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Pseudomonas aeruginosa exoenzyme S ADP-ribosylates p21™* and several related proteins. ADP-ribosylation
of p21™ does not alter interactions with guanine nucleotides. The ras-related GTP-binding proteins, including
Rab3, Rab4, Ral, RaplA, and Rap2, are also substrates; given these results, we propose a model for the role

of exoenzyme S in pathogenesis.

Pseudomonas aeruginosa exoenzyme S preferentially
ADP-ribosylates p21°H7s and several other 21- to 25-kDa
GTP-binding proteins (12). Other bacterial ADP-ribosyl-
transferases also modify GTP-binding proteins, with result-
ing functional changes (5, 6, 9, 25, 31). Of these ADP-ribo-
syltransferases, it is cholera toxin with which exoenzyme S
shares the most characteristics. Exoenzyme S and cholera
toxin fragment Al both ADP-ribosylate a number of proteins
in vitro in addition to the preferred G proteins (10, 21), both
modify arginine residues (12, 27), and each requires a
specific eukaryotic protein for full enzymatic activity (11,
21-23). ADP-ribosylation by cholera toxin decreases the
GTPase activity of Gsa (5), and this effect has been directly
related to the pathogenesis of Vibrio cholerae infection.
Exoenzyme S has not been definitively proven to be a toxin,
but it does appear to contribute to pathogenesis (28, 29). To
understand how ADP-ribosylation catalyzed by exoenzyme
S might contribute to the pathogenesis of P. aeruginosa
infections, we have identified low-molecular-weight GTP-
binding proteins, other than p217**, which are substrates for
exoenzyme S and have looked for effects of ADP-ribosyla-
tion on p21”*° interactions with guanine nucleotides.

To determine whether various p21"*-related proteins
were ADP-ribosylated by exoenzyme S, we tested several
purified ras-related gene products which were expressed in
Escherichia coli. Figure 1 shows that the products of the
c-H-ras, raplA, rap2, ral, rab3, and rab4 genes (7, 11, 34,
37) were [*’P]ADP-ribosylated by exoenzyme S, while Rabl
and RhoC (26), ARF (36), and Gp (15) were not. ADP-
ribosylation of each protein was dependent on the addition
of FAS, a eukaryotic protein factor required for exoenzyme
S enzymatic activity (11). The conditions used (see the
legend to Fig. 1) allowed only partial ADP-ribosylation of
substrates (12) and were chosen to determine the relative
abilities of these proteins to be modified by exoenzyme S.
ARF, RhoC, Gp, and Rabl were not ADP-ribosylated, even
with 10-fold-higher exoenzyme S concentrations.

The ability to bind and hydrolyze GTP is central to the
normal functions of all GTP-binding proteins (3). We there-
fore set out to determine the effects of exoenzyme S-cata-
lyzed ADP-ribosylation on p21"** interactions with guanine
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nucleotides in vitro. GTP binding by ADP-ribosylated and
unmodified p21™** was measured essentially as described
previously (13). For these studies, we used A2.1-1 cells,
derivatives of NIH 3T3 cells that overexpress the c-H-ras
gene (24). A2.1-1 cells were metabolically labeled with
[**S]methionine, washed, and harvested by scraping. The
cells were lysed by freezing and thawing, and the mem-
branes were washed and collected by centrifugation. A2.1-1
cell membranes were ADP-ribosylated by exoenzyme S in
the presence of unlabeled NAD. Controls contained buffer in
place of exoenzyme S. p21"*° was immunoprecipitated with
rat monoclonal antibodies YA6-172 and Y13-259 (20). Nor-
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FIG. 1. ADP-ribosylation of p21"* and related proteins by ex-
oenzyme S. The purified proteins (0.5 to 1 pg each) were incubated
with 10 pg of FAS per ml, 0.3 pg of exoenzyme S per ml, and 5 puM
[32PINAD in a total volume of 15 ul of 10 mM N-2-hydroxyethylpi-
perazine-N'-2-ethanesulfonic acid (HEPES)-130 mM NaCl (pH 7.3)
for 30 min at 25°C. After fractionation on 12.5% polyacrylamide gels
under denaturing conditions, the [3?P]JADPR-protein bands were
excised and ADPR incorporation was quantitated by liquid scintil-
lation counting. The extent of ADP-ribosylation (femtomoles) was
compared with the amount of each protein (picomoles); the ratio is
shown. ADPR, ADP-ribose.
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FIG. 2. Nucleotide binding and exchange by p21°H74s and
ADPR-p21°Has. A2.1-1 cells were metabolically labeled with
[**SImethionine and ADP-ribosylated in the presence of 3 pg of
exoenzyme S per ml (closed symbols) or buffer (open symbols) and
10 mM unlabeled NAD in HEPES-NaCl (see legend to Fig. 1). After
1 h at 25°C, p21"* was immunoprecipitated by rat monoclonal
antibodies YA6-172 and Y13-259 (see Fig. 3) and protein A-Sepha-
rose which had been coated with anti-rat immunoglobulin G devel-
oped in goats. Normal rat serum (NRS) was used as a control. A
portion of each sample was fractionated on a 12.5% polyacrylamide
gel to determine the extent of ADP-ribosylation, and the gel was
exposed to X-ray film (A). Results for Y13-259 are shown; similar
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mal rat serum was used as a control for immunoprecipita-
tion. After immunoprecipitation, a portion of each sample
was fractionated on a polyacrylamide gel under denaturing
conditions to ensure that ADP-ribosylation was complete
(Fig. 2A). The remainder of each sample was incubated for 1
h with various concentrations of [a->**P]GTP and washed on
glass fiber filters to remove excess [*?P]JGTP. Bound GTP
was quantitated by scintillation counting. ADP-ribosylation
had no significant effect on the ability of p21”** to bind GTP
(Fig. 2B). In a similar experiment, GTP-for-GDP exchange
(measured as described previously [16]) by p21™*° was also
not affected by ADP-ribosylation (Fig. 2C). The exchange
rate shown here is consistent with previously published
results (17). In addition, the interaction of p21"** with GRF,
the protein which accelerates the release of GDP from ras
proteins (35), was not altered by ADP-ribosylation (data not
shown).

The GTPase activities of ADP-ribosylated p21"** and of
unmodified p21”“* were measured in the presence and ab-
sence of purified GAP (GTPase activator protein [1]). The
method was modified from that of Cales et al. (4). Pigeon
erythrocyte membranes (36) and A2.1-1 cell membranes
were used for this experiment. The membranes were incu-
bated for 1 h at 25°C with unlabeled NAD and exoenzyme S
or with the exoenzyme S buffer. A portion of each A2.1-1
cell sample was immunoprecipitated as described above to
determine the extent of ADP-ribosylation. [a->’P]JGTP was
allowed to bind to the remaining portions of the samples as
described previously (4), and the samples were incubated
with either 36 png of GAP per ml or the buffer control.
Samples were removed at the times indicated in Fig. 3 and
immunoprecipitated with p21”#*-specific monoclonal anti-
body Y13-259 (20, 33). p21"**-associated nucleotides were
fractionated by thin-layer chromatography. ADP-ribosyla-
tion altered neither the intrinsic nor the GAP-stimulated
GTPase of p21*° (Fig. 3).

Bacterial ADP-ribosyltransferases have been shown to
disrupt GTP-binding protein function in a variety of ways.
Cholera toxin-catalyzed ADP-ribosylation decreases the
GTPase activity of Gsa, but several other toxins affect G
protein function without changing interactions with GTP (9,
25, 30, 32). Pertussis toxin-catalyzed ADP-ribosylation al-
ters the interaction of Gi with the receptor (25), while
ADP-ribosylation by exotoxin A or diphtheria toxin affects
the functional interaction of EF-2 with the ribosome (9). Our
results show that ADP-ribosylated p217#° is still able to bind,
exchange, and hydrolyze guanine nucleotides normally.
However, the larger-than-expected change in the electro-

results were obtained with YA6-172. Positions of marker proteins
are shown. The remaining portions of the samples were divided for
two experiments. For the binding experiment shown in panel B, the
beads were incubated with various amounts of [a-3?P]GTP (NEN) in
50 ul of 20 mM Tris-HCl (pH 8.0)-125 mM NaCl-2 mM
Mg(C,H;0,),-1 mM CaCl,~-1 mM dithiothreitol-1% Triton X-100
(immunoprecipitation buffer [IPB]) for 1 h at 32°C. The beads were
collected on glass fiber filters, and the excess unbound GTP was
removed by washing with IPB. Bound GTP was quantitated in a
liquid scintillation counter. For the exchange experiment shown in
panel C, the beads were incubated for 1 h at 4°C with 10 nM
[«-*?P]GDP (16), washed, and diluted into 100 volumes of IPB
containing 500 nM unlabeled GTP. Samples were removed at the
times indicated and washed under suction on glass fiber filters. The
filters were counted in a liquid scintillation counter. These data are
representative of three experiments.
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FIG. 3. Intrinsic and GAP-stimulated GTPases of native and
ADP-ribosylated p21™°. A2.1-1 cell membranes (A) and pigeon
erythrocyte membranes (B) were incubated with unlabeled NAD
and exoenzyme S (closed symbols) or buffer for the controls (open
symbols) as described for Fig. 2. A portion of each A2.1-1 cell
sample was immunoprecipitated with goat anti-rat immunoglobulin
G-coated protein A-Sepharose beads and p21™“*-specific monoclonal
antibody Y13-259 or normal rat serum as a control and fractionated
on a 12.5% polyacrylamide gel (as in Fig. 2A). The membranes were
washed and resuspended in HEPES-NaCl (see legend to Fig. 1) plus
1 mM dithiothreitol, 10 mM EDTA, 5 mM Mg(C,H,0,),, 100 pM
ATP, 20 pM ammonium vanadate, and 1.25 pM [a-*?P]GTP (NEN).
After 5 min at 30°C, the magnesium concentration was raised to 30
mM and GAP (36 pg/ml) (squares) or the buffer control (circles) was
added. All samples were immunoprecipitated as described above.
The beads were boiled for 3 min in 1 volume of 0.1% sodium dodecyl
sulfate-1 mM EDTA. Samples (1 nl) were fractionated on polyeth-
yleneimine-cellulose thin-layer plates developed in 0.75 M potas-
sium phosphate (pH 3.4). The plates were cut, and the pieces were
counted in a liquid scintillation counter to quantitate GTP and GDP.
These data are representative of three experiments.
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phoretic mobility of p21"** upon ADP-ribosylation (Fig. 2A)
(12) suggests that the modification causes a conformational
change in the p217* protein which may have an impact on its
function. Similar large shifts in electrophoretic mobility
upon ADP-ribosylation were seen with RaplA, Rap2, and
Ral. Our results suggest that any alterations in the functions
of p217** and the other related substrates may be manifested
through interactions with other cellular proteins rather than
through changes in interactions with guanine nucleotides.
Low-molecular-weight GTP-binding proteins related to
p217%, especially the rab gene products, have been identified
as components of endocytic and exocytic vesicle trafficking
pathways (2, 3, 8, 14, 18, 19, 37). It has been proposed that
exoenzyme S might contribute to pathogenesis by promoting
the dissemination of P. aeruginosa from the site of infection,
due to damage to local host defenses (29). The disruption of
normal vesicle trafficking due to ADP-ribosylation of low-
molecular-weight GTP-binding proteins might decrease the
antimicrobial functions of cells such as neutrophils and
macrophages and thereby contribute to dissemination. In
addition, ADP-ribosylation catalyzed by exoenzyme S might
aid in the identification of proteins that normally interact
with p217** and related proteins in the cell.
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