2}

List of Supporting Figures

Figure S1. ORTEP drawing of $[Fe_2(\mu-O_2CAr^{Tol})_2(O_2CAr^{Tol})_2(N,N-(4-Cl-Bn)Bnen)_2]$ (2) showing 50 % probability thermal ellipsoids. Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y,-z+2. The solvent molecules and hydrogen atoms are omitted for clarity. (Bottom) All atoms of $Ar^{Tol}CO_2$ - ligands in **2**, except for the carboxylate groups and the α -carbon atoms, were omitted for clarity.

Figure S2. ORTEP drawing of $[Fe_2(\mu-O_2CAr^{Tol})_2(O_2CAr^{Tol})_2(N,N-(4-F-Bn)Bnen)_2]$ (**3**) showing 50 % probability thermal ellipsoids. Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+1,-z+1. The solvent molecules and hydrogen atoms are omitted for clarity. (Bottom) All atoms of $Ar^{Tol}CO_2$ - ligands in **3**, except for the carboxylate groups and the α -carbon atoms, were omitted for clarity.

Figure S3. ORTEP drawing of $[Fe_2(\mu-O_2CAr^{Tol})_2(O_2CAr^{Tol})_2(N,N-(4-Me-Bn)Bnen)_2]$ (**4**) showing 50 % probability thermal ellipsoids. Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+2,-z+1. The solvent molecules and hydrogen atoms are omitted for clarity. (Bottom) All atoms of Ar^{Tol}CO₂- ligands in **4**, except for the carboxylate groups and the α -carbon atoms, were omitted for clarity.

Figure S4. ORTEP drawing of $[Fe_2(\mu-O_2CAr^{Tol})_2(O_2CAr^{Tol})_2(N,N-(4-^tBu-Bn)Bnen)_2]$ (5) showing 50 % probability thermal ellipsoids. Symmetry transformations used to

generate equivalent atoms: #1 -x+1,-y+1,-z+1. The solvent molecules and hydrogen atoms are omitted for clarity. (Bottom) All atoms of $Ar^{Tol}CO_2$ - ligands in 5, except for the carboxylate groups and the α -carbon atoms, were omitted for clarity.

Figure S5. ORTEP drawing of $[Fe_2(\mu-O_2CAr^{Tol})_2(O_2CAr^{Tol})_2(N,N-(4-OMe-Bn)Bnen)_2]$ (6) showing 50 % probability thermal ellipsoids. Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y+2,-z+1. The solvent molecules and hydrogen atoms are omitted for clarity. (Bottom) All atoms of $Ar^{Tol}CO_2$ - ligands in 6, except for the carboxylate groups and the α -carbon atoms, were omitted for clarity.

Figure S6. ORTEP drawings of $[Fe_2(\mu-O_2CAr^{Tol})_2(O_2CAr^{Tol})_2((C_6H_5CDH)_2en)_2]$ (7) (Top) showing 50 % probability thermal ellipsoids. Symmetry transformations used to generate equivalent atoms: #1 -x+1,-y,-z+2. The solvent molecules and hydrogen atoms are omitted for clarity. (Bottom) All atoms of $Ar^{Tol}CO_2$ - ligands in 7, except for the carboxylate groups and the α -carbon atoms, were omitted for clarity.

Figure S7. The oxygenation product distributions of $[Fe_2(\mu-O_2CAr^{Tol})_2(O_2CAr^{Tol})_2(N,N-(4-F-Bn)Bnen)_2]$ (**3**) and $[Fe_2(\mu-O_2CAr^{Tol})_2(O_2CAr^{Tol})(N,N-(4-tBu-Bn)Bnen)_2]$ (**5**) at 23 °C, determined ¹H NMR spectroscopy, are shown in A) and B), respectively.

Figure S8. The oxygenation product distribution of $[Fe_2(\mu - O_2CAr^{Tol})_2(O_2CAr^{Tol})_2((C_6H_5CDH)_2en)_2]$ (7) at 23 °C. A) GC-MS: 20.011 min, PhCHO(M⁺

= 106); 20.08 min, PhCDO (M⁺ = 107) B) ¹H NMR spectrum: 10.01, (s, 1H from PhCHO),
7.88, (d, 2H from the combination of PhCHO and PhCDO).

Figure S9. The oxygenation product distribution of $[Fe_2(\mu-O_2CAr^{Tol})_2(O_2CAr^{Tol})_2 - ((C_6H_5CD_2)(C_6H_5CH_2)en)_2]$ (8) at 23 °C. A) and B) ¹H NMR spectrum: 10.01, (s, 1H from PhCHO), 7.88, (d, 2H from the combination of PhCHO and PhCDO)

Figure S1. Yoon and Lippard.

Figure S2. Yoon and Lippard.

Figure S3. Yoon and Lippard.

Figure S4. Yoon and Lippard.

Figure S5. Yoon and Lippard.

Figure S6. Yoon and Lippard.

Figure S7. Yoon and Lippard.

Figure S8. Yoon and Lippard.

Figure S9. Yoon and Lippard.