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1. ChIP-chip data 

This work is primarily based on ChIP-chip data taken from 2 studies performed in 

Richard Young’s lab at the Whitehead Institute. One study aimed at mapping the binding 

sites of 3 transcription factors (TFs) known to play central roles in the maintenance of key 

properties of embryonic stem cells [1]. The second study concentrated on 6 TFs believed to 

be critical for the biology of hepatocytes which comprise the bulk of the liver [2]. Both 

studies used human cells and the same custom platform developed in Young’s lab. For 6 of 

the 9 TFs there is data from 2 biological replicas; for the remaining 3 – HNF6, USF1, 

CREB1 data from only single replicas were available.  

1.1 Brief description of the 9 TFs 

1.1.1 Embryonic stem cells related TFs: NANOG, SOX2 and OCT4 

Named after the mythological Celtic land of the ever young "Tir nan Og" , NANOG is 

believed to be a key factor in maintaining the main properties of embryonic stem cells -    

pluripotency and self renewal [3, 4]. Together with OCT4 and SOX2 it forms a tightly 

interconnected transcriptional circuit. It was shown that this circuit can act as a bistable 

switch [5] which can be the mechanism selecting between maintenance of the stem cell 

phenotype and differentiation. According to [2] these 3 TFs bind to many common target 

genes. OCT4 and SOX2 often bind to DNA as a heterodimer.  

1.1.2 TFs tested in hepatocytes 

The 6 transcription factors HNF1A, HNF4A, HNF6, FOXA2, USF1 and CREB1 are 

known to be expressed in hepatocytes [2].  

The transcriptional regulators HNF1A, HNF4A and HNF6 are required for normal 

function of liver and pancreatic islets. Mutations in HNF1A and HNF4A are the causes of 

the type 3 and type 1 forms of maturity-onset diabetes of the young (MODY3 and 

MODY1) [6]  

The genes encoding FOXA (hepatocyte nuclear factor 3) family of proteins play a 

pivotal role in the regulation of metabolism and in the differentiation of metabolic tissues 

such as the pancreas and liver. FOXA transcription factors bind to cis-regulatory elements 

in hundreds of genes encoding gluconeogenic and glycolytic enzymes, serum proteins and 

hormones. Genetic analysis in mice has shown that FOXA2 is necessary for the 

development of the foregut endoderm, from which the liver and pancreas arise [7].  
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The ubiquitously expressed USF-1 and USF-2 proteins interact with high affinity to 

cognate E-box regulatory elements (CANNTG) which are particularly represented over the 

genome. The USF transcription factors are key regulatory elements of the transcriptional 

machinery mediating recruitment of chromatin remodelling enzymes, interacting with co-

activators and members of the pre-initiation complex (PIC). USF transcription factors have 

been involved as key regulators of a wide number of gene regulation networks including 

stress and immune response, cell cycle and proliferation [8]. 

The cyclic AMP (cAMP)-responsive element-binding protein (CREB) is a 

ubiquitously expressed transcription factor that is involved in transcriptional regulation of 

many different cellular processes, it stimulates the expression of numerous genes in 

response to growth factors, hormones, neurotransmitters, ion fluxes, and stress signals [9]. 

Table S1: This table lists the DNA binding domain types of the 9 TFs and the HGNC [10] 
approved names of the corresponding genes.  

TF name as 
appears in this 

work 

The HGNC name 
of the coding gene 

DNA binding domain family 

NANOG NANOG homeobox 

OCT4 POU5F1 homeobox 

SOX2 SOX2 HMG box 

HNF1A TCF1 homeobox 

HNF4A HNF4A nuclear hormone receptor 

HNF6 ONECUT CUT 

FOXA2 FOXA2 fork-head 

CREB CREB1 basic-leucine zipper (bZIP) 

USF1 USF1 basic helix-loop-helix (bHLH) 
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Figure S1: Circuits of the liver (left) and embryonic stem cell (right) related genes as 
reported by ChIP-chip studies. Arrows indicate regulation but not necessarily activation (it 
may be suppression). The stem cell circuit diagram on the right was adopted from [5].   

 

1.2 Essential details of the experimental platform 

This section describes minimal details of the experimental platform that are essential for 

understanding the description of data analysis that will follow. A full account of the 

technique can be found in supplementary material of [1] and [2] or on the web site 

accompanying those publications [11]. 

The technique is based on custom designed DNA microarrays containing 60-mer 

oligonucleotide probes. The probes are covering regions from 8kb upstream to 2kb 

downstream from transcription start sites of about 18,000 annotated human genes. The 

average probe density inside the covered regions is approximately one probe every 280bp. 

This microarray was code-named 10array because it actually consists of 10 separate slides 

due to limitation of number of probes that can be fitted on a single slide.  

After immobilizing the proteins and fragmenting the DNA (into fragments of length of 

550 bps on average) part of the resulting material is used for immunoprecipitation, while 

the other part is reserved for control. The immunoprecipitation enriched DNA extract is 

labeled with red fluorescent dye while the control whole cell DNA extract is labeled with a 

green fluorescent dye. The whole cell extract is assumed to contain any piece of the 

genome at equal probability (concentration) as opposed to the immunoprecipitated DNA 

extract that contains significantly increased concentrations of DNA fragments to which the 

TF of interest was bound. Both DNA extracts are applied to the microarray to allow 

competitive hybridization. The fluorescence intensity is then measured in red and green 

filters separately for each probe.  
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1.3 Data analysis pipeline 

A probe that has a binding site located within several hundred base pairs from it is 

expected to give high reading in the immunoprecipitated (IP) channel as compared to 

whole cell extract (WCE) channel. The probe intensity in the IP channel is a function of 

(among other effects) the binding site strength, its distance from the probe and the probe’s 

affinity to its matching DNA (which depends on probe’s sequence). The latter appears to 

contribute the most to the probe-to-probe variation but is expected to be canceled out by 

comparing the IP and WCE channels. 

1.3.1 Normalization of raw data 

The array set consists of 10 slides due to limitation of the number of probes that could 

be printed on a single slide. A detailed description of the array design can be found in the 

supplementary material of [1]. The design files and the raw data were downloaded from 

[12]. The raw data is in GPR format a description of which can be found at [13].  

The purpose of this normalization procedure is to eliminate the effects of variation in 

experimental parameters (such as the amount of hybridized DNA) between the slides and 

between the red and green channels. The normalization procedure used in this work follows 

closely the procedure describe in supplementary material of [1] with slight variations.  

Apart from the probes covering promoter regions, each slide contains the same set of 

control probes. There are negative controls designed not to bind any human DNA, as well 

as intensity controls that, based on test hybridizations, give signal intensities that cover the 

entire dynamic range of the array. 

The normalization procedure is as follows: 

  
  

1. Filter out all the probes with signal to noise level (as defined in GPR file) 
greater than 2 

2. For each channel (red and green) : 
2.1. For each slide: 

2.1.1. Calculate the median of intensity controls  
2.1.2. Divide all the readings by this median 

2.2. Join the readings from all slides into a single list 
2.3. Calculate the average of the 10 medians calculated in step 2.1.1 
2.4. Multiply all the readings by this median. 
2.5. Calculate the median of negative controls and subtract it from all 

readings 
3. Scale all the readings in green channel so that the medians of all 

experimental probes in both channels will be equal. 
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1.3.2 M-scores  

In order to compare the intensities of the red (IP) and green (WCE) channels, the raw 

readings normalized using a procedure described above. Log ratios (base e) of the red and 

green channels were calculated as LogRatio=log(red)-log(green). However, as can be seen 

on Figure S2, the differences between log intensities in the two channels diminish with 

increasing average intensity and therefore, a single fold-change cutoff cannot be used to 

determine which probes report binding sites.  

To cope with this problem, a special score was developed which we called the M-score 

in analogy with the X-score used for a similar purpose by the authors of [1] and [2]. 

Roughly, the M-score of a probe is its log ratio divided by the standard deviation of log 

ratios of all the probes on the array that have “similar” average intensity, where average 

intensity is defined as  log(red) + log(green).  

 

Figure S2:  A) Scatter plot of log intensities of the red and green channels B) This 
graph illustrates the calculation of M-scores.  

 

In more detail, the M-score is calculated as follows: For each probe, the log ratio is 

calculated as log(red)–log(green) and the average intensity as log(red)+log(green). The 

range from 0 to max average intensity is split into 20 equal intervals shown by yellow lines 

on Figure S2 B. Standard deviation of log ratios is calculated in each interval and the 

resulting number is assigned to the middle of the interval. The red line on Figure S2 shows 

the local standard deviation times 3. The local standard deviation for each probe is then 

calculated as linear interpolation between the mid points of intervals. M-score of a probe is 
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its log ratio divided by the local standard deviation. This method was developed in analogy 

with [14]. 

The resulting score has unit variance and approximately normal distribution. Therefore 

M-score cutoffs can be interpreted in terms of probability. That is, the probability of getting 

a score m0 or higher is P(M-score>m0) = 1-NormCDF(m0) or, alternatively, for a given p-

value of 0.001 the M-score cutoff would be 3.09.     

1.3.3 Bound probes and regions 

As most probes were spaced within the resolution limit of chromatin immunoprecipitation, 

triplets of closely spaced consecutive probes were required to provide evidence of a 

binding event in order to filter out single probes with spurious signal. Average M-scores 

for triplets of consecutive probes spaced at less than 1000bp of each other were calculated 

as M(3)= ( ) 3/rightmidleft MMM ++ . Under the assumption of statistical independence of Mi 

and Mi±1 , the smoothed variable Mi
(3) is also approximately normally distributed with unit 

variance (see table S2 and Figure S3 for verification of statistical independence).  

A triplet was labeled as bound if it passed the following criteria based on 4 cutoff 

parameters : t1, t2, t3  and tn. 

• M(3) > θ·t3  

• AND either: 

o Mmid  > θ· t2 AND (Mleft > θ· t2   OR   Mright> θ· t2) 

o OR 

o Mmid  > θ· t1 AND (Mleft > θ· tn   OR   Mright > θ· tn) 

 

The two latter criteria seem redundant, but the cutoffs were selected so that they would 

cover two different situations, one where a binding event occurs midway between two 

probes and each detects the event, and the other where a binding event occurs very close to 

the central probe and is very weakly detected by a neighboring probe. 

The θ parameter was introduced in order to study the effect of varying the cutoffs with 

a single parameter as described in section  2.3. 

These cutoffs were adopted from [2] as follows:  

• SF(t3)=0.0001 

• SF(t1)=0.0001 

• SF(t2)=0.0005 

• SF(tn)=0.05 
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Where SF(x)=1-NormCDF(x) is the survival function of the normal distribution.  

Central probes of triplets that passed those filters were marked as bound probes. 

 

Table S2: Correlation coefficient between M-scores of consecutive probes, standard 

deviations of single M-scores and of M-score triplets. 

TF Correlation(Mi , Mi+1 ) Std(M) Std(M3) 
FOXA2_M1 0.16 1.05 1.20 
FOXA2_M2 0.08 0.99 1.06 
NANOG_M2 0.19 1.01 1.17 
NANOG_M3 0.21 1.00 1.17 
OCT4_M1 0.19 1.00 1.14 
OCT4_M4 0.11 1.00 1.10 
HNF4A_M1 0.26 1.05 1.27 
HNF4A_M2 0.16 1.03 1.16 
HNF1A_M1 0.18 1.12 1.29 
HNF1A_M2 0.11 1.07 1.16 
USF1_M1 0.13 1.04 1.16 
SOX2_M3 0.20 1.27 1.49 
SOX2_M4 0.19 1.05 1.22 
CREB_M1 0.16 0.97 1.09 
HNF6_M1 0.24 1.11 1.33 

 

 
Figure S3: Typical distributions of M-scores for single probes (blue) and for triplets 

(green). 

1.3.3.1 Bound regions 

For each triplet that passed the filters, the region between the two of its flanking 

probes was marked as bound region. Overlapping regions were collapsed into single 

region. For example, on Figure 1 (in the main text) there are two consecutive probes 

detected as bound (labeled with red triangles), the region between them extended up to the 

nearest unbound probes is marked as bound region (labeled with magenta line on the 

figure). 
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The bound regions were originally intended to be fed into motif discovery algorithms 

such as [15] or [16] but later proved to be useful for the analysis described below.  

Table S3: Example of several actual regions detected as bound from HNF1A data. 
All the genomic addresses refer to UCSC hg17 genome build. 

Chromosome Start End Length  
chr6 161093061 161093901 840 
chr5 132236487 132237603 1116 
chr1 95250176 95250941 765 
chr5 35083572 35084350 778 
chr4 155839325 155840026 701 
chr1 74908903 74909636 733 
chr6 31731168 31732010 842 
chr1 70588042 70589141 1099 
chr1 158006268 158007477 1209 
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2. Positional distribution of transcription factor binding sites 

2.1 Alignment of bound regions relative to TSS 

The preprocessing steps described in the previous chapter resulted in lists of several 

hundred to several thousand bound regions for each TF. Each bound region is several 

hundred bps long (700 on average). In order to estimate the distribution of binding sites as 

a function of distance from transcription start site (TSS), the bound regions were aligned 

relative to the nearest TSS and a number, which we called "coverage number", was 

calculated.  It is somewhat similar to a histogram, but since the bound regions all have 

different lengths, a simple histogram could not be used. The coverage number of a 

nucleotide at a given distance from the TSS is the number of bound regions for which this 

point, i.e. the nucleotide is within the bound region. That is, we count how many bound 

regions cover a point at distance x from the TSS, adding up for all the genes tested. Figure 

2 in the main text illustrates this concept. The genomic locations of the genes were taken 

from RefSeq genes table from UCSC genome browser, build hg17. 

Put more mathematically, let R be the set of all regions detected as bound, we define ar 

and br as the distances of the two endpoints of a bound region r from the TSS nearest to 

this bound region. As a convention ar < br. The distance is defined to be negative if the 

point is upstream of the TSS and positive if it is downstream, that is, inside the gene. Then 

the coverage number Cn(x) is given as: 

∑
∈

<<=
Rr

rr bxaIxCn )()(          (5.1.1) 

Where I(condition) is an indicator function giving 1 if the condition is true and 0 otherwise. 

Example plot of the coverage number can be seen on Figure S4. 
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Figure S4: An example of coverage number plot. x axis shows the distance 
from TSS, negative distance means upstream and positive downstream (i.e. 
inside the gene).  

 
  

Figure S5 (Over the page): The raw coverage number plots of all the TFs including 
biological replicas (replicas are labeled as M1, M2 …). There is no correction for 
probe density variation on these plots. Section  2.4 will introduce a procedure which 
will result in graphs with probe density taken into account. The score cutoffs shown 
as "com#" in the legends were selected as described later in section  2.3. 
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Looking at the 6 TFs with duplicates on Figure S5, it can be seen that reproducibility 

can be quite poor. For two TFs – FOXA2 and OCT4 the duplicates are very different from 

each other.  

The most prominent feature on all the plots is the sharp peak just upstream of the TSS. 

For USF1 and CREB the vast majority of detected binding sites are concentrated within 

this peak. Other TFs seem to have, in addition, a considerable number of bindings sites 

almost evenly spread over all the distances 

Thinking of binding site localization statistics a priori – before seeing the plots on 

Figure S5, one would hypothesize that binding site distributions would be roughly bell 

shaped curves with different widths and positions of the maxima for different TFs, maybe 

some distributions would even be bimodal. But instead, this data suggests that the binding 

site distributions of the 9 tested TFs look like a mixture of two distributions - a uniform one 

and a sharp peak. What vary between different TFs are not the constituent distributions but 

rather the weights of their contributions to the mixture. 

The above picture of a mixed distribution suggests that there might be two distinct 

groups of binding sites which differ in their biological function or in the mechanism by 

which their function is achieved. An attempt to find such a difference is presented in 

section  2.5. 

The lower part of the graph for NANOG and FOXA2 seems to decrease gradually 

away from the TSS and fall to nearly zero at -8kb and +2kb. This effect is due to 

microarray design. The microarray does not cover promoter regions outside -8kb to 2kb 

from the TSS, which explains the zero count outside this region. Additionally, the probe 

density within the covered regions is not uniform. As can be seen on Figure S6 (red curve) 

the probes are placed more densely near TSS. 

In order to understand how this probe density variation influences the coverage 

number, we performed a simulation of the measurement process starting with a 

hypothetical TF having a uniform distribution of binding sites as a function of distance 

from the TSS. Section  2.4 describes the details of how this simulation was performed. The 

blue curve on Figure S6 is the average of the coverage number plots obtained from 100 

such simulations.  
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Figure S6: Probe density and the average ± one standard deviation of 100 
simulated coverage plots of hypothetical TFs with uniform distribution of binding 
sites relative to TSS. 

 

Figure S7: Comparison of coverage number plots for 2 real TFs with simulated 
coverage number for uniform distribution of binding sites. All 3 curves were 
normalized to have the same area under the curve, this normalization allows easier 
comparison between different TFs.  
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Comparison of this simulated curve with those generated from a real TF data as presented 

on Figure S7, shows that the gradual decrease towards the edges and the sharper decrease 

starting at about 400bp from the edges can be explained by differences in probe density. 

The sharper decrease at the edges is a kind of edge effect. Since this edge effect has great 

influence on the impression an observer gets from viewing the graphs (even a well 

informed observer), most of the further graphs will be shown with the x axis limits set to 

conceal the edges in order to avoid false impressions. 

Another change that was introduced in Figure S7 is normalization: the coverage 

number plots are scaled, for each TF and for the simulation, to have the same area under 

the curve. This normalization allows easier comparison between different TFs. For 

example, curves for NANOG and FOXA2 that looked different on Figure S5 are now seen 

to be very similar apart from the total number of bound genes. The area under the graph is 

roughly the number of bound regions times the average length of a bound region; 

increasing any of these two parameters would result in higher coverage numbers for the 

same positional distribution. With such normalization, a higher peak near the TSS means 

that a greater percentage of all the detected binding sites of this TF are located within the 

peak. 

2.2 Comparison with distribution of computationally derived 
transcription factor binding sites 

In order to verify that the findings described above can be reproduced from an independent 

data source we turned to a computationally derived database of binding sites conserved 

between human, mouse and rat. This resulted in similar graphs containing the same main 

features. 

The source used is the database underlying the “TFBS Conserved” track in the UCSC 

genome browser [17, 18]. It was generated using the TRANSFAC [19] collection of 

positional score matrices (PSSMs) representing the binding preferences of transcriptions 

factors. The database contains the locations and scores of transcription factor binding sites 

conserved in the human/mouse/rat alignment. A binding site is considered to be conserved 

across the alignment if its score meets the threshold score for its binding matrix in all 3 

species. The score and threshold are computed with the TRANSFAC Matrix Database 

(v7.0) created by Biobase [19]. The data are purely computational, and as such not all 

binding sites listed are biologically functional but the double filter of relatively stringent 

scores and evolutionary conservation should result in few false positives. 
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The conserved binding sites were aligned relative to TSS in the same manner as the 

bound regions from ChIP-chip experiments, but since now the precise location of each 

binding site is known, a simple histogram can be used instead of the coverage number 

plots. Figure S8 presents sliding window histograms for HNF1A, USF1, CREB1 and 

FAC1. 

 

 

B A 

Figure S8: Sliding window histograms of binding site distances from TSS (window 
size of 200bp). Based on UCSC database of evolutionarily conserved binding sites 
computationally derived from TRANSFAC PSSMs. It can be seen that the main 
features are the same as on the coverage number plots based on ChIP-chip 
experiments on Figure S5. 

 
It can be seen on Figure S8 that the resulting curves maintain the main features of those 

based on ChIP-chip experiments. Binding sites of USF1 and CREB are, as shown 

previously, almost entirely concentrated within a narrow peak just upstream the TSS. The 

peak looks sharper because the sliding window width of 200 base pairs is considerably 

smaller than the average length of bound regions from ChIP-chip data. The distribution of 

binding sites of HNF1 has both the peak and an almost uniform component. Unfortunately, 

most TFs from this database have too few binding sites listed to draw a proper histogram. 

 

2.3 Selection of p-value cutoffs for detection of bound probes 

As mentioned in section  1.3 the p-value cutoffs that were used to decide whether a probe is 

to be counted as bound or not, were rather arbitrary. We decided to explore how changing 

those cutoffs affects the coverage number plots. 

For this end, each of the four p-value cutoffs as given in section  1.3 were multiplied by 

a single number θ, which we called "cutoff multiplier" (abbreviated as "com" in figure 
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legends) and the whole data analysis pipeline was run with those new cutoffs. The cutoff 

multiplier was varied from 0.1 to 500 (lower multiplier means stricter cutoff). The 

coverage number plots for HNF1A and NANOG with a range of cutoff multipliers are 

shown on Figure 8 (in the main text). Figure S8 shows the number of regions detected as 

bound as a function of the cutoff multiplier. 

Variations of coverage number plots as a function of cutoff could be divided into 3 

different types. For 5 TFs the shape remained almost invariant up to some cutoff multiplier, 

and deteriorated quickly for looser cutoffs until it resembled the simulated coverage plot 

for a hypothetical TF with uniform distribution of binding sites. HNF1A on Figure 8 (in the 

main text) belongs to this type. This boundary differs between transcription factors and 

even between experimental replicas for the same TF. The coverage number plot for 

HNF4A_M2, for example, remained unchanged all the way up to 100, while HNF4A_M1 

started to flatten considerably at 30 as can be seen on Figure S9 (M# indicate experimental 

replicas).   

A different behavior was exhibited by coverage number plots for the stem cell TFs 

NANOG and OCT4. For them the peak value initially gets higher with increasing cutoff 

multiplier until it reaches a maximum around com of 100, and then decreases (Figure S9). 

This behavior may imply different biological roles for binding sites of different affinities, 

but this hypothesis requires further investigation. 

The peaks on the coverage number plots of the remaining 2 TFs USF1 and CREB1 

decreased monotonically with cutoff multiplier without apparent discontinuities. It is 

interesting to note that these 2 TFs have the highest peaks, with coverage numbers nearly 

zero outside the peak (see Figure S4). 

The 1st type of behavior of coverage number plots exhibited by 5 TFs can be used for 

selecting the best cutoff for each experiment. By starting with a relatively stringent cutoff, 

one can derive a coverage number plot that corresponds to the distribution of a relatively 

clean list of binding sites with few false positives. It can be assumed that while the 

coverage number plot does not change when slightly loosening the cutoffs, the growing list 

of binding sites maintains a noise level similar to the initial one, but when the cutoff is set 

too loose, many false binding sites enter the list and the noise level rises affecting the 

coverage number plot. Therefore, it makes sense to select the loosest cutoff for which the 

shape of the coverage number plot did not start to deteriorate yet.  

In further analysis and on Figure S5 where single cutoff had to be selected per TF this 

was done in the way described in the previous paragraph (where possible). The cutoffs for 
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NANOG and OCT4 were selected to get the highest peak. Since the peak heights and 

number of bound genes for USF1 and CREB1 exhibited no obvious discontinuity (see 

Figure S8 and S9) and therefore provided no hint for the selection of cutoffs, we selected 

rather conservative values of com (1 for USF1 and 10 for CREB1). This resulted in 

relatively small numbers of genes detected as bound by USF1 (and to some extent, by 

CREB1), compared to other TFs and to what was reported by [1, 2]. 

 

 

Figure S9: Peak height as a function of cutoff multiplier. The units are such that 1 
is the height of the peak for simulation of a TF with uniform distribution of binding 
sites. 
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Figure S10: Number of bound regions as a function of cutoff multiplier. Notice that on 
this plot the boundary for cutoff multiplier is also apparent. M# represent experimental 
replicas.   

 
Figure S11: Number of bound regions as a function of cutoff multiplier drawn 
separately for bound regions  that overlap the proximal promoter region (within 300 bp 
of the TSS) (red) and those that don’t (blue). The discontinuity is even more apparent 
for the distal regions.  

 

2.4 Estimation of distribution of binding site positions 

The simulation of the measurement process mentioned in section  2.1 was initially designed 

to help understand the influence of non uniform probe density and to show how a coverage 

     19



 

number plot would look for a hypothetical TF that has uniform distribution of binding sites 

as a function of distance from TSS. However, with a minimal change, it was extended to 

handle a fictional TF with any distribution of binding sites. This was used in order to 

estimate the real distribution of binding sites for each TF. 

The simulation accepts a list of microarray probes as genomic addresses and a list of 

binding sites, each as a genomic address and a strength parameter which plays the role of 

binding affinity of the site. The results shown below were obtained from simulations with 

10,000 binding sites randomly drawn from some distribution (that is tested). For each 

probe a simulated M-score is calculated as a function of distance d to the nearest binding 

site and of its strength parameter as given in the equations below. These simulated M-

scores are then fed into the analysis pipeline as if they were derived from real raw data and 

a coverage number plot is generated. 

M-score = f(d)·strength                  (1) 

∑ ∑
= =

−=
dl

l

da
alpapldf )()()(           (2) 

The influence function f(d) used to calculate the M-score was adapted from [20] (the 

derivation is in the supplementary material), it is based on the distribution of DNA 

fragment lengths after fragmentation during the ChIP-chip protocol, the longer fragments 

there are, the more distant binding site can be sensed by a probe, but at larger distances 

fewer fragments will be long enough to cover the probe.  

 

Figure S12: Definition of variables for the calculation of influence function f(d) 

 

Following is an outline of the derivation of the influence function f(d) given in eq 5.5.2. Let 

p(a) be the probability that DNA was cut at a distance a from the TF binding site, then the 

probability of observing a fragment that was cut at distance a upstream of the binding site 

and distance b downstream, would be p(a)p(b) since the two cuts are independent. The total 

probability to observe a DNA fragment of length l would be given by a convolution: 

 

DNA fragment 
a l-a 

probe TF  d 
binding 

site 
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∑
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The fluorescent intensity of a DNA fragment increases roughly linearly with its length as 

more labeled nucleotides are incorporated. Consider a microarray probe with a binding site 

at distance d from it. The total intensity of the probe will be the sum of intensities of all the 

DNA fragments bound to it which is proportional to a sum over all the possible DNA 

fragments that contain both – the binding site and the probe, where each DNA fragment 

contributes in proportion to its length and the probability to observe such a fragment. This 

sum is given by the equation below, with the substitution l=a+b and change of summation 

variable this sum can be brought to the form as in equation 5.5.1. 

∑
>≥

+∝
0,

))(()()(
bda

babpapdf         (4) 

An alternative approach would be to assume that the TF binding site can be found 

anywhere within the DNA fragment with equal probability. This assumption results in a 

slightly different influence function f(d) but the overall result of the simulation remained 

almost the same. 

The total probability to observe a DNA fragment of a particular length PL(l) was 

measured experimentally by the authors of [20]. It was approximated with a shifted gamma 

distribution. A convolution of two identical (shifted) gamma distributions is again a 

(shifted) gamma distribution with twice the mean (and the shift). Therefore p(a) was also 

taken to be a shifted gamma distribution. The following parameters were used for the 

simulation: shift s=50bp, shape parameter k=2 and scale parameter θ=60.  

)exp(
)(

)()(
1

θθ
sx
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k −
−

Γ
−

=
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      (5) 

 

The binding strength parameters were randomly sampled from a shifted gamma 

distribution (shift s=3, shape k=2 and scale θ=3). The gamma distribution was chosen 

based on the model derived in [21], however the actual distribution of binding strengths 

should have minimal effect on this simulation. 

The list of TF binding sites can be generated with any distribution of distances from 

the TSS; in particular, we tried to find distributions which, after simulation, would generate 

coverage number plots very similar to those generated from the real data. 

Since any particular coverage plot can be obtained from many different binding site 

distributions and the simulation is computationally intensive (about 55sec on Intel P4 
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2.4GHz 1GB RAM for single run), any systematic fitting method would be difficult to 

implement. The distributions shown below were fitted by hand, and this can be seen as a 

kind of approximate deconvolution. 

In order to verify the manual fitting procedure, we performed a simple grid search in 

the neighborhood of the manual "best fit" for one of the TFs – USF1. We used the 

Kullback–Leibler divergence as a measure of difference between the experimental and 

simulated coverage plot. This resulted in rather similar parameters: peak position, stdev of 

the peak and the weight of the uniform component were -240, 120 and 1.4 respectively 

compared to -200, 90, and 1.0 from the manual fitting.  

The importance of the deconvolved plots is in their ability to demonstrate that the 

variation of the coverage plots outside the peak can be explained by the non uniform probe 

density, while the distribution of detected binding sites there is almost uniform. 

Figure S13 shows an example of a simulated coverage number plot, together with the 

distribution from which it was derived, and the real coverage plot for comparison. The 

fitted distributions for all TFs are shown on Figure 3 (main text). Table 1 (main text) gives 

a summary of the main parameters – peak position and width, and the relative weight of the 

uniform component as compared with the localized one.  

The fitted distributions support the previously presented hypothesis that the binding 

sites distribution contains 2 main components: a highly localized peak and a uniform 

distribution that contribute with different weights for different TFs. In addition, for several 

of the TFs a minor peak within the gene can be seen. It may correspond to alternative, not 

yet discovered TSSs or to binding sites that function by directly interfering with RNA 

polymerase after it started transcribing. 
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Figure S13: Example of a fitted binding site distribution for HNF1A and 
comparison of the derived simulated coverage number plot with the real one. 
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2.5 Comparison of binding sites within the peak and outside using Gene 
Ontology (GO) 

The fact that the binding site distributions can be explained as a sum of a uniform 

distribution and one with a sharp localized peak suggests that there might be two distinct 

groups of binding sites which may differ in their biological function or in the mechanism 

by which their function is achieved. This section presents a simple attempt to find such 

difference using gene ontology [22] (GO) annotations of genes bound by the 9 TFs 

according to ChIP-chip data. 

For this end the genes bound by a particular TF were split into 2 groups – one contains 

genes that have a probe detected as bound within 300 base pairs of the TSS and the other 

contains the rest of the genes with a bound probe within 8kb upstream of the TSS. The first 

group is assumed to include most of the genes that have a binding site on their promoter 

within the peak. Both groups were subjected separately to GO enrichment analysis using 

only the "biological process" type of GO annotations.  Results of this analysis are depicted 

graphically on Figure 4 (in the main text). 

The single hypothesis p-values were calculated as typically done in GO analysis using 

the hypergeometric distribution, separately for each TF, each GO term and each group of 

genes (far vs. close). Only GO terms containing at least 3 genes from one of the two groups 

of genes were considered.  

For performing the FDR correction (calculating the q-value), all the single test p-

values were grouped into the two families according to distance from TSS as described in 

the previous paragraph. And an FDR correction was performed in each family separately. 

That is, N – the number of tests in a family in each FDR correction was the number of TF-

GO pairs. 

Figure 4 (main text) shows that for some TFs such as USF1 and CREB1 there are 

enriched terms only in the group of genes with bound probes close to the TSS. The 

situation is reversed for OCT4. HNF4A has several GO terms enriched in both the far and 

the close groups. NANOG has some terms like mitosis enriched only in the close group 

(see Table 2 (main text) and supplementary table S4), other terms like morphogenesis 

enriched only in the far, and yet others like RNA metabolism enriched in both 

(supplementary table S4).  

     24



 

It is interesting to note that for genes bound by stem cell TFs NANOG, OCT4 and 

SOX2, development related GO categories are enriched only among the genes with a 

binding site far from the TSS (see Table 2 (main text) and supplementary table S4). In 

contrast, in a group of house keeping genes (derived from [23]) OCT4 and NANOG had 

much stronger tendency to proximal binding (see Figure S14).  

Another observation is that within the circuit of liver related TFs most of the 

interaction between the TFs are through binding close to the TSS or within the gene. 

 

 
Figure S14: Coverage plots generated from regions bound in the promoters of 
housekeeping genes (red) compared to those generated from all the bound regions (blue). 
These plots are in agreement with the general belief that house keeping genes tend to 
beproximally regulated. 
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