SUPPLEMENTAL MATERIAL

An FTS/Hook/p107^{FHIP} complex interacts with and promotes endosomal clustering by the Homotypic Vacuolar Protein Sorting (HOPS) Complex

Lai Xu¹, Mathew E. Sowa¹, Jing Chen¹, Xue Li², Steven P. Gygi², and J. Wade Harper^{1, 3}

¹Department of Pathology

²Department of Cell Biology

Harvard Medical School

Boston MA 02115

³Corresponding author: J. Wade Harper, Department of Pathology, Harvard Medical School, 77 Ave Louis Pasteur, Boston MA 02115; wade_harper@hms.harvard.edu

Contents: Supplemental Figures S1-S7.

Figure Legends

Figure S1. Characterization of the Hook/FTS interaction.

Sequence alignment of human and Drosophila Hook proteins, depicting the predicted coiled-coil region (indicated by green "C") and the C-terminal helical region (indicated "H". by red The indicated sequences were aligned using ClustalW2 (http://www.ebi.ac.uk/Tools/clustalw2/index.html) and displayed using Boxshade (http://www.ch.embnet.org/software/BOX_form.html).

Figure S2. Characterization of the Hook/FTS interaction.

(A) Anti-Flag immune complexes were prepared from HEK293T cell extracts or from HEK293T/Flag-HA-FTS cells and these complexes along with crude lysates subjected to immunoblotting using the indicated antibodies. FTS was found to interact with Hook1, Hook2, and Hook3, confirming the results of mass spectrometry.

(B) Anti-FTS antibodies immunoprecipitate Hook1 and Hook3. Lysates from HEK293T cells were subjected to immunoprecipitation using the available FTS antibodies which IP only poorly. Nevertheless, Hook1 and Hook3 were detected in these immune complexes (lane 3) but not in control complexes (lane 2).

(C) FTS protects Hook1⁶⁵⁷⁻⁷²⁸ from degradation via the proteasome. The indicated Hook1 proteins were expressed alone or in combination with GST-FTS. Prior to harvesting, cells were incubated with MG132 (20 μ M, 8 h) prior to analysis of lystates by immunoblotting. As expected, Hook1⁶⁵⁷⁻⁷²⁸ was readily detected in extracts from cells expressing GST-FTS independent of the presence of MG132. In contrast, Hook1⁶⁵⁷⁻⁷²⁸ was absent when FTS was not co-expressed but was present under these conditions when MG132 was added. These data indicate that FTS protects this C-terminal fragment of Hook1 from turnover through the proteasome.

(D) Immunoblotting of extracts demonstrates depletion of the indicated proteins by RNAi. Cells were transfected with the indicated siRNAs and after 72 h, extracts were subjected to immunoblotting with the indicated antibodies.

Figure S3. Multi-sequence alignment of p107^{FHIP} and related proteins.

(A) The indicated sequences were aligned using ClustalW and displayed using Boxshade.

(B) Analysis of p107^{FHIP} for coiled-coil regions using the Coils Server at <u>www.ch.embnet.org/software/COILS_form.html</u>.

Figure S4. Depletion of FTS reduces the ability of Vps18 to promote late endosome/lysosome clustering.

(A) HeLa cells were transfected with control siRNA or siRNA targeting the indicated gene. After 48 h, cells were transfected with GFP-Vps18 and 60 h later, late endosomal/lysosomal clusters were examined immunofluorescence using anti-LAMP1 antibodies in conjunction with detection with Alexa598 conjugated secondary antibodies (red). GFP-Vps18 was identified by GFP fluorescence. In order to determine the integrated intensity for LAMP1 within clusters, a threshold (+ Threshold) was applied such that the maximal pixel signal was in the linear range. In the absence of threshold (- Threshold), individual vesicles not present within clusters can be seen in cells wherein the indicated gene was targeted for depletion. Two independent siRNAs were used for each gene.

Figure S5. The frequency of cells displaying LAMP1 staining intensity greater than 10,000 pixels within the GFP-Vps18 cluster is reduced upon depletion of FTS, Hook, and p107^{FHIP} proteins.

(A) HeLa cells were transfected with control siRNA or siRNA targeting the indicated gene. After 48 h, cells were transfected with GFP-Vps18 and 60 h later, late endosomal/lysosomal clusters were examined immunofluorescence using anti-LAMP1 antibodies in conjunction with detection with Alexa598 conjugated secondary antibodies (red). GFP-Vps18 was identified by GFP fluorescence. In order to determine the integrated intensity for LAMP1 within clusters, a threshold (+ Threshold) was applied such that the maximal pixel signal was in the linear range. In the absence of threshold (- Threshold), individual vesicles not present within clusters can be seen in cells wherein

the indicated gene was targeted for depletion. The cumulative number of cells displaying the indicated pixel intensity is shown. Two independent siRNAs were used for each gene.

Figure S6. Overexpression of FTS or Hook proteins induces late endosome/lysosome clustering.

(A) HeLa cells were transfected with plasmids expressing GFP, GFP-FTS, Flag-Hook1, Flag-Hook2, or Flag-Hook3. After 60 h, cells were fixed and stained with Lamp1 antibodies as described in Figure 6 legends.

(B) Percentages of transfected cells displaying clear Lamp1 clusters were counted. The mean +/- SEM of two independent experiments is indicated.

Figure S7. Components of the FHF complex are required for efficient decay of internalized EGF.

(A-E) Kinetics of Rhodamine-EGF decay in cells lacking FHF complex components. HeLa cells were transfected with the indicated siRNA and EGF decay measured as follows using the previously published assay [J. Cell Biol. 157, 91-101 (2002)]: Hela cells were serum-starved for 2 hours and treated with 500 ng/ml texas red conjugated EGF (EGF-TR) on ice. Cells were left on ice for 15min and then transferred to 19.5°C to initiate the internalization and incubated for 1 hour prior to washing the cells with PBS. Cells were then transferred to 37°C to initiate EGF transit through the endocytic system. At the indicated times, cells were imaged using fluorescence microscopy at the same settings. Threshold was set using cells not treated with Rhodamine-EGF and cells with at least two Rhodamine-positive punta that exceed the threshold were counted as EGF positive using Metamorph software. In panels B and C, the indicated siRNA-resistant expressed vectors were transfected and transfected cells (based on GFP) counted. (A-D) The percentage of EGF positive cells over total cell numbers were plotted. (E) Images of control, siFTS, and siFTS/FTS rescue vector cells over the timecourse are shown.

Xu et al, 2008 Figure S1

Hook1 HOOK3 Hook2 Dm hook consensus	1 1 1 1	HHHHHHHHHHHHH MEETQPPPOPRILFLCDSLVINLQTFNTAS MFSVES BRAELCESLLTWIQTFNDA MS VDKAELCESLLTWIQTFNVDA MS VDKAELCESLLTWIQTFNVPS MSAPKNEVYYSLIEMFKTLNNA	HHHHHHHHHHHHHHH PCCDVKCLTSGVAMAQVLEOIDAAWF PCCTVEDLTNGVVMAQVLCXIDPAVF PCASPCDLSSCLAVAVVLNQIDPSNF FHADAESLADGVALAQALNCFAFESF	HHHHH NBSWLSRIKE-DVGDNU DBNWLNRIKT-EVGDNU NERWIQGISE-DYGFNU TDAWLSKIKASAVGSNU	HHHHHHHHHHHHHHHHH RTRASNYKKVLOGT SYY RLKTSNLKKTLKGTLDYN RLKVSNLKMVLRGVYS RLRMSNLKKVTCSVYDYY CCCCCCCCC
Hook1 HOOK3 Hook2 Dm hook consensus	90 88 84 85 91	HHHH HHHHHHH HHHHH HELGQOIS AL PD NCIESSEVELG HELGQOIN FILPUNLIGE SDARLG QVL HEVS EHLPUSLIGE SDARLG SVLNYS SFSKPD CRIAEKCDLELE	HHHHHHHHHH RLIQL LIGCA NCEKOET ONITL RLIQL LIGCA NCEKOET ONITL RLIQL LIGCA NCEKOET ONITL RLIQL LIGCA NCAEKOET ORIMTL RLIQL VIGCA NCAEKOSYTTE INCL	HHHHHHHHHHHHH BESVQHVVMTAIQELMS BESVQHVVMTAIQELMS BESVQHVVMBAIQELM BEBIQANIMRAQELE/	HHHHHH SKEILSEFNAVGELECO SKESEVSACNDAVGILGRO RDIBOSLSP-TIVANEDSO ATROASIFEGGVASSISRG
Hook1 HOOK3 Hook2 Dm hook consensus	180 178 174 175 181	HARMANANANANANANANANANANANANANANANANANANA	HHHHHHHHHHHHHHHHHHHH TTLODERNSLISENE IMNEKUDOLOG AALOSEKSSLIAENOUTMERINOSO VLLSEKOSVACENAGURERMORPS- LLLIDEKTNLOGELHKLOOFARUSO CCCCCCCCCCCCCCCCCCCCCCCCCC	SPDPNT SIBDPNS GBGTPG HSTVIGDDGVSLGVQ CCCCCCCCCCCCCCCCC	HHHHHHHHHHHHHHH VAKKYFHAOLOLEOLOEE TAKKLULLOSOLEOLOEE TAKKLULLOSOLEOLOEE SVRYNELREOLOILE
Hook1 HOOK3 Hook2 Dm hook consensus	261 258 252 265 271	HHHHH NFRLEAAKDVRVHCEELEKGL EFOHRN JERLEAAKDVRVHCEELEKE SELROON NFRLESGREDER RCAELEREVAELOHRN LLQSBCAREDLKIKACOODTDLHMOMRI	HHHHHHHHHHHHHHHHHHH DELTSLAEETRALKDEIDVLRAISDK DELTSLAEASLKDEIDVLRASSDK QALTSLACEAQALKDEMDELRCSSER EELMKSSAEVTTLKDEVDVLRESNDK	HHHHHHHHHHHHHH Anklestveiven Vsklegovesykkker Aggleatiis Crreg Lkic <mark>ba</mark> glotykkker	INHHHHHHHHHHHHHHHH DINDLR OVKILGEINMY JCDLROVK LEENIMY IRELR OVKLEENINGH MIDLK OVKLEENINGH MIDLK OVKILEENINGH
Hook1 HOOK3 Hook2 Dm hook consensus	351 348 342 355 361	HHHHHHHHHHHHHHHHHHHHHHHHHHH MENTYSLEELKKANAARIQLETYKROVO MONTYSLEELKKANAARSOLETYKROVO AERIRCLEELRKASIRAOLEAOROVO VOONAOFEELAKKETO	HHH HHHHHHHHHHHHHHHHHHHHH DENVKLSESKEADELAFEMKRLEEK SUONELSESKEADELOFEMKRLEEK IOOGLOEEMKAEKADKLOFEMKILEEK DUHAKLDAESSKNYKLEFENKNLESK	HHHHHHHHHH HBATLKEKERL BORD VSLOKEKORLRTERDS YBSVTKEKERLLAERDS NLALORAKISLLKERD	HHHHHHHHHHHH UKETNBELRCSOVOODHU SLKETIBELRCSOVOODBOU SLREANELRCAOLOPRGU SLREANELRCAOLSSN
Hook1 HOOK3 Hook2 Dm hook consensus	441 438 432 443 451	HHHHHH HHHHH NGTDASA KSYENLAABI EVEYREV TQGLMPLG OBSESLAABI TPE REK TQADESLDPS TPVDNLAABI EAS RET 	HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	HHHHHHHHHHHHH COLEQKHRMMELET SELEDANLARMELET RHE DANRARHGLET AQLODANKRCENLRE CCCCCCCCCCCCCCCC	RISKERIRELOCOLEDL RISKERIRELOCOLEDL RIVNORILEVOSOVEL FRINCOLSERAOVEDL DI TABERI SISHASOSD
Hook1 HOOK3 Hook2 Dm hook consensus	528 528 521 519 541	HHHHHH HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH	HHHHHHHHHHHHHHH I BVHBELQKKQELEDI CEDINON- LHEANNBLQKKRAI IEDLEERANS- LHEADLELOKKRAI IEDLEERANS- QIKQLWELNCOKTEQLEEAVTQSTSL CCCCCCCCCCCCC	HHHHHHHHHHHHH Vokingleadokkog Slkigeloeadokkog Arteslohnlokkoa Qokvtoletnisareo	HHHHHHHHHHHHHHHHHH MKAMEERYKMYLEKARNV MKQMEERYKKYLEKAKSV DLRAMEERYRRYVDKARMV SILLVYDAKYRKCVEKAKEV
Hook1 HOOK3 Hook2 Dm hook consensus	617 615 611 591 631	HH HHHHHHHHHH IKTLDPRLNEASABIMLLRKQUASKE ITTLDPRONGGAAPEICALKNOUCSRU MCTMEPKORFAAGAPPELHSLRTOLRER IKSTOPRIAS	HHHHHHHHHHH RRIBILSSECKVAK-FREYBEKLIVS KEFSLEKEVEKLKSOREMEBKULVS VRIRHLEMDESKSSOREOBEKLIS ADUVEEDPKPKMSVMEECLIS ADUVEEDPKPKMSVMEECLIS	HHHHHHHHHHHHHH AWYNKSLAEORLGMEST AWYNMGMIUHKKAASD AWYNMGMALCORAGB AFYRLGVNAORDAISS	H HH HVSGGACSDTGACTPAR LASIG
Hook1 HOOK3 Hook2 Dm hook consensus	703 693 689 659 721	HHHHHHHHH SFLACORHITNERNLSVKVPATTSD SFLACOROATSSRRSVFCHVOPATAR SFLACORLAINSRRGPLORIASLNLRPTD TFLAROROSAPRESLSAMESK	 		

Xu et al Figure S2

Xu et al, 2008 Figure S3A

Hs pl07FHIP isoform Hs pl07FHIP isoform Mm pl07FHIP Dr pl07FHIP Hs NP_001103447 Ce C05D11.8 Hs RAIL6 Sc YOR216C consensus	1 1 2 1 1 1 1 1 1 1	MENDANGER ALLEG A START ALLEGAR ALLEGA
Hs pl07FHIP isoform Hs pl07FHIP isoform Mm pl07FHIP pl07FHIP Hs NP_001103447 Ce C05D11.8 Hs RAI16 Sc YOR216C consensus	1103 2103 103 101 95 93 86 91 111	s forma for a supression of the superior of the second state of th
Hs pl07FHIP isoform Hs pl07FHIP isoform Mm pl07FHIP Dp107FHIP Hs NP_001103447 Ce C05D11.8 Hs RAIL6 Sc YOR216C consensus	1200 2200 195 186 201 176 151 221	<pre>PPG 00 isseling c invps into issociation in the introduction of the introduction</pre>
Hs pl07FHIP isoform Hs pl07FHIP isoform Mm pl07FHIP pl07FHIP Hs NP_001103447 Ce C05D11.8 Hs RAIL6 Sc YOR216C consensus	1310 2310 305 295 300 256 231 331	NCVARE/VCCOUNTERSE/VTVNGPARESVERGIATIA LEAGUESISFARETISFARETISF RAMEET - FILOTI A CONSEL-WORLETT & C NCVARE/VCCUT INSTANTIANA SVERGIATIA LEAGUESIA SEPARATIF A MARTIT NCVARE/VCCUT INSTANTIANA SVERGIATIA A MARTITUS NCVARE/VCCUT INSTANTIANA SVERGIATIA A MARTITUS NCVARE/VCCUT INSTANTIANA SVERGIATIA A MARTITUS NCVARE/VCCUT INSTANTIANA SVERGIATIANA A MARTITUS NCVARE/VCCUT INSTANTIANA NCVARE/VCCUT INSTANT
Hs pl07FHIP isoform Hs pl07FHIP isoform Mm pl017FHIP Dr pl07FHIP Hs NP_001103447 Ce C05D11.8 Hs RAI16 Sc YOR216C consensus	1419 2419 419 414 404 410 361 296 441	ZNAMARY DENNANCES FAREWORKS AND AND AND AND PRODUCT AND PRODUCT AND
Hs pl07FHIP isoform Hs pl07FHIP isoform Mm pl07FHIP pl07FHIP Hs NP_001103447 Ce CO5D11.8 Hs RAIL6 Sc YOR216C consensus	1525 2511 525 505 511 504 422 342 551	1200 A. C. STOLL ALL CALL STATE AND ADDRESS OF TYPES [0
Hs p107FHIP isoform Hs p107FHIP isoform Mm p107FHIP Dr p107FHIP Hs NP_00103447 Ce C05D11.8 Hs RAIL6 Sc YOR216C consensus	1604 2590 604 596 615 573 492 371 661	S VIETING S VIETING BELSWIDERSVMDFTQQRAAVVAARABMSSDRDSGEBUTTISKICS HIGH STANDARS HIGH STANDARSSDRDSGEBUTTISKICS HIGH STANDARS HIGH STANDARSSDRDSGEBUTTISKICS HIGH STANDARSSDRDSGEBUTTISKIC
Hs p107FHIP isoform Hs p107FHIP isoform Mm p107FHIP Dr p107FHIP Hs NP_00103447 Ce C05D11.8 Hs RAI16 Sc YOR216C consensus	1620 2606 620 706 639 587 505 371 771	NERSER OF TRANSPORTER
Hs p107FHIP isoform Hs p107FHIP isoform Mm p107FHIP Dr p107FHIP Hs NP_00103447 Ce CO5D11.8 Hs RAI16 Sc YOR216C consensus	1683 2669 687 816 742 642 559 371 881	A CONSTRUCT STATUS STORES STATUS STAT
Hs p107FHIP isoform Hs p107FHIP isoform Mm p107FHIP p107FHIP Hs NP_001103447 Ce CO5D11.8 Hs RAIL6 Sc YOR216C consensus	1754 2740 758 909 852 703 602 392 991	TE AVLE MAENTALES VOLGANTEVAALAGE GOPLAASFLANTINGVOOSVKSIAQVISVINTEE GAASGEBEPALE KA KAT ANGUTA ANGUTA ANGUTA S EN AVLE ALIENTALES VOLGANTEVAALAGE GOPLAASFLANTINGVOOSVKSIAQVISVINTEE GAASGEBEPALE KA KAT ANGUTA GOPA GOPLAA EN AVLE ALIENTALES VOLGANTEVAALAGE GOPLAASFLANTINGVOOSVKSIAQVISVINTEE GAASGEBEPALE KA KAT ANGUTA GOPLAAGE EN AVLE ALIENTALES VOLGANTEVAALAGE GOPLAASFLANTINGVOOSVKSIAQVISVINTEE GAASGEBEPALE KA KAT ANGUTA GOPLAAGE EN AVLE ALIENTALES VOLGANTEVAALAGE GOPLAASFLANTINGVOOSVKSIAQVISVINTEE GAASGEBEPALE KA KAT ANGUTA GOPLAAGE EN AVLE ANGUTA GOPLAASE ANGUTA GOPLAASFLANTINGVOOSVKSIAQVISVINTEE GAASGEBEPALE KA KAT ANGUTA GOPLAAGE EN AVLE ANGUTA GOPLAASE ANGUTA GOPLAASFLANTINGVOOSVKSIAVUNTE GOPLAAGE GOPLAASTANTING GOVLAASTANTING GOPLAASE ANGUTA GOPLAASTANTINGVOOSVA GOPLAASTANTING GOPLAASTANTING GOPLAASTANTING GOPLAASTANTING GOPLAASTANTINGVOOSVA GOPLAASTANTING GOPLAASTANTING GOPLAASTANTING GOPLAASTANTING GOPLAASTANTING GOPLAASTANTING GOPLAASTANTING GOPLAASTANTING GOPLAASTANTING GOPLAASTANTING GOPLAASTANTING GOPLAASTANTING GOPLAASTANTING GOPLAASTANTING GOPLAASTANTING GOPLAASTANTING FINASTANTING GOPLAASTANTING GOPLAASTANTING GOPLAASTANTING GOPLAASTANTING GOPLAASTANTING FINASTANTING GOPLAASTANTING GOPLAASTANTING GOPLAASTANTING GOPLAASTANTING GOPLAASTANTING FINASTANTING GOPLAASTANTING GOPLAASTANTING GOPLAASTANTING GOPLAASTANTING GOPLAATING GOPLAASTANTING GOPLAATING GOPLAASTANTING GOPLAATING GOPLAASTANTING GOPLAATING GOPLAASTANTING GOPLAATING GOPLAATIN
Hs pl07FHIP isoform Hs pl07FHIP isoform Mm pl07FHIP pl07FHIP Hs NP_001103447 Ce C05D11.8 Hs RAIL6 Sc YOR216C consensus	1864 2850 868 1019 957 800 696 1101	LAND AND AND AND AND AND AND AND AND AND
Hs pl07FHIP isoform Hs pl07FHIP isoform Mm pl07FHIP Hs NP_001103447 Ce C05D11.8 H RAI16 Sc YOR216C consensus	1974 2960 977 1125 1039 740 1211	SGPLISGCPINP- SOPLISGCPINP- ISSSHLRIMA POSLVPFNOGS OF SVANASI CONSTICLERA VANOLPHLEOMIV CC-

consensus

Figure S3B Analysis of p107FHIP for Coiled-coils

Xu et al., 2008 Figure S6

