Α	A	S C	T S	G T	V G	P V	C Q	E P	K E	Q K	M	R N		N R	H H	L D	D	Y Y	F	w w
R	R R	к к	QQ	H H	E N	N E	S S	T	M D	D	P Y	Y P	G L	L	v v	w	F	W G	C F	
Ν	N N	D D	S H	H S	Q	к к	T E	E	G G	Y C	P P	M	C M	v w	F V	L	L F	W		
D	D D	E	S Q	QS	к к	H	T T	G P	P G	M C	Y M	V Y	F	C L	W	L F	W I			
с	C C	V S	T V	S T	I M	M	L	F	Y F	W H	Q G	P Q	G W	K P	H K	E				
Q	Q	E	к к	H	M	S M	T T	P P	Y L	G Y	L G	w v	V	F W	F					
Е	E	к к	H S	S T	т Н	P P	M	G G	v v	Y Y	L	L	F W	W F						
G	G G	S S	к к	т Н	H P	P	M	W	v w	F	Y V	L								
н	н	Y Y	к к	S W	F	T S	M	P M	W L	L P	v v	1								
1		v v	L	M	F	T T	Y Y	S W	W K	K S	P P									
L	L	M	v v	F	Y Y	T	W W	S K	K S	P P										
к	к к	Y S	W T	P	T M	S V	P Y	W	F											
м	M	V F	F V	T	w w	Y Y	S S	P P												
F	F	Y	w	v	Т	S S	P P													
Р	P P	S	T	v	Y Y	w														
S	S S	T	v v	Y Y	w w															
т	Т	v v	Y Y	w w																
w	W W	Y	v v				I	Polar			Cha	urged		ł	Hydro	opho	bic			
Y	Y	v v				S,	Τ, Υ,	H, C	, N, C	2	D, E	, K, F	G	, A, V	/, L, I	, F, N	1, P,	W		
v	v v	Colour code based on amino acid property																		

Figure S1. A half-diagonal representation of BLOSUM90 and Smat80 matrices showing differences in their substitution preferences The boxes in the left represent each of the 20 amino acids pairing with all other amino acids (adjacent rows) in the BLOSUM90 (odd rows of alphabets) and Smat80 (even rows of amino acid alphabets) matrices compared here. The amino acid pairs are arranged in a decreasing order of their lodscore values i.e. most preferred followed by the least preferred. Colour code is used to represent different classes of amino acids i.e. dark grey fill for polar amino acids, no fill for the charged amino acids and light grey fill for the hydrophobic amino acids.

	С	S	Т	Ρ	Α	G	Ν	D	Ε	Q	Н	R	Κ	Μ	1	L	V	F	Y	W	
	0	-2	-2	0	-2	-1	-2	-1	-1	0	-2	-1	0	-1	-1	0	-2	0	-2	0	С
		-1	-1	0	0	0	0	0	0	0	0	1	0	1	1	1	1	2	1	1	S
С	9		0	1	1	1	1	0	1	0	1	0	0	1	1	1	0	1	2	1	Т
S	-2	5		0	1	1	0	0	0	1	1	1	0	2	1	1	1	1	1	1	Ρ
Т	-2	1	6		0	1	0	0	1	0	1	1	1	0	1	1	0	1	1	1	Α
Ρ	-4	-2	-2	8		-1	0	1	1	0	1	2	1	2	2	2	1	1	1	2	G
Α	-1	1	0	-1	5		0	0	0	0	0	0	0	0	1	0	0	1	0	-1	Ν
G	-4	-1	-3	-3	0	6		0	-1	0	0	0	0	1	2	1	1	2	1	0	D
Ν	-4	0	0	-3	-2	-1	7		0	1	1	1	0	1	1	1	1	1	0	1	E
D	-5	-1	-2	-3	-3	-2	1	7		0	1	1	0	1	0	0	0	0	0	1	Q
E	-6	-1	-1	-2	-1	-3	-1	1	6		-1	1	0	0	1	0	1	0	0	-2	Η
Q	-4	-1	-1	-2	-1	-3	0	-1	2	7		-1	0	1	1	1	1	1	0	0	R
Н	-5	-2	-2	-3	-2	-3	0	-2	-1	1	8		0	1	0	1	1	1	1	0	K
R	-5	-1	-2	-3	-2	-3	-1	-3	-1	1	0	6		-1	0	0	0	-1	0	0	M
Κ	-4	-1	-1	-2	-1	-2	0	-1	0	1	-1	2	6		0	0	0	0	1	0	I
М	-2	-2	-1	-3	-2	-4	-3	-4	-3	0	-3	-2	-2	7		0	0	0	0	0	L
I	-2	-3	-1	-4	-2	-5	-4	-5	-4	-4	-4	-4	-4	1	5		0	0	0	1	۷
L	-2	-3	-2	-4	-2	-5	-4	-5	-4	-3	-4	-3	-3	2	1	5		0	0	-1	F
V	-2	-2	-1	-3	-1	-5	-4	-5	-3	-3	-4	-3	-3	0	3	0	5		0	0	Y
F	-3	-3	-3	-4	-3	-5	-4	-5	-5	-4	-2	-4	-4	-1	-1	0	-2	7		-1	W
Y	-4	-3	-2	-4	-3	-5	-3	-4	-4	-3	1	-3	-3	-2	-2	-2	-3	3	8		
W	-4	-4	-4	-5	-4	-4	-5	-6	-5	-3	-3	-4	-5	-2	-4	-3	-3	0	2	11	1
	С	S	Т	Ρ	Α	G	Ν	D	Ε	Q	Η	R	Κ	Μ	1	L	V	F	Y	W	

Figure S2. The difference in the lodscore values of BLOSUM90 and Smat80 matrices. The lower half-diagonal represents the BLOSUM90 lodscore values and the upper half-diagonal shows the difference in the lodscore values of BLOSUM90 & Smat80 (i.e. BLOSUM90-Smat80). The half-bit values have been considered here. Comparison is made with BLOSUM90 as the entropy and scaling is similar to Smat80.

a)

>>gi|19703667|ref|NP_603229.1| fructose-bisphosphate ald (295 aa) initn: 153 init1: 90 opt: 124 Z-score: 284.0 bits: 60.9 E(): 5.2e-14 Smith-Waterman score: 124; 26.708% identity (59.006% similar) in 161 aa overlap (79-235:67-216)

	50	60	70	80	90 10	00
P14223	RFDNIKLEN	TIENRASYRDI	LFGTKGLGKF	ISGAILFEET	LFQKNEAGVP	IVNLLHNENI
				: :::::::	:	:
gi 197	NEYSNDKEM	FDLIHKMRTRI	IKSPAFNESK	ILGAILFEQI	MDSKIDGKYTA	ADFLWEEKKV
	40	50	60	70	80	90
1	10	120	120	140	150	160
L 14000	. LU TDCTWVDVC	IZU	LOU	140 NDDOVDVVVV		TOO
P14223	IPGIKVDKG	LVNIPCTDEE-	KSTQGLDGL	AERCKEIIKA	GARFAKWRTVI	JVIDTAKGKP
	.: .:.::	:	::	.: .: .	:. : :.:	. ::
gi 197	LPFLKIDKG	LNDLDADGVQ1	MKPNPTLADI	LKRANERHIE	'GTKMRSV!	IKKASP
	100	110	120	130	140	
	170	180	190	200	210	220
P14223	TDLS-IHET	AWGLARYASIC	CQQNRLVPIVE	PEILADGPHS	SIEVCAVVTQKV	/LSCVFKALQ
	:	: :	. :.::.:	::	:	::
αi 197	AGIARVVEC	OFEVAAOVV	VAAG-LIPIIE	PEVDINNVDK	VO-CEEILRD	EIRKHLNALP
1.5	50 Î	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	170	180	~ 190	200
		00	1,0	200	100	200
	230	240	250	260	270	280
P14223	E-NGVLLEG	ALLKPNMVTAG	YECTAKTTTC	DVGFLTVRTI	RRTVPPALPG	/VFLSGGOSE
		•				
ai 197	FTSNVMI KI		יבייגעסטאייבי	WALGCCYCPE	YNNY, SKNR	TACECRAT
ATIT21	210			210		2 C 0
	210	220	230	24U	200	200

b)

>>gi|19703667|ref|NP_603229.1| fructose-bisphosphate ald (295 aa)
initn: 526 init1: 163 opt: 489 Z-score: 1438.2 bits: 274.4 E(): 2.7e-78
Smith-Waterman score: 591; 27.077% identity (64.308% similar) in 325 aa overlap
(27-333:3-286)

		10	20	30	40	50	
P14223	MAHCTEY	MNAPKKLPAD	VAEELATTAÇ	KLVQAGKO	GILAA-DESTQI	IKKRFDNIK	L-E
						:	. :
gi 197			MNF	CKLEKMRNGKO	GFIAALDQSGGS	STPKALKLYG	VNE
				10	20	30	
	60	70		80	90	100	
P14223	NTIENRA	SYRDLLFG	TKGLGKF-	ISGAILE	TEETLFQKNEAG	GVPMVNLLHN	EN-
	::	::	::	: :::::	::.:. :: : :	· · · · · · · · · ·	:.
gi 197	NEYSNDK	EMFDLIHKMR	TRIIKSPAF <mark>N</mark>	NESKILGAILE	FEQTMDSKID-G	GKYTADFLWE	EKK
	40	50	60	70	80	90	
	110	120	130	140	150	160	
P14223	IIPGIKV	DKGLVNIPC-	-TDEEKSTQG	GLDGLAERCKE	EYYKAGARFAKW	/RTVLVIDTA	KGK
	: .:.	::::		:. : .::	· · · · · · · · · · · · · · · · · · ·	. : . : .	:
gi 197	VLPFLKI	DKGLNDLDAD	GVQTMKPNPI	LADLLKRANE	ERHIFGTKN	IRSVIK	KAS
	100	110	120	130	140)	

	170	180	190	200	210	220
P14223	PTDLS-IHET	AWGLARYASI	CQQNRLVPIV	EPEILADGPH	SIEVCAVVTQ	KVLSCVFKAL
	: :.	: :	:.::.	:::		::
gi 197	PAGIARVVEQ	QFEVAAQV	VAAG-LIPII	EPEVDINNVD	KVQCEEILRD	EIRKHL-NAL
1	.50 1	60	170	180	190	200
	230	240	250	260	270	280
P14223	QENG-VLLEG	ALLKPNMVTA	GYECTAKTTT	QDVGFLTVRT	LRRTVPPALP	GVVFLSGGQS
	.: :.:.	: :. :.	:: .: .	:.	.:	::.::::::
gi 197	PETSNVMLK-	-LTLPT-VEN	LYEEFTKHP-	RV	VR	-VVALSGGYS
	210	220	230			240
	290	300	310	320	330	340
P14223	EEEASVNLNS	INALGPHPWA	LTFSYGRALQ.	ASVLNTWQGK	KE-NVAKARE	VLLQRAEANS
	.:.: :	: .	::::.		.: : . : .	•
gi 197	REKAN-DILS	KNKG	VIASFSRALT	EG-LSAQQTD	EEFNKTLAAS	IDGIYEASVK
	250		260	270	280	290

Figure S3: Alignment of fructose-bisphosphate aldolase from AT-rich genomes of *P. falciparum* (P14223) and *Fusobacterium nucleatum* at a gap opening and extension penalties of 12 & 2 respectively. a) Alignment obtained with the best performing standard matrix, Blosum50 b) Alignment extension (highlighted in grey) obtained with PfFSmat60 that extends left and right of the alignment obtained with BLOSUM50, with a good conservation of residues. The alignment length improved 2 fold with an increase in similarity and identity. The query sequence overlap with Pam2 and BLOSUM100 for this example was 81-88 and 79-118 residues respectively.

Figure S4

a)

>>P38013|AHP1 YEAST Peroxiredoxin type-2 - Saccharomyces (176 aa) initn: 213 init1: 183 opt: 222 Z-score: 593.9 bits: 116.8 E(): 2.8e-31 Smith-Waterman score: 222; 30.081% identity (67.480% similar) in 123 aa overlap (101-218:46-164) MAL7P1 MIDVRNMNNISDTDGSPNDFTSIDTHELFNNKKILLISLPGAFTPTCSTKMIPGYEEEYD P38013 FQYIAISQSDADSESCKMPQTVEWSKLISENKKVIITGAPAAFSPTCTVSHIPGYINYLD MAL7P1 YFIKENNFDDIYCITNNDIYVLKSWFKSMDIK---KIKYISDGNSSFTESMN--MLVDKS P38013 ELVKEKEVDOVIVVTVDNPFANOAWAKSLGVKDTTHIKFASDPGCAFTKSIGFELAVGDG MAL7P1 NFFMGMRPWRFVAIVENNILVKMFQEKDKQHNIQTDPYDISTVNNVKEFLKNNQL ...: :.......... . . P38013 VYWSG----RWAMVVENGIVTYAAKETNPGTDVTVSSVESVLAHL 150 160

>>P38013|AHP1_YEAST Peroxiredoxin type-2 - Saccharomyces (176 aa)
initn: 518 init1: 315 opt: 536 Z-score: 1586.9 bits: 300.6 E(): 1.4e-86
Smith-Waterman score: 536; 28.261% identity (73.913% similar) in 184 aa overlap
(62-235:2-176)

	40	50	60)	70	80	90
MAL7P1	IVSKRGNSKN	RFSQKVYESK	NIDLENDI	KENDLIPN	JVKVMIDVR	-NMNNISDT	DGSPNDF
				.::		::	:
P38013				MSDLVNF	KKFPAGDYK	FQYIAISQS	DADSESC
					10	20	30
		100	110	120	130	14	0
MAL7P1	TSIDTHE	-LFNNKKILL	ISLPGAFT	PTCSTKMI	PGYEEEYD	YFIKENNFD	DIYCITN
		:::	· · · : · : · · :	:::		:::	:
P38013	KMPQTVEWSK	LISENKKVII	TGAPAAFSI	PTCTVSHI	PGYINYLD	ELVKEKEVD	QVIVVTV
	40	50	60)	70	80	90
	4.5.0	1.60	1 - 0		1.0.0	1.0.0	
	150	160	170		180	190	200
MAL7P1	NDIYVLKSWF	KSMDIKK	IKYISDGNS	SSFTESM	IMLVDKS	NFFMGMRPW	RFVAIVE
	•••••••••••••••••••••••••••••••••••••••	:::.	::::	: : . :		:	:::
P38013	DNPFANQAWA	KSLGVKDTTH	IKFASDPG	CAFTKSIC	GFELAVGDG	VYWSG	RWAMVVE
	100	110	120)	130	140	
	210	220	230)	240		
MAL7P1	NNILVKMFQE	KDKQHNIQTD	PYDISTVN	VVKEFL <mark>KN</mark>	INQL		
	:.:	:.: ::		.::			
P38013	NGIVTY	AAKETNPGTD	-VTVSSVES	SVLAHL			
	150	160	170				

Figure S4: Alignment of a putative peroxiredoxin of *P. falciparum* (MAL7P1.159) with the yeast peroxiredoxin at a gap opening and extension penalty of 12 & 2 respectively. a) Alignment obtained with the BLOSUM50 matrix b) The alignment extension (highlighted regions) with PfFSmat60 that spans left and right of the alignment obtained with the standard. The overlap was 1.5 times above the standard. The query sequence overlap with the PAM2 and BLOSUM100 matrices was 112-117 and 101-178 residues respectively.

Figure S5

a)

>>BORS18|BORS18_XANCB Superoxidase dismutase - Xanthomon (203 aa)
initn: 530 init1: 255 opt: 535 Z-score: 1583.7 bits: 299.9 E(): 2.1e-86
Smith-Waterman score: 535; 36.946% identity (73.892% similar) in 203 aa overlap
(1-196:1-202)

b)

PF08 0 S-----GAIFNNAAQIWNHTFYWDSMGPDCGGEPHGEIKEKIQEDFGSFNNFKEQFSN : . ::.. ::...: :.:. ::::... :..... BORS18 KSLPENLQGPVRNNGGGHANHSLFWTVMSPNGGGEPKGEVAKAIDKDIGGFEKFKEAFTK PF08 0 ILCGHFGSGWGWLALNNNNKLVILQTHDAGNPIKDNTGIPILTCDIWEHAYYIDYRNDRA B0RS18 AALSRFGSGWAWLSVTPDKKVVVESTANQDSPLFEGN-TPILGLDVWEHAYYLKYQNRRP

PF08_0 SYVKAWWNLVNWNFANENLKKAMQK .:. :..... .:. B0RS18 DYIGAFYNVVNWDEVERRYHAAIA 180 190 200

b)

>>BORS18|BORS18_XANCB Superoxidase dismutase - Xanthomon (203 aa)
initn: 956 init1: 409 opt: 924 Z-score: 2813.8 bits: 527.5 E(): 6.3e-155
Smith-Waterman score: 924; 38.537% identity (83.902% similar) in 205 aa overlap
(1-197:1-203)

PF08 0 MVITLPKLKYALNALSPHISEETLNFHYNKHHAGYVNKLNTLIKDTPFAEKSLLDIV-KE BORS18 MAYTLPQLPYAYDALEPNIDAQTMEIHHTKHHQTYINNVNAALEGTEYADLPVEELVSKL PF08 0 SS-----GAIFNNAAQIWNHTFYWDSMGPDCGGEPHGEIKEKIQEDFGSFNNFKEQFSN B0RS18 KSLPENLQGPVRNNGGGHANHSLFWTVMSPNGGGEPKGEVAKAIDKDIGGFEKFKEAFTK PF08 0 ILCGHFGSGWGWLALNNNNKLVILQTHDAGNPIKD-NTGIPILTCDIWEHAYYIDYRNDR B0RS18 AALSRFGSGWAWLSVTPDKKVVVESTANQDSPLFEGNT--PILGLDVWEHAYYLKYQNRR PF08 0 ASYVKAWWNLVNWNFANENLKKAMQK BORS18 PDYIGAFYNVVNWDEVERRYHAAIA

Figure S5: Alignment of a typical Fe-SOD of *P. falciparum* with the *Xanthomonas campestris* ortholog at a gap opening and extension penalties of 12 & 2 respectively. a) Alignment obtained with BLOSUM50 b) Alignment with PfFSmat60 with an improvement in identity, similarity and extension (1 residue only, highlighted in grey). The extra identities are shown in red text.

a)

	110 1	20	130	140	150	160
gi 16805184	VIPNLFKIY	KEKIPSMLDO	GIFAGVISDK	KNNTFFAFRD	PIGICPLYIG	YAADGSIWFSSE
gi 15607948	HGAADSTLE	AALDLLPT	VRGAFCLTFM	DENTLYACRD	: :. :: .: PYGVRPLSLGE	RLDRGWVVASET
	180	190	200	210	220	230
b)						
0)						
	100	110	120	130	140	150
gi 16805184	NLNKLKSCSI	CAVIPNLF	KIYKEKIPSM	LDGIFAGVIS	DKKNNTFFAFI	RDPIGICPLYIG
gi 15607948	DSDILGALLA	HGAADSTL	EOAALDLLPT	:: VRGAFCLTFM	DENTLYACE	RDPYGVRPLSLG
5-1	170	180	190	200	210	220
	160	170	180	190	200	210
gi 16805184	YAADGSIWFS	SEFKALKDI	NCIRYVI-FP	PGHYYKNNKN	KGEFVRYYNPI	NWWSLNNSIPNN
~						
g1 1560/948	230	240	VGASEVRDIE 250	PGELLAIDAD 260	GVRSTRFANF. 270	280
c)						
-)						
				1	0 20) 30
gi 16805184				MCGILAIFH	SSIE <mark>KHRLRR</mark>	KALNLSK <mark>ILRHR</mark>
ai1156079481			סספוענוטאפסר	FFCCVFCVMA	PGED <mark>VAKITV</mark>	
911100079401	10	20	30 30	40	50	60

240 250 260 270 280 290

gi|16805184| PNLFKIYKEKIPSMLDGIFAGVISDKKNNTFFAFRDPIGICPLYIGYAADGSIWFSSEFK

gi|15607948| ST<mark>LEQAALDL</mark>LPTV-RGAFCLTFMDE--NTLYACRDPYGVRPLSLGRLDRGWV-VASETA

gi|16805184| ALKDNCIRYVI-FPPGHYYKNNKNKGEFVRYYNPN----WWSLNNSIPNNKVDFNEIRI

gi|15607948| ALDIVGASFVRDIEPGELLAIDADGVRSTRFANPTPKGCVFEYVYLARPDSTIAGRS--V

160 170

80 90 100 110

Figure S6. Alignment extension with PfFSmat60 for *P. falciparum* putative asparagine synthetase and *M. tuberculosis* PurF protein. The sequences compared are *P. falciparum* putative asparagine synthetase (NCBI gi 16805184) (top line) and *M. tuberculosis* PurF protein (NCBI gi 15607948). a) Alignment with BLOSUM100 with a bit score of 23.2. b) The alignment with BLOSUM50 with a bit score of 42.5. c) The alignment region with PfFSmat60 where the structural elements highlighted corresponds closely to the three-dimensional structural superposition of the common domain shared between PurF and asparagine synthase families. The bit score was equal to 369.6 at an E-value of 1.7e-106. The known crystal structures of *E. coli* asparagine synthetase B (1CT9, chainA) and *B. subtilis* PurF protein (1GPH, chain 3) were used to assign the secondary structure elements. The beta sheets are shaded grey and the alpha elements are shown in white text and a black background.