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We have established a model in which cellophane wrapping induces reiteration of the normal
ontogeny of p-cell differentiation from ductal tissue. The secretion of insulin is physiologic and
coordinated to the needs of the animal. Streptozotocin-induced diabetes in hamsters can be
"cured" at least half the time. There appears to be activation of growth factor(s) within the
pancreas, acting in an autocrine, paracrine, or juxtacrine manner to induce ductal cell
proliferation and differentiation into functioning 3 cells. Given the results of our studies to
date, it does not seem premature to envisage new approaches to the treatment of diabetes
mellitus. Identification of the factor(s) regulating islet-cell proliferation and differentiation in
our model may permit islets to be grown in culture. This concept could be extended to induce
endocrine cell differentiation in vitro as well. Furthermore, islet-cell growth factors could be
used to provide "trophic support" to islet transplants as a means of maintaining graft viability.
There may also be greater scope for gene therapy when the growth factor(s) have been isolated,
purified, sequenced, and cloned.

INTRODUCTION

Developmental Origin ofPancreatic Islets During Embryogenesis

The pancreas develops as an epithelial evagination of foregut endoderm into the
surrounding splanchnic mesoderm. This epithelial-mesenchymal interaction is soon
followed by acinar- and islet-cell differentiation [1,2]. During this early stage, a
ductal stem cell may differentiate into cells that possess either an endocrine or an
exocrine phenotype [3-6]. Endocrine cells develop by a budding process from the
embryonic duct-like cells [7]; this process leads to the formation of primitive islets in
the mesenchyme adjacent to the ducts. In vitro studies with fetal [8] and neonatal [9]
pancreata have confirmed that the new islet tissue is derived from ductal epithelium.
New islet formation may also continue in the postnatal period where foci of
endocrine cells may appear scattered among the acinar tissue [10,11]. Further
differentiation into cells secreting glucagon (a), insulin (13), somatostatin (s), and
pancreatic polypeptide (PP) occurs, resulting in development of an islet composed of
a mixture of cell types and a sophisticated intra-islet portal vascular system. The
different islet-cell types appear sequentially during development. It has been pro-
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posed that islet cells derive from the neuroectoderm because of the expression of
several neuroectodermal antigens (e.g., PGP 9.5 [12], neuron-specific enolase [13],
synaptophysin [14], A2B5 [15], phenylethanolamine N-methyl-transferase, and aro-
matic amino acid decarboxylase [16]). The endocrine cells of the islets are capable of
amine precursor uptake and decarboxylation and have, therefore, been given the
acronym APUD cells [17]. The morphologic similarity of APUD cells suggested a
common embryologic origin, which was believed to be the neural crest, but was later
revised to include the neuroectoderm, or, in the case of some of the endocrine cells,
the dorsal placoderm. This theory was attractive as it linked cells commonly involved
in clinical syndromes of excess, such as multiple endocrine neoplasia, but unfortu-
nately failed to withstand rigorous scrutiny.

Studies by LeDouarin and Teillet [18], Pictet et al. [19], and Andrew [20], based
upon elegant studies of chicken and quail neuroectoderm chimeras, have cast doubt
on this hypothesis, and most workers agree that these cells should be classified
according to their secretory products, (i.e., gastrin, somatostatin, glucagon, PP, and
so on). It is now thought, however, that I cells do not have APUD characteristics and
are likely to be derived from gut, even though they express neuronal antigens such as
the catecholamine biosynthetic enzyme tyrosine hydroxylase (TH) [21]. The gener-
ally held belief that the neuronal characteristics of these cells indicated an ectoder-
mal origin during mammalian embryogenesis has therefore largely been dispelled.

During development in vivo, the phenotype of the mature islet cells appears
sequentially. The 1 cells arise from progenitor cells localized in the pancreatic duct,
and these precursors transiently express TH while migrating away from the duct to
populate a new islet. This process suggests that the pancreatic duct is the source of
endocrine stem cells throughout embryogenesis, without the need to postulate a
neuroendocrine origin. This notion is supported by the finding that the embryonic
pancreatic duct in vitro is able to regenerate a new pancreas containing exocrine and
endocrine cells expressing only peptides (mature cells), and cells containing both TH
and a hormone (immature cells) [21,22].
Teitelman et al. have shown that pancreatic cells of endocrine origin can indeed

express several neuronal antigens in addition to the peptide hormones [21]. They
further showed that, in the mouse embryo, a primitive undifferentiated cell or cells
led to sequential appearance of at least four different cell types containing either a
hormone (e.g., glucagon), a catecholamine enzyme (TH), or combinations of these
[23]. Under appropriate conditions, these cells can be shown to differentiate into
either neurites or adult endocrine cells. During regeneration, expression of neural
antigens by developing cells was found to constitute an early phase to be replaced by
the adult hormone-secreting counterpart. Rosenberg, Duguid, and Vinik [24] have
utilized a model for islet neogenesis and have shown that pancreatic ductal cells are
able to differentiate upon stimulation into adult islets capable of secreting insulin in
a fully regulated manner.
The mature, fully developed islets of Langerhans are communities of cells compris-

ing four distinct cell types. The cells are not randomly distributed within the islets nor
throughout the pancreas [6,25,26]. Individual islets present a typical topographical
distribution of different cell types with a central bulk of insulin-containing 13 cells, a
peripheral rim of (x and PP cells, and intermediate placed 8 cells. Moreover, islets
located in the body and tail of the pancreas contain relatively abundant glucagon
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cells and few PP cells. The reverse occurs in islets located in the paraduodenal
portion of the pancreas: these islets are rich in PP and poor in glucagon cells.
The topographical distribution of different cell types within the islets is thought to

reflect a functional relationship between cells modulating each other's secretions.
Endocrine differentiation proceeds, not only with development of an islet composed
of a mixture of cell types, but also with neovascularization of the new islet [27]. The
vascular compartment and the nature of directional flow in the portal system [28]
could be a major determinant of islet-cell interactions and function. The order of
islet cellular perfusion and interaction is from the ,-cell core outward to the mantle,
which is further subordered with the majority of 8 cells downstream, or distal, to the
majority of a cells. Therefore, understanding the maturation of the islet vasculature
during the differentiation of new islets assumes considerable importance.
The final stage in the formation of new islets, after endocrine cell differentiation

and proliferation, neovascularization, and evolution of normal topography, is the
maturation of the glucose-sensing mechanism. The release of insulin from the
developing pancreas in response to glucose is known to be either poor or absent,
whereas, in the infant and adult, the response is considerably improved [29]. As islets
evolve, they acquire the ability to recognize glucose. Central to glucose recognition is
the ability of the mature 3 cell to take up glucose, a process modulated by glucose
transporter 2, and the ability to phosphorylate glucose that is catalyzed by the
tissue-specific enzyme, glucokinase. Glucokinase (ATP:D-hexose 6-phosphotransfer-
ase) catalyzes the initial step in the utilization of glucose and appears to be a key
component of the glucose-sensing mechanism of the pancreatic islet.

Adjustments of islet-cell number and mass are a means by which an organism may
meet changes in the demand for islet hormone production; however, the rate of
mitosis is quite low in pancreatic 3 cells. Consequently, almost the entire comple-
ment of I8 cells in an adult is established during the neonatal period. This relative
lack of mitotic capacity highlights the near "terminal" nature of p-cell differentiation
that persists in the adult despite the presence of ductular epithelium, the potential
precursor from which the islets are derived embryologically. The factors controlling
islet-cell neogenesis from ductular epithelium in the adult gland remain unknown,
and knowledge of their activity may explain the inability of the diabetic to regenerate
an adequately functioning islet-cell mass.
There are practical reasons, therefore, to elucidate (1) whether islet cells in the

adult pancreas retain the capacity to undergo proliferation, (2) whether a pool of
precursor cells persists in postnatal life, (3) factors that can induce these cells to
undergo endocrine cell differentiation, and (4) whether the function of newly
regenerated islet cells is regulated in a normal manner.
The studies described in this report are part of our long-term plan of investigation

of the concept that restoration of a functional islet-cell mass can be achieved by the
induction of pancreatic endocrine cell differentiation from primitive ductal cells. Our
primary objective has been to characterize the factors that control the differentiation
and growth of pancreatic islet cells in order to elucidate the potential for eliciting a
regenerative response in diabetes. The hypotheses underlying these investigations
are enumerated below:

1. The ability of the pancreas to regenerate a functioning islet-cell mass is
preserved in the postnatal period.
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2. Regeneration is mediated by a growth factor or factors intrinsic to the gland
and is reactivated by cellophane wrapping of the pancreas.

3. This factor, which we have termed "ilotropin," acts directly or indirectly on a
stem cell within, or associated with, the ductular epithelium to induce
endocrine cell differentiation.

4. Neoislet formation in this model reiterates the normal ontogeny of islet-cell
development:

Proto-undifferentiated-*Proliferation--+Committed-->Differentiation->Endocrine

Uncommitted

DEVELOPMENT OF A MODEL TO STUDY ISLET-CELL
PROLIFERATION AND DIFFERENTIATION

Choice ofAnimal

We have elected to use the Syrian golden hamster as an experimental animal to
study pancreatic regeneration, since islet regeneration can be induced in this animal
without the development of neoplasia. Over the past two decades, the use of
hamsters has increased due to this rodent's response to stimuli that can alter the
growth and development of the pancreas, and because of the low incidence of
spontaneous pancreatic tumors that would obfuscate the ability to study the normal
process [30].

Choice ofExperimental Model
The ability of adult pancreatic cells to undergo proliferation and differentiation

toward an endocrine cell phenotype has been investigated with a variety of different
models. Alloxan administration is followed by an increased number of small islets
seen during the regenerative phase [31]. These islets comprise almost exclusively
insulin-containing cells budding from small ductules [32,33]. In neonatal rats, the
administration of the p-cell toxin streptozotocin (STZ) is followed by a similar
endocrine cell renewal [34]. There is controversy, however, regarding whether this
phenomenon occurs in older animals [35-37]. A related compound, the carcinogen
N-nitroso-bis(2-oxopropyl)amine, induces new islet formation during carcinogene-
sis, but tumor eventually replaces the islets [38]. Therefore, this model is not
appropriate for study of normal islet-cell differentiation.

Small islets that are closely associated with ductules are reported to develop when
the rabbit pancreatic duct is ligated [39,40]. This finding has been questioned,
though, because, in rabbits, duct ligation causes pre-existing islets to be broken up
into small clusters. That result may give the appearance, but not the reality, of new
islet formation in this situation [41]. The primary stimulus for p-cell replication in
postnatal islets is persistently elevated blood glucose levels [42,43]. How glucose
engenders a replicative response is, however, unclear.
A satisfactory method to induce exocrine and endocrine pancreatic growth is to

resect 90 percent of the gland. The increase in p-cell mass, however, occurs as a
result of the replication of existing I cells [44], although more recent data indicate
some differentiation of new islets from duct cells occurs [45]. The large proportion of
islets derived from previously existing islets makes the pancreatectomy model
different, in this essential element, from our model of islet neogenesis in the hamster.
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vf-g
FIG. 1. The cellophane wrap model

for the induction of cell proliferation
and the differentiation in the pancreas.
A 2 mm-wide strip of cellophane tape is
placed, under direct vision with the aid
of a dissecting microscope, in an avascu-
lar plane circumferentially around the
head of the pancreas.

A further modification of the pancreatectomy model involves the administration of
the poly(ADP-ribose) synthetase inhibitor, nicotinamide, to 90 percent pancreatec-
tomized rats. In this model, there is exocrine and endocrine cell regeneration, and
enhanced expression of reg protein; the gene encoding this protein has been termed
the reg gene [46]. Human reg mRNA has been detected predominantly in the
pancreas and, at lower levels, in gastric mucosa and the kidney [47]. Reg protein has
also been found to be expressed ectopically in colon and rectal tumors. Expression of
a homologous gene, termed rig, has been identified in insulinoma tissue [48]. The
significance of these genes and their products remains to be determined; however, a
role in regeneration is unlikely, based upon the identity of reg protein as pancreatic
stone protein.

Endocrine development in association with duct epithelial cell proliferation is
observed in transgenic mice whose ,B cells express interferon y [49]. In these mice,
which become diabetic following immune destruction of the ,3 cells, islet regrowth
ectopically into the duct lumen may be sufficient to outstrip the immune destruction.
Little information is available on the growth factors that may be involved in this
proliferative response to immunologic destruction.
Most recently, it was reported that, in the insulinoma-bearing NEDH rat, there is a

profound reduction in the non-tumor islet-cell mass, and that, following resection of
the tumor, there is a rapid induction of ,B-cell proliferation [50]. In this model, the
restoration of islet mass in the native pancreas occurs as a result of the mitosis of
pre-existing ,B cells.

In 1982, we developed a method for producing partial obstruction of the hamster
pancreatic duct and noted that this procedure led to new islet formation [51]. The
method consisted of wrapping a piece of cellophane tape around the head of the
pancreas without duct ligation per se (Fig. 1).
The advantage of our model for the induction of islet formation is that prolifera-

tive changes can be studied in the absence of diffuse pancreatitis, autoimmune
destruction, or tissue atrophy, and do not require the addition of chemical agents. As
we will discuss in greater detail later in this report, the endocrine regeneration
induced by cellophane wrapping appears to be primarily a reiteration of the normal
ontogeny of the islet from a ductular cell precursor, and not a result of mitosis of
existing ,3 cells. The trophic effects observed in our model are mediated by a
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paracrine/autocrine mechanism, and we have extracted from the pancreas a factor
that appears to be responsible for the initiation of new islet formation. It is also of
importance that our model uses adult animals to study factors that elicit growth
potential of cells even when they have reached maturity.
The earliest response to partial obstruction of the pancreas by cellophane wrap-

ping is seen on day 4-5 after surgery, and consists of ductular dilatation and stasis of
secretions (Fig. 2). This change corresponds with a decrease in both basal and
secretin-stimulated pancreatic exocrine secretion, with the lowest levels being reached
after four to five days [51-53]. At two weeks, proliferation in the ductular epithelial
cell population occurs, as shown by autoradiographic labeling studies (Fig. 3) [54,55].
By day 21, cells have begun to grow out from the ductular epithelium, leading to new
islet formation. We have characterized three patterns of differentiation by immuno-
histochemistry: (1) islets in which glucagon, insulin, and somatostatin are expressed;
(2) foci of new islet formation in which only one islet hormone is expressed, usually
either insulin or glucagon; and (3) individual cells in the ductular epithelium staining
for glucagon or insulin. By eight weeks, a second wave of proliferation occurs,
primarily in the islet cells (Fig. 4) [54,55]. Computer-assisted morphometric analysis
demonstrates that the induction of new islet formation produces a two-and-one-half-
fold increase in the islet-cell mass (mean + SD, expressed as the number of
islets/mm2) from 1.1 + 0.9 to 2.4 + 0.8 that is accounted for by the appearance of a
new population of small islets (Table 1) [56]. These data suggest to us that the new
islet cells develop by a process of endocrine differentiation from a precursor cell
associated with the ductular epithelium (Fig. 5).

In spite of the increased islet-cell mass, blood glucose and insulin levels remain
relatively normal after cellophane wrapping of the pancreas of normal animals
[51,53]. Moreover, islets that are isolated from the wrapped pancreas of normal
animals [55] and perfused in vitro respond with a normal biphasic insulin secretory
response to glucose stimulation. These data suggest that, even with an increased islet
mass, feedback regulation occurs with appropriate adjustment of insulin levels for
the prevailing level of glucose.
To determine whether this insulin was biologically active, we undertook to

cellophane wrap the pancreata of hamsters rendered diabetic with the ,8-cell toxin,
STZ. Before surgery, the serum glucose (389.0 + 18.6 mg percent) and insulin
(33.9 + 3.8 ,uU/ml) levels (mean + SEM) in unoperated control animals did not
differ from those in the animals having the operation (373.2 + 18.6 mg percent;
37.9 + 3.8 ,uU/ml, respectively). After seven weeks, 50 percent of the wrapped
animals treated with STZ had serum glucose and insulin levels that were normal,
compared to only 12 percent of the unoperated control STZ-treated animals. Islets
from normoglycemic operated animals were characterized by increased numbers,
including many small islets, positive immunoreactive insulin staining, and minimal
vacuolation of cells. Islets from hyperglycemic operated hamsters and from the
unoperated control animals were fewer in number and generally larger, demon-
strated little or no immunoreactive insulin staining, and exhibited marked vacuola-
tion of cells [57,58]. From these studies, we concluded that cellophane wrapping of
the pancreas induced the formation of islets with endocrine cells that are function-
ally capable of reversing streptozotocin-induced diabetes.
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FIG. 2. A collage of hematoxylin- and eosin-
stained sections (a and b), and insulin immu-
nocytochemistry (c and d) of the cellophane-
wrapped pancreas showing (a) the initial
partial obstruction with stasis of duct secre-
tions without an inflammatory response,
(b) a duct with proliferation of duct cells 14
days after wrapping, culminating in (c)
formation of a neoislet with positive insulin
immunoreactivity, and (d) the proximity
to the duct of the mature neoislet, with posi-
tive insulin immunoreactivity, supporting its
ductal origin.
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* p<O.05
A wrapped FIG. 3. The effect of cellophane
* control wrapping on the incorporation of triti-

ated thymidine (3H-TdR) into DNA
by ductular epithelial cells (A), ex-
pressed as an index of percentage of

_* cells labeled, in the pancreas of the
-rr--* Syrian golden hamster (n = 4). (D)
12 14 16 labeling index for sham-operated con-

trol animals (n = 4) [54,55].

THE MOLECULAR BIOLOGY OF ISLET NEOGENESIS

In our model, after cellophane wrapping, endocrine-like cells begin to form in
association with the ductular epithelium as early as two weeks after the stimulus of
wrapping. The initial trophic effect of cellophane wrapping is on the ductular
epithelium, as shown by autoradiographic analysis following a single pulse of
3H-thymidine (3H-TdR). The activity of pancreatic ornithine decarboxylase, an

enzyme in the DNA synthetic pathway, is increased within eight hours of trophic
stimulation, followed 40 hours later by an increase in pancreatic DNA content, and a
rise in ductular cell 3H-TdR labeling index by seven days. If, however, the pancreata
are examined six weeks after the pulse, most of the label is contained in differentiat-
ing islet cells, not ductular cells. The uptake of 3H-TdR by ductular cells is maximal
approximately four weeks before the peak uptake of the label by islet cells. The
neoislets are identified by a lack of well-developed vascular spaces, the presence of
mitotic figures, and the vesicular nature of nuclei [51]. Thus, wrapping of the
pancreas induces the formation of new endocrine cells, which appear to arise from
duct epithelium.

In an attempt to identify whether the primitive proto-undifferentiated cell was

capable of synthesizing message (mRNA) for insulin, total RNA was isolated from
hamster pancreata 0, 1, 2, 4, 8, 10, 14, and 56 days after wrapping. A 510 base pair
(bp) human insulin cDNA that recognized both hamster and rat transcripts, and a

400 bp hamster insulin cDNA were used as probes in Northern blot analysis of
hamster poly(A)+RNA. The results were quantitated densitometrically, using fi
actin as control. There was an increase in insulin mRNA two and four days after
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TABLE 1
Distribution of Islet Size in Control and Wrapped Hamsters

Islet Population (%)

Islet Diameter (,um) Control Wrapped

> 100 63 33
<100 32 67
< 48 1 26

From [56]; reproduced with permission of Plenum Publishing Corporation, New
York

wrapping, which thereafter declined to control, non-wrapped levels after eight
weeks. In contrast, glucagon gene expression, as seen both by Northern blot analysis,
using a 1,200 bp hamster glucagon cDNA and reverse transcription ofRNA followed
by polymerase chain reaction (RT-PCR), was not increased. Preliminary experi-
ments using a human insulin cRNA probe for in situ hybridization showed an
increase in abundance within two days of wrapping, with considerable heterogeneity
between adult islets. After ten days, insulin-positive cells were visible within ductular
epithelium (Fig. 5).

Somatostatin mRNA is normally low in abundance, but increased markedly after
four days of wrapping. Budding from ductules was observed as early as 14 days, with
small foci of cells with insulin-positive immunocytochemical reactivity. Within this
period, there was diminished expression of insulin mRNA in pre-existing large islets,
accompanied by a decrease in islet insulin content. Corresponding with the decrease
in islet insulin content, fasting serum insulin levels were depressed, and the blood
glucose responses were in the diabetic range on glucose tolerance tests. Normal
glucose homeostasis was restored by four weeks after wrapping. Thus, it seems that
indeed there may be proto-undifferentiated cells in the ducts of the pancreas that,
when stimulated appropriately, are induced to grow and, very early in their differen-
tiation, are capable of synthesizing the message for insulin; however, these cells
could be already committed to a path of endocrine function. To elaborate further
upon this issue, we are attempting to find antigens that are both unique to ductal
cells, and found only in acinar and endocrine tissue. Such antigens would verify the
transitional nature of the ductal proto-undifferentiated cell and its ability to trans-
form into a fully functional endocrine organ. Meanwhile, whatever the origin of the
cell that becomes an endocrine organ, there is a need to understand the regulatory
mechanisms involved.

Since rat models of islet-cell regeneration have demonstrated significantly en-
hanced expression of reg gene, we studied reg gene expression in our model. Northern
blot analysis, using a rat reg cDNA probe, showed no pancreatic expression of reg
mRNA in either control or cellophane-wrapped pancreas, whereas a strong signal
was detected in control rat pancreas. Using RT-PCR, we amplified, isolated, and
sequenced a 197 bp product, which was identified as a fragment of hamster reg. There
was a marked increase in the expression of hamster reg within 24 hours of cellophane
wrapping, and, after four days, levels of reg fell, approaching control. Thereafter reg
mRNA further decreased to levels markedly lower than control. In situ studies
demonstrated that reg was expressed only in the exocrine pancreas, mainly in areas of
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of the pancreatic splenic lobes demonstrated the presence of new islet formation in
the wrapped pancreata with a 100 percent increase in the number from 0.90 +* 0.50 to
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TABLE 2
The Trophic Effect of Cellophane Wrapping of the Pancreas Using a Parabiotic Model

Tissue Weight Tissue Protein Tissue DNA
Parabiont (mg) (ug/IlOOg body wt) (,ug/ 100 g body wt) No. Islets/mm2

Control 130 + 17 21.2 ± 1.9 795 ± 159 0.90 ± 0.50
Wrapped 167 ± 21a 25.4 ± 2.7a 1,052 + 206a 1.80 ± 0.70b

aSignificantly (p < 0.05) different from control
bSignificantly (p < 0.01) different from control
From [56]; reproduced with permission of Plenum Publishing Corporation, New York

1.8 + 0.7 islets/mm2 over non-wrapped parabionts. These data suggest that the
trophic effects observed in this model of islet-cell proliferation and differentiation
appear not to be mediated by a humoral mechanism, and control of pancreatic
endocrine growth in this model appears to involve paracrine and/or autocrine
regulatory mechanisms [60,61].

EVIDENCE FOR GROWTH FACTOR REGULATION OF NEOISLET
FORMATION

Identifying genes and their products that control cell growth, proliferation, and
differentiation is basic to understanding both normal growth and abnormal growth.
The stimulation of hepatic regeneration, for example, has been attributed to a factor
that has been isolated from liver cytosol [62], and increase in the expression of
immediate-early response genes has been reported [63]. Embryologically, the liver
and pancreas are derived from the same area of foregut endoderm. Therefore it
seems likely that the sensitive control demonstrated in the regenerating liver may
have its counterpart in the pancreas, and that the mitogenic effect of partial
obstruction may be mediated through a tissue-specific growth factor and/or activa-
tion of multiple gene expression. It is also essential to establish that the newly formed
islet expresses the genes encoding the constellation of hormones required to
maintain normal physiology. The final stage of phenotypic expression and cellular
differentiation in the pancreas may be controlled by the proximity of cells to a local
stimulus originating in the gland itself [64,65]. Co-transplantation of fetal foregut
mesenchyme with pancreatic duct epithelium has been shown to result in the
development of islet-like cell clusters [66]. Whether these cells were actually at an
early stage of islet formation is unknown. The possible mechanisms of action include:
(1) secretion of an autocrine or paracrine inducing or transforming factor; (2)
information exchange through cell-to-cell contact; and (3) production of extracellu-
lar matrix that contains critical trophic factors [2,67-69].
There is good evidence for autocrine and paracrine activity within the pancreas.

The presence of a specific mesenchymal factor (MF) that promotes differentiation in
the developing pancreas has been hypothesized [70]. Older rat embryo or adult organ
extracts do not, however, contain MF activity [11,71,72], nor has there been any
indication of the nature of the factor.

Soluble peptide growth factors are a group of trophic substances that regulate both
cell proliferation and differentiation. These growth factors are multi-functional and
may trigger a broad range of cellular responses [73], including effects on extracellular
matrix formation. Their actions can be divided into two general categories: effects on
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cell proliferation and effects on cell function. They are different from the polypep-
tide hormones in that they act in an autocrine and/or paracrine manner [74,75]. One
family of growth factors that has been associated with ductal proliferation and
differentiation is the somatomedins, insulin-like growth factors I and II (IGF-I and
IGF-II). IGF-I is synthesized and secreted by the 3 cells of fetal and neonatal rat
islets in tissue culture [76,77]. Smith et al. have reported that, following 90 percent
pancreatectomy in the rat, IGF-I gene expression is enhanced in the regenerating
pancreas [45]. In these studies, IGF-I is localized to the capillary endothelium and to
ductular epithelial cells, but not to endocrine cells. The role of IGF-I in the
cellophane wrap model has yet to be determined. IGF-II has been identified in
human fetal pancreas [78]. Both somatomedins have a mitogenic effect on fetal and
neonatal pancreatic endocrine cells [76,77] and may act in concert with their binding
proteins [79]. Platelet-derived growth factor (PDGF) also stimulates fetal islet
replication, and this effect is additive to that of IGF-I [80]. IGF-I may be the primary
mediator of ,-cell replication in fetal and neonatal rat islets [42,80-83]. The
temporal expression of these growth factors in the progression from ductal cell to
neoislet in our model is unknown.
There is in vitro evidence that overproduction of transforming growth factor at

(TGFao), might result in an autocrine increase in growth signals. Ductal epithelial
cells and 95 percent of pancreatic carcinomas are immunohistochemically positive
for TGFao [84]. Transgenic mice bearing a fusion gene consisting of the mouse
metallothionine-1 promoter and a human TGFa cDNA exhibit pleiotropic effects in
a number of tissues, including the liver and mammary glands. In the pancreata of
these animals, there is a florid acinoductular metaplasia during which acinar cells
degranulate, dedifferentiate, and assume the characteristics of intercalated or cen-
troacinar ducts [85,86]. Although TGFot has diffuse effects, transgenic mice with the
gene directed to the pancreas by fusion with the elastase promoter undergo metaplas-
tic changes in the pancreas in what appears to be an autocrine-regulated manner.
Ultimately the process results in progressive interstitial fibrosis. In none of these
situations, however, has there been documentation of an increase in islet-cell mass. If
the TGFa gene is combined with the gastrin gene in transgenic animals, then the
fibrotic reaction disappears. If these animals are inbred with others carrying the
transgene, then gross overexpression of gastrin and TGFa are accompanied by an
increase in islet mass [87]. While this process may be an exaggeration of what occurs
physiologically or pathophysiologically, nonetheless, it seems that TGFaL alone,
perhaps acting upon the epidermal growth factor (EGF) receptor, or in combination
with gastrin, may play an important role in duct cell proliferation, organogenesis, and
neoplastic transformation.
For reasons that are not entirely clear, the development of a fully functional islet

organ dictates a need for correct topographic alignment of the various islet cells, as
well as a vascular supply consonant with directional flow in a centrifugal direction
[88], perfusing initially the L cells and thence the ao cells and 8 cells. Angiogenesis is a
complex process that involves proteolysis of basement membrane as well as endothe-
lial cell migration and proliferation [89]. Several peptides, including angiogenin,
acidic fibroblast growth factor (FGF) [90], basic FGF [91], and TGFa [92], are
capable of inducing vascular growth in various experimental situations.
These proteins have been postulated to regulate vascular growth, and the FGFs

are potent endothelial mitogens with established receptors. TGFao binds to the EGF

483



VINIK ET AL.

receptor in microvascular endothelial cells. TGFao is abundant in the first week of
gestation and declines to undetectable levels by day 13, which is compatible with a
role in vasculogenesis [93]. With maturation of the islet portal system, endothelial
cells express factor VIII and vimentin. The development of islet vascular topography
will be evaluated by measuring these markers.

Thus, some growth factors may promote the development of ,B cells from fetal
tissue, but may not promote the growth of new islets from established adult duct
epithelium. Furthermore, the role of those factors in the fetus and the neonate that
act in the maintenance and replacement of a functional islet-cell mass in the adult
pancreas remains obscure, particularly with respect to which are primary regulators
of neoislet formation and which mediate secondary growth responses.

In our model, the initiation of proliferation and differentiation associated with
new islet formation appears to be mediated in an endocrine or paracrine manner. As
a result of this finding, we prepared extracts of wrapped pancreas and identified one
that contained trophic activity that could not be ascribed to known hormones and
growth factors. An extract prepared from a non-wrapped pancreas had no such
activity [94]. We therefore hypothesized that the trophic activity contained in the
tissue extract of wrapped pancreas was due to potentially novel islet-cell growth
factor(s). We have since prepared crude tissue extract from the cellophane-wrapped
pancreas, and the extract had a positive trophic effect on pancreatic tissue when
injected into hamsters (Fig. 7). This extract contains a protein in which the biologi-
cally active fraction appears to be in the 29-45 kDa range (Fig. 8) [95], because both
the pooled fractions from 66 kDa to 40 kDa and 40 kDa to 20 kDa retain equal
bioactivity. On gel electrophoresis, two proteins are seen (Fig. 9) [95], in that size
range, that are enhanced with the wrapping process [96]. A growth-promoting effect
was not observed when a tissue extract prepared from the non-wrapped pancreas was
administered. Thus, using a variety of classical protein chemistry techniques, we have
identified a soluble polypeptide that we have termed ilotropin. Ilotropin has been
only partially characterized as protein or proteins that are trypsin-sensitive, heat-
stable, acid-stable, alcohol-precipitable, with an apparent molecular weight in the
range of 29-45 kDa, and which are not sialated. We have therefore begun to examine
the model for candidate growth factors with these characteristics.
We have used an in vivo bioassay to track the trophic activity of ilotropin at

successive stages of purification. Daily injection for two days of a partially purified
preparation of ilotropin increased pancreatic weight and DNA content by 40 percent
(Fig. 7a) and 15 percent (Fig. 7b), respectively [97]. After three weeks, 3H-TdR
incorporation into ductular cells significantly increased tenfold and into islet cells
increased sixfold [98]. Endocrine cell differentiation was comparable to that pro-
duced by cellophane wrapping.
To implicate ilotropin directly in the trophic effects of wrapping, we treated

diabetic hamsters for six weeks with twice-daily intraperitoneal injections of ilotro-
pin. Using this regimen, diabetes was stabilized or reversed in 60 percent of the
ilotropin-treated animals, compared to only 10 percent of saline-treated controls
(Fig. 10) [99]. Animals treated with extracts of non-wrapped pancreas fared no
better than saline-treated animals, at most undergoing remission in 12 percent of
animals. The successful treatment of diabetes in this setting was achieved by the
induction of a new population of insulin-producing ,3 cells.

484



FACTORS CONTROLLING PANCREATIC ISLET NEOGENESIS 485

2.0
p < 0.05

1.9
1.87<.0~~~1.7 ~~~~~~~N. S.
1.6o p < 0.05m 1.5

26

~1.4
l.3

z 1.2
E 1.0o

Control Crude Heat Acid Ethanol
Cytosol

400
>%380 p<0.0005 p<0.0005

v
6 p<0.0005lmo 360 ~~~~~~p<0.0025

8340 ~~~~~~~~~~~~~N. S.
320

0. 300
E 280

260
Control Crude Heat Acid Ethanol Trypsin

Cytosol
FIG. 7. a. The bioactivity of wrapped pancreatic cytosol extract on pancreatic

DNA content was compared to control injections by injecting extract 2x daily for two
days into each of seven Syrian golden hamsters. Stability of the bioactivity was tested
by pre-treatment with either heat (65°C for 20 minutes), acid (10 percent v/v
perchloric acid for 20 minutes), or ethanol precipitation (70 percent for two hours at
4°C). Only acid treatment appeared to destroy the ability of wrapped cytosol extract
to increase pancreatic DNA content. All statistics are expressed versus control
levels. b. The bioactivity of wrapped cytosol extract on pancreatic weight was
compared to control injections by injecting extract 2 x daily for two days into each of
seven Syrian golden hamsters. Stability of the bioactivity was tested by pre-treatment
with either heat (650C for 20 minutes), acid (10 percent v/v perchloric acid for 20
minutes), ethanol precipitation (70 percent v/v for two hours at 40C), or trypsiniza-
tion (0.1 M for 30 minutes). Only trypsinization destroyed the ability of wrapped
cytosol extract to increase pancreatic weight. All statistics are expressed versus
control levels.

We examined the effects of wrapping on pancreatic islet regeneration in different
species to determine whether this result might be a species-specific effect. The effects
of cellophane wrapping of the pancreas could also be induced in the pancreas of the
cat, the rat, and the mouse. Therefore, the trophic effects of partial duct obstruction
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FIG. 8. Cytosol extract, which had been partially purified with heat,

acid, and ethanol precipitation, was applied to a Superose-12® FPLC
column and eluted with an imidazole (50 mM), KCl (200 mM), glycerol (5
percent), DTT (5 mM) buffer. The fractions were monitored for protein
content, using absorbance at 280 nm and subsequently assayed for protein
content. The fractions were pooled as shown by the boxes, and assayed for
trophic activity, using the bioassay described previously. The cross-
hatched boxes indicate those pooled fractions which contained bioactivity
(From [95]; reproduced with permission of Plenum Publishing Corpora-
tion, New York).

are not species-specific, but may presumably be generalized to other large mammals,
possibly even including man. Over 50 years ago, the pancreatic exocrine outflow in
diabetic children was partially obstructed in a manner similar to the technique of
cellophane wrapping described here. This surgical manipulation reportedly pro-

...............td........W ra....p tr

...........Extract Extract

FIG. 9. SDS-PAGE gel showing con-
trol versus wrapped pancreatic cytosol
extract in the molecular weight region
determined for bioactivity on FPLC.
Two proteins can be seen in the
wrapped cytosol extract (arrows), which
are not represented in the control ex-
tract preparation. Whether one or both
of these proteins might be the pancre-
atic duct/islet growth promoting factor,
or related to the factor, remains to be
determined (From [95]; reproduced
with permission of Plenum Publishing
Corporation, New York).
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FIG. 10. This graph illustrates the incidence of spontaneous remission of diabetes

in streptozotocin-treated animals and the dramatic enhancement of remission with
ilotropin treatment.

duced an increase in "sugar tolerance" compatible with our observation in lower
mammals [100,101], but we can only speculate upon whether the apparent improve-
ment in glucose homeostasis was due to the regeneration of a new 13-cell population.

SUMMARY

We have established a model in which cellophane wrapping induces reiteration of
the normal ontogeny of 1B-cell differentiation from ductal tissue. The secretion of
insulin is physiologic and coordinated to the needs of the animal. Streptozotocin-
induced diabetes in hamsters can be "cured" at least half the time. There appears to
be activation of growth factor(s) within the pancreas acting in an autocrine, para-
crine, or juxtacrine manner to induce ductal cell proliferation and differentiation
into functioning 1 cells. Given the results of our studies to date, it does not seem
premature to envisage new approaches to the treatment of diabetes mellitus.
Identification of the factor(s) regulating islet-cell proliferation and differentiation in
our model may permit islets to be grown in culture. This concept could be extended
to induce endocrine cell differentiation in vitro as well. Furthermore, islet-cell growth
factors could be used to provide "trophic support" to islet transplants as a means of
maintaining graft viability. There may also be greater scope for gene therapy, when
the growth factor or factors have been isolated, purified, sequenced, and cloned.
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