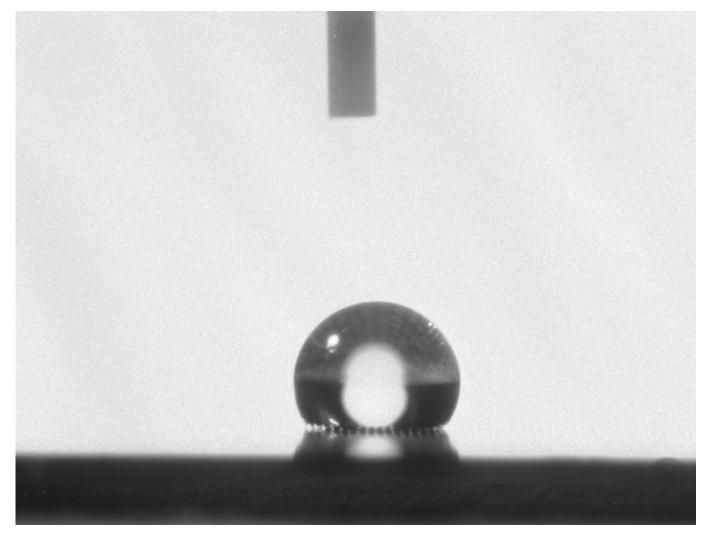
Supporting Information


Tuteja et al. 10.1073/pnas.0804872105

Movie S1 (MOV)

AS PNAS

Movie S1. A movie illustrating the bouncing of a droplet of hexadecane ($\gamma_{Iv} = 27.5 \text{ mN/m}$; $\theta = 75^{\circ}$) on a silanized microhoodoo surface with $\phi_s = 0.25$, $D = 10 \ \mu\text{m}$, $R = 0.15 \ \mu\text{m}$, and $W = 10 \ \mu\text{m}$. For the hexadecane droplet in the movie, the Weber number $We = \rho V^2 R_{drop}/\gamma_{Iv} \approx 10$, where V is the droplet velocity before impact, ρ is the liquid density and R_{drop} (= 0.7 mm) is the droplet radius. The Weber number compares the kinetic energy of the falling droplet with the interfacial energy of the drop. Because $We \gg 1$, the droplet deforms substantially on impact and subsequently loses most of its kinetic energy after impact by shape oscillations [Richard D, Quéré D (2000) *Europhys Lett* 6:769–775], leading to relatively low values for the coefficient of restitution.

Movie S2. A movie (obtained over a period of 5 min) showing the evaporation of a droplet of methanol ($\gamma_{lv} = 22.7 \text{ mN/m}$; $\theta = 60^{\circ}$) under ambient conditions, on a silanized microhoodoo surface with $\phi_s = 0.11$, $D = 20 \mu$ m, $H = 7 \mu$ m, $R = 0.15 \mu$ m, and $W = 10 \mu$ m. We compute a value of $A^* = 8.2$ for the system, which leads to a predicted breakthrough pressure of 219 Pa. The radius of the liquid droplet just before it transitions to the Wenzel state was recorded to be 450 μ m, which leads to a measured breakthrough pressure of 118.1 Pa.

Movie S2 (MOV)

SANG SANG

Other Supporting Information Files

SI Appendix