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APPENDIX / AVAILABLE FROM THE AUTHRORS 

It is assumed that the study population is a stratified population with a total of J strata 

( Jj ,...,2,1= ). In each stratum, the occurrence of disease follows a log-linear risk model, that is, 

for a subject in the jth stratum, βx t
sex) exposure, gene,((risk) log += jα , where jα  represents the log 

background risk for the jth stratum, sex) exposure, gene,(x  is a vector of data or codes regarding the 

gene, the environmental exposure, the sex, and any possible cross-product terms between them, 

for the subject under concern ( tx  is the transpose of x ), and β  is a vector of parameters of 

present interest (to be estimated). 

Supposed that a sample of n (i=1,…,n) case-spouse pairs has been recruited. Let Ti (T'i ) 

represent the stratum to which the ith proband(his/her spouse) belongs. Let 

iii 21 AAG = ( iii 43 AAG' = ) represent the genotype for the ith proband(his/her 

spouse)( iiii 4321 A and ,A ,A ,A are ‘alleles’). Let iD  represent the event that the ith proband is a 

case (i.e., he/she contracts the disease). Let )S(E ii  represent the environmental exposure(sex) of 

the ith proband, and )S'(E' ii , the environmental exposure(sex) of his/her spouse. Further, we let 

iU  represent the set that contains as its two elements the genotype of the ith proband and the 

genotype of the ith spouse, that is, }AA ,AA{U 4321 iiiii = . And we let iV  be the set containing as 

its elements the four alleles in the ith case-spouse pair, that is, }A ,A ,A ,A{V 4321 iiiii = . 

Conditioned on iiiiii S' and ,S , E',  E, D,U , the probability that the ith proband has genotype 

of ii 21 AA  and the ith spouse has genotype of ii 43 AA is denoted as iQ . With elementary algebra, 

this conditional probability is (the index i  was suppressed for simplicity): 
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The numerator can be expressed as the product of three terms: 
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With the assumed disease model, the first term of the product is 
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The second term of the product can be shown to be (the parenthesis shows the assumption used 

in each step of derivation; A1: mating is restricted to subjects in the same stratum; A2: mating is 

independent to genotypes, for males and females in each and every stratum; A3: environmental 

exposures are independent to genotypes, for males and females in each and every stratum; A4: 

the genotype frequencies for males are equal to the corresponding frequencies for females, in 

each and every stratum): 
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Therefore, we see that the numerator in Q is 
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Similarly, we can show that the second term of the denominator in Q is 
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Thus, we have (with the index i  denoting the i th case-spouse pair) 



 3

  

1 2

1 2 3 4

1 2

1 2 3 4

t
(A A ,E ,S )

t t
1 (A A ,E ,S ) (A A ,E ,S )

t
(A A ,E ,S )

t t
(A A ,E ,S ) (A A ,E ,S )

exp[ ]
Q Pr(T D , E , E ,S ,S )

exp[ ] exp[ ]

exp[ ]
     = .

exp[ ] exp[ ]

i i i i

i i i i i i i i

i i i i

i i i i i i i i

J

i i i i i i i
j

j
=

′ ′= = ⋅
+

+

∑
x β

x β x β

x β

x β x β

 

And the conditional likelihood function for the case-spouse data (1:1 case-counterfactual-control 

analysis) is 
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Let iF ( Fi
′ ) represent the allele that the ith proband(spouse) inherited from his/her father, 

and M i ( Mi
′ ), the allele that the ith proband(spouse) inherited from his/her mother. Conditioned 

on V ,  D ,   E ,  E' ,  S ,  and S'i i i i i i , the probability that the ith proband has genotype of ii 21 AA  and 

the ith spouse has genotype of ii 43 AA is denoted as R i . With elementary algebra, this 

conditional probability is (the index i  was suppressed): 
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The numerator of R is the same as that of Q and has been previously shown to be (with 

assumptions A1~A4) 
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With the A5 assumption that there is no imprinting effect for the gene under study, the first term 

of the product in the denominator of R is 
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With the A1~A4 assumptions, the second term of the product in the denominator of R is 
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Therefore,       
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With the A6 assumption that each and every stratum is in Hardy-Weinberg equilibrium, we have 

Pr(F , M | T ) Pr(F | T ) Pr(M | T ),x y j x j y j= = = = = = ⋅ = =  

for arbitrary alleles x  and y  and arbitrary stratum j . Thus we see that (with the index i  

denoting the i th case-spouse pair): 
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And the conditional likelihood function for the case-spouse data (1:5 case-counterfactual-

controls analysis) is 
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