Supplemental Data. Mandáková and Lysak (2008). Chromosomal phylogeny and karyotype evolution in x=7 crucifer species (*Brassicaceae*).

Supplemental Figure 1. Examples of Comparative Chromosome Painting in Tetraploid Calepineae Species (2n=4x=28). 24 genomic blocks of the ACK are indicated by capital letters (A-X), and colored according to the experimental design used (green, yellow and red pseudocolors correspond to the fluorescence of AlexaFluor 488, Cy3 and Texas Red, respectively). Donward-pointing arrows indicate the opposite orientation of genomic blocks as compared to the position in the ACK. 5S rDNA and 45S rDNA loci are shown as dotted and cross-hatched boxes, respectively. Arrowheads point to the centromere position(s) on pachytene chromosomes.

Supplemental Figure 2. Species-specific Chromosome Rearrangements (Inversion Events) in *Noccaea caerulescens.* 24 genomic blocks of the ACK are indicated by capital letters (A-X), and colored according to the experimental design used (green, yellow and red pseudocolors correspond to the fluorescence of AlexaFluor 488, Cy3 and Texas Red, respectively). Downward-pointing arrows indicate the opposite orientation of genomic blocks as compared to the position in the ACK. Painted chromosomes AK6/8 and AK5/6/8 shown in Figure 2D.

В

Supplemental Figure 3. Heterochromatic Landmarks in *Ochthodium aegyptiacum* and *Thellungiella halophila*. (A) Forteen 5S rDNA loci (red) localized on mitotic chromosomes of *O. aegyptiacum* (2n=14). (B) DAPI-stained pachytene chromosomes of *T. halophila* (2n=14) with large arrays of pericentromeric and interstitial heterochromatin. Arrowheads and arrows point to the position of centromeres and prominent heterochromatic arrays, respectively.

Α

Supplemental Table 1. Genomic Blocks of the Ancestral Crucifer Karyotype and Corresponding Arabidopsis thaliana BAC Contigs Used as Painting Probes in the Present Study.

Ancestral	Genomic	Size	Boundary <i>A. thaliana</i> BAC Clones ^b	A. thaliana
Chromosome	BIOCK			Chromosome
	Α	6.7	125K16 (AC007323) - 129M8 (AC069143)	ALI
AK1	В	5.7	F5M15 (AC027665) - F12K21 (AC023279)	At1
AK1	С	4.6	F2J6 (AC009526) T6H22 (AC009894)	At1
AK2	D	2.3	F12K22 (AC079732) - T12P18 (AC010852)	At1
AK2	Е	6.2	T23K8 (AC007230) - F23A5 (AC011713)	At1
AK3	F	9.2	T4P13 (AC008261) - MWL2 (AB025629)	At3
AK3	G	1.3	F1O13 (AC007211) -T25N22 (AC005693)	At2
AK3	н	3.2	T10F5 (AC007063) - F11A3 (AC006569)	At2
AK4	I	2.1	F3K23 (AC006841) - T19L18 (AC004747)	At2
AK4	J	8.2	F18A8 (AC003105) - T8I3 (AC002337)	At2
AK5	К	0.4	F2I9 (AC005560) - F3C11 (AC007167)	At2
AK5	L	2.9	MJL14 (AP000601) - T4A2 (AP002066)	At2
AK5	М	2.7	T10D17 (AL353865) - F3A4 (AL132978)	At2
AK5	Ν	4.4	F24M12 (AL132980) - F16M2 (AL138648)	At2
AK6	Ο	2.5	F6N15 (AF069299) - T1J1 (AF128393)	At4
AK6	Р	1.3	T3H13 (AF128396) - F8L21 (AL096882)	At4
AK6	Q	2.6	T2007 (AB026660) - T8M17 (AF296835)	At5
AK6	R	7.4	F7J8 (AL137189) - T6G21 (AL090689)	At5
AK7	S	2.4	F5H8 (AB025605) - MJC20 (AB017067)	At5
AK7	т	1.1	F25E4 (AL050399) - F18A5 (AL035528)	At4
AK7	U	8.7	T6K21 (AL021889) - T5J17 (AL035708)	At4
AK8	V	2.4	MBD2 (AB008264) - K23F3 (AP000372)	At5
AK8	W	4.3	K21P3 (AB016872) - MMN10 (AB015475)	At5
AK8	Х	2.5	MSL3 (AB008269) - K9I9 (AB013390)	At5

^a Ancestral chromosomes (AK1-8) and 24 genomic blocks (A-X) of the Ancestral Crucifer Karyotype (Schranz et al., Trends Plant Sci. 11: 535–542, 2006). ^b http://www.arabidopsis.org

Supplemental Table 2. Relative Length of Genomic Blocks (GBs) in the Eight x=7 Analyzed Species.

Relative length of GBs is given as a ratio between the measured length of a GB and the sum of all GB lengths in a given species.

Genomic ^a	Myagrum	Thellungiella	Ochthodium	Glastaria	Noccaea	Conringia	Calepina	Goldbachia
Block	perfoliatum	halophila	aegyptiacum	glastifolia	caerulescens	orientalis	irregularis	laevigata
Α	0.068	0.065	0.059	0.066	0.064	0.089	0.091	0.073
В	0.055	0.065	0.049	0.053	0.052	0.073	0.072	0.055
С	0.034	0.032	0.034	0.029	0.031	0.047	0.038	0.027
D	0.027	0.025	0.029	0.025	0.040	0.035	0.034	0.064
Е	0.072	0.058	0.107	0.066	0.076	0.079	0.098	0.109
F	0.106	0.104	0.117	0.127	0.116	0.104	0.140	0.136
G	0.007	0.004	0.010	0.008	0.006	0.006	0.004	0.005
н	0.027	0.025	0.029	0.029	0.024	0.032	0.045	0.032
I	0.017	0.022	0.020	0.037	0.012	0.028	0.030	0.023
J	0.079	0.090	0.068	0.094	0.080	0.066	0.091	0.100
K	0.007	0.011	0.010	0.016	0.018	0.009	0.008	0.009
L	0.017	0.014	0.020	0.012	0.015	0.019	0.019	0.023
М	0.041	0.025	0.029	0.029	0.031	0.025	0.027	0.023
Ν	0.065	0.058	0.059	0.053	0.058	0.047	0.049	0.064
0	0.021	0.022	0.024	0.025	0.015	0.019	0.023	0.027
Р	0.017	0.018	0.015	0.012	0.021	0.016	0.015	0.014
Q	0.021	0.014	0.020	0.016	0.021	0.032	0.023	0.023
R	0.079	0.112	0.083	0.078	0.092	0.057	0.091	0.091
S	0.031	0.036	0.024	0.025	0.028	0.019	n.a. ^b	n.a.
Т	0.007	0.004	0.005	0.012	0.006	0.006	n.a.	n.a.
U	0.096	0.097	0.088	0.098	0.110	0.082	n.a.	n.a.
V	0.024	0.022	0.029	0.025	0.021	0.032	0.027	0.027
W	0.055	0.054	0.044	0.041	0.040	0.041	0.045	0.045
Х	0.027	0.025	0.029	0.025	0.021	0.035	0.030	0.032

^a 24 GBs (A-X) of the Ancestral Crucifer Karyotype (Schranz et al., Trends Plant Sci. 11: 535–542, 2006). ^b n.a. (= not analyzed).