Supplementary Data 1

- Table 1S Specificity of PKS domains
- Table 2SFingerprints of KR domains
- Table 3SFingerprints of AT domains
- Table 4S SMILES of starter and extender building blocks
- Fig. 1S Functional prediction of the DNA sequence of the erythromycin gene-cluster
- Fig. 28 Functional prediction of the DNA sequence of the niddamycin gene-cluster

Domain	Activitity	Choices
AT starter	acyl transferase	selection of substrate malonyl
		methylbutyryl
Starter no AT	-	selection of substrate
		3,4-DHCHC 3,5-AHBA
		p-nitrobenzoate
		trans-1,2-CPDA
		hydroxymalonyl
		phenylacetyl
		p-aminobenzoate
		3-methylbutyryl
		cyclohexanecarboxylic acid
		benzoyl
		3-amino-2-methylpropionate
ACP	acyl carrier protein	generic, no specificity
KS	ketosynthase	generic, no specificity
AT extender	acyl transferase	selection of substrate
		malonyl
		methoxymalonyl
		ethylmalonyl
		curymaionyr
KR	ketoreductase	active vs inactive
	reduces C=O to OH	stereochemistry of OH (R or S)
		stereochemistry of β -carbon atom (R or S)
DH	dehydratase	active vs inactive
	reduces OH to C=C	cis/trans orientation of double bond
ER	enoyl reductase	active vs inactive
	reduces C=C	stereochemistry of OH (R or S)
		stereochemistry of β -carbon atom (R or S)
TE	thioesterase release	generic, no specificity
	from enzyme	
	cyclization	

Table 1S Specificity of PKS domains

Table 28 Fingerprints of KR domains

Reference sequence = 'Erythromycin_KR_module01'

Key residues: Activity = 113, 137, 150, 154 Specificity = 93, 94, 95, 142, 147, 150, 152, 154 *Hmmalign* is used with the profile constructed for all KR's and the amino-acid alignment from which the profile was built

Type	Regular expressions describing activity of this KR type
active	K[S,A,G]YN or E[S,A,G]HH or K[S,A,G]Y[N,G]

Туре	Regular expressions describing specificity of this KR type
A1	LDD and W[anything except H]YAN
A2	LDD and WHYAN
B1	LDDXXY[anything except P]N
B2	LDDXXYPN
C1	XXXXX[anything except Y]XX
C2	XXXXXYX[anything except N]

X – Stands for any amino acid including gaps (-)

Table 3S Fingerprints of AT domains

Reference sequence = 'Erythromycin_AT_module01_C3' Key residues = 7, 70, 96, 97, 98, 99, 100, 123, 197, 198, 229, 248, 253 *Hmmalign* is used with the profile constructed for all AT's and the amino-acid alignment from which the profile was built

LEGEND:

Building block	Regular expressions describing specificity of this AT type
malonyl	QQGHS[L,V,I,F,M]GR[F,P]H[A,N,T,G,E,D,S,-][N,H,Q]V
methylmalonyl	QQGHS[Q,M,I]GRSHT[N,S]V
ethylmalonyl	Q[Q,H]G[H,S]S[Q,L]GR[G,T,A]HTNV
propionyl	QQGHS[Q,M,I]GWAH[S,G]SV
methylbutyryl	QQGHS[Q,M,I]GWAH[S,G]NV

Methoxymalonyl-specific AT's were first assigned as an unknown group. These sequences were then checked for positions specific for methoxymalonyl by looking at:

Reference sequence 1 = 'Concanamycin A_AT006_1_hidro' Reference sequence 2 = 'Ascomycin_AT007_1_hidro'

Key residues 1 = 182, 184 Key residues 2 = 221, 222

For the methoxymalonyl a new profile with only methoxymalonyl AT's was built and used for the alignment and position extraction.

LEGEND:

Building block	Regular expressions describing specificity of this AT type
methoxymalonyl	XW from key residues 1 or PX from key residues 2 is sufficient

With this fingerprints all AT containing loading modules and most of extender modules were covered. Unknown/non-predictable building blocks were named internally as CX and were assigned with "C(*)~C(*)" SMARTS structure.

X – Stands for any amino acid including gaps (-)

Extenders: Malonyl, methoxymalonyl, methylmalonyl, ethylmalonyl

Starters: malonyl, propionyl, methylbutyryl

Table 4S SMILES of starter and extender building blocks	
---	--

C2_1	CC(=O); CC(O); C[C@H](O); C[C@@H](O); C=C; CC
C2_2	
C2_3	
C2_4	
C3_1	C(C)C(=O); [C@H](C)C(=O); [C@@H](C)C(=O); C(C)C(O); C(C)[C@H](O);
C3_2	C(C)[C@@H](O); [C@H](C)C(O); [C@@H](C)C(O); [C@H](C)[C@H](O);
C3_3	[C@H](C)[C@@H](O); [C@@H](C)[C@H](O); [C@@H](C)[C@@H](O);
C3_4	C(C)=C; C(C)C [C@H](C)C [C@@H](C)C); C(C)C; [C@H](C)C [C@@H](C)C
MM_1	C(CC)C(=O); [C@H](CC)C(=O); [C@@H](CC)C(=O); C(CC)C(O);
MM_2	C(CC)[C@H](O); C(CC)[C@@H](O); [C@H](CC)C(O); [C@@H](CC)C(O);
MM_3	[C@H](CC)[C@H](O); [C@H](CC)[C@@H](O); [C@@H](CC)[C@H](O);
MM_4	[C@@H](CC)[C@@H](O); C(CC)=C; C(CC)C; [C@H](CC)C; [C@@H](CC)C;
EM_1	C(CC)C(=O); [C@H](CC)C(=O); [C@@H](CC)C(=O); C(CC)C(O) C(CC)[C@H](O);
EM_2	C(CC)[C@@H](O); [C@H](CC)C(O); [C@@H](CC)C(O);
EM_3	[C@H](CC)[C@H](O); [C@H](CC)[C@@H](O); [C@@H](CC)[C@H](O);
EM_4	[C@@H](CC)[C@@H](O); C(CC)=C); C(CC)C; [C@H](CC)C
	[C@@H](CC)C
MB_1	CCC(C)C(=O); CC[C@H](C)C(=O); CC[C@@H](C)C(=O); CCC(C)C(O)
MB_2	CCC(C)[C@H](O); CCC(C)[C@@H](O); CC[C@H](C)C(O); CC[C@@H](C)C(O);
MB_3	CC[C@H](C)[C@H](O); CC[C@H](C)[C@@H](O); CC[C@@H](C)[C@H](O);
MB_4	CC[C@@H](C)[C@@H](O); CCC(C)=C;
	CCC(C)C; CC[C@H](C)C; CC[C@@H](C)C
CX_1	C(*)C(*)

Extenders: malonyl (C2), methylmalonyl (C3), methoxymalonyl (MM), ethylmalonyl (EM), unknown (CX) **Starters**: malonyl (C2), propionyl (C3), methylbutyryl (MB)

Fig. 1S Functional prediction of the DNA sequence (AY771999) of the erythromycin gene-cluster. The three genes (in red), six modules (underlined in red) and 29 catalytically active domains (in blue) of the erythromycin gene-cluster are shown. In particular, the inactive KR in module 3 responsible for the hydroxyl-stereochemistry: S stereochemistry was predicted. In module 4, the inability of the program to predict the stereochemical outcome from the KR module is unimportant, because of the presence of the DH domain that destroys the chirality. However, the inability to predict the β -carbon stereochemistry of the ER domain prevents prediction of the stereochemistry at this position in the final linear chain. (A). The isomeric SMILES as well as the 3-D structure of the predicted linear chain is also shown (B top and right). The cyclization function predicts a ring structure that can also be displayed (B left).

A

Gene: eryAI

LD

- -

- 8

M1

🗖 Details 🛛		- 8		Details 🕅		c
• KS		^	٠	ACP		
 Domain properties 	Show in work	space	-	Domain properties	5	Show in workspace
DNA coordinates:	17673036 (1269 pb) <u>Color</u>			DNA coordinates:	59166117 (201	pb) <u>Color</u>
Protein frame:	Forward 2			Protein frame:	Forward 2	
Protein coordinates:	5881011 (423 aa)			Protein coordinates:	19712038 (67 a	ia)
Score:	1029.45			Score:	82.347	
E-value:	0.0			E-value:	1.1381E-24	
Specificity:				Specificity:		
Details 🛛				Details 🛛		-
AT		^	•	KR		
Domain properties	Show in work	space	-	Domain properties	5	Show in workspace
DNA coordinates:	33394308 (969 pb) <u>Color</u>			DNA coordinates:	50855583 (498	pb) <u>Color</u>
Protein frame:	Forward 2			Protein frame:	Forward 2	
Protein coordinates:	11121435 (323 aa)			Protein coordinates:	16941860 (166	aa)
Score:	591.303			Score:	298.075	
E-value:	7.00108E-178			E-value:	1.30493E-89	
Specificity:	Prediction: methylmalonyl			Activity:	🗹 Active	
				Specificity:	Chirality of Me: S	
					Chirality of OH: R	

Gene: eryAII

M3

Gene: eryAIII

M5

🗖 Details 🖾				ĺ	🗖 De	etails 🛛			
• AT			^		• •	KR			1
Domain properties	Sho	w in workspace			- 0	omain properties	;	5how in works	pace
DNA coordinates:	2792428863 (939 pb)	<u>Color</u>				DNA coordinates:	2954130030 (489 pb)	9 <u>Color</u>	
Protein frame:	Forward 1					Protein frame:	Forward 1		
Protein coordinates:	93089621 (313 aa)					Protein coordinates:	984710010 (163	aa)	
Score:	464.247					Score:	273.751		
E-value:	1.23832E-139					E-value:	2.74058E-82		
Specificity:	Prediction: methylmal	onyl				Activity:	🗹 Active		
			_			Specificity:	Chirality of Me: R		
							Chirality of OH: S		

SMILES: [C@H](C)[C@@H](O1)[C@@H](C)[C@H](O)[C@H](C)C(=O)C(C) C[C@@H](C)[C@H](O)[C@@H](C)[C@H](O)C(C)C1(=O)

Fig. 1S Functional prediction of the DNA sequence (AF016585) of the niddamycin gene-cluster. The five genes (in red), seven modules (underlined in red) and 36 catalytically active domains (in blue) of the niddamycin gene-cluster are shown. In particular, the inactive KR in module 4 responsible for the hydroxyl-stereochemistry: S stereochemistry was predicted (A). The isomeric SMILES as well as the 3-D structure of the predicted linear chain is also shown (B top and right). The cyclization function predicts a ring structure that can also be displayed (B left).

A

*** ClustScan					
File Edit Tools Help					
i 🔤 👪 🖶 🔀 🛷 😂 🕽	(i • & 4	f ▼ ⇒] *Q			
省 Workspace 🛛 🦳 🗖	Niddamycin	X			
	Annotation edit	or: Niddamycin			
■ • • • • • • • • • • • • • • • • • • •					
⊕ LM ⊕ M1 ⊕ M2 ⊕ aid6tt		<u>1</u> 0000	20000	<u>30000</u>	<u>4</u> 0000
MidAll M3 M3 midAll m M m M m M m M m M m M m m M m m M m m M m m M m m M m m m M m	<u>4</u> 1097	<u>13</u> 1097	21097 <u>3</u>	<u>1</u> 1097	<u>1</u> 097

Gene: nidAI

LM

 Domain properties 	5	Show in workspace	
DNA coordinates:	36574932 (1275 pb)	<u>Color</u>	
Protein frame:	Forward 3		
Protein coordinates:	7991224 (425 aa)		
Score:	1103.41		
E-value:	0.0		
Specificity:			
a car M			
Details 23			
• AT			
Details & AT Domain properties	5	Show in workspace	
Details 23 AT Domain properties DNA coordinates:	5 52176159 (942 pb)	Show in workspace	
Details 23 AT Domain properties DNA coordinates: Protein frame:	5 52176159 (942 pb) Forward 3	Show in workspace	
Details 23 AT Domain properties DNA coordinates: Protein frame: Protein coordinates:	5 52176159 (942 pb) Forward 3 13191633 (314 aa)	Show in workspace	
Details 23 AT Domain properties DNA coordinates: Protein frame: Protein coordinates: Score:	5 52176159 (942 pb) Forward 3 13191633 (314 aa) 247.992	Show in workspace	
Details 23 AT Domain properties: DNA coordinates: Protein frame: Protein coordinates: Score: E-value:	5 52176159 (942 pb) Forward 3 13191633 (314 aa) 247.992 2.22317E-75	Show in workspace	

M2

Gene: nidAII

Gene: nidAIII

M4

- -

- -

- 8

- -

Show in workspace

Color

Gene: nidAIV

M6

Gene: nidAV

