Histomorphometry of calvaria in ARKO mice

parameter	Males		Females	
	Wild-type	ARKO	Wild-type	ARKO
CWi (µm)	126±4.0	113.4±3.2 ^a	124±5.1	103.2±10.1**
BAr (μ m ²)	452,170±15,212	340,221±30,461 ^{a,**}	532,125±20,336	407,268±16,439 ^{a,**}
OS/BS (%)	16.21±1.73	14.31±1.51*	7.04±0.69	4.17±0.15 [*]
N.Oy/BAr (#/mm ²)	720±54	419±38 ^{**}	832±31	441±60 ^{**}
N.Oc/BAr (#/mm ²)	5.2±2.1	20.4±3.2**	4.6±2.3	24±6.2**

8-week-old male and female ARKO mice and wild-type littermates (N=4-6). CWi, calvarial width; BAr, bone area; OS/BS, osteoid surface/bone surface; N.Oy/BAr, number of osteocytes/bone area, N.Oc/BAr, number of osteoclasts/bone area. Each value is the mean \pm SEM of the number of samples in parentheses. ^a Different from the respective wild type group with Bonferroni's adjustment, P<0.01. ^{*} Different from the respective wild type group, P<0.05.

Supplemental Figure 1. Progression of altered calvarial morphology and defective mineralization observed in $AR^{-/Y}$ mice. Three-dimensional computer tomography images, H & E staining and bone histomorphometric measurements of the calvaria from representative (A) 30-week-old and (B) 50-week-old male wild-type and $AR^{-/Y}$ mice. Bone histomorphometric analysis of calvarial bone volume, thickness, and bone surface values are measured.

Symbol	Fold	Accession	Gene description
		number	
Bone Minera	alization		
AKP2	0.2	NM_007431	<i>Mus musculus</i> alkaline phosphatase 2, liver / Bone /
			kindney
DMP1	0.5	NM_016779	Mus musculus dentin matrix protein 1
DSPP	0.6	NM_010080	Mus musculus dentin sialophosphoprotein
MEPE	0.5	NM_053172	<i>Mus musculus</i> matrix extracellular
			phosphoglycoprotein with ASARM motif (bone)
OPN	0.5	NM_009263	Mus musculus secreted phosphoprotein 1 (Spp1)
Pit-1	0.3	NM_015747	Mus musculus solute carrier family 20, member 1
Pit-2	0.7	NM_011394	Mus musculus solute carrier family 20, member 2
			(Slc20a2)
BSP	0.6	XM_001475269	Mus musculus similar to Integrin binding sialoprotein
Skeletal Development			
Ahsg	3.8	NM_013465	Mus musculus alpha-2-HS-glycoprotein
Anxa5	0.9	NM_009673	Mus musculus annexin A5
Fgfr2	16	NM_201601	Mus musculus fibroblast growth factor receptor 2
Smad1	0.9	NM_008539	Mus musculus MAD homolog 1 (Drosophila)
Tuft1	4.2	NM_011656	Mus musculus tuftelin 1
Vdr	5	NM_009504	Mus musculus vitamin D receptor
Extracellula	Extracellular Matrix (ECM) Proteins		
BMP1	1.3	NM_009755	Mus musculus bone morphogenetic protein 1
Ctsk	0.7	NM_007802	Mus musculus cathepsin K
MMP2	1.1	NM_008610	Mus musculus matrix metallopeptidase 2
MMP8	0.7	NM_008611	Mus musculus matrix metallopeptidase 8
ММР9	1.1	NM_013599	Mus musculus matrix metallopeptidase 9
Phex	1.3	NM_011077	Mus musculus phosphate regulating gene with
			homologies to endopeptidases on the X chromosome
			(hypophosphatemia, vitamin D resistant rickets)
Phosphate T	ransport	t	
Bmp5	6.1	NM_007555	Mus musculus bone morphogenetic protein 5
Col1a1	0.6	NM_007742	Mus musculus collagen, type I, alpha 1
Col1a2	0.8	NM_007743	Mus musculus collagen, type I, alpha 2
Col2a1	2	NM_031163	Mus musculus collagen, type II, alpha 1
Col4a1	1.9	NM_009931	Mus musculus collagen, type IV, alpha 1
Col4a2	3.7	NM_009932	Mus musculus collagen, type IV, alpha 2

Col5a1	2.7	NM_015734	Mus musculus procollagen, type V, alpha 1
Col6a1	3.9	NM_009933	Mus musculus collagen, type VI, alpha 1
Regulation	of Cell C	ycle	
Fgfl	0.7	NM_010197	Mus musculus fibroblast growth factor 1
Itgb1	0.9	NM_010578	Mus musculus integrin beta 1 (fibronectin receptor
			beta)
Pdgfa	1.4	NM_008808	Mus musculus platelet derived growth factor, alpha
Tgfb1	0.6	NM_011577	Mus musculus transforming growth factor, beta 1
Tgfb2	1.2	NM_009367	Mus musculus transforming growth factor, beta 2
Tgfb3	2.6	NM_009368	Mus musculus transforming growth factor, beta 3
Vegfa	0.8	NM_001025257	Mus musculus vascular endothelial growth factor A,
			transcript variant 3
Vegfb	0.5	NM_011697	Mus musculus vascular endothelial growth factor B

Comparative microarray analysis of genes expressed in the primary mouse osteoblasts from wildtype and ARKO mice. The upregulated values represent the fold increase in expression of a particular gene in the primary wildtype osteoblasts when compared to the primary ARKO osteoblasts, and the downregulated values represent the inverse reciprocal fold decrease in expression of candidate genes in the primary wildtype osteoblasts when compared to the primary ARKO osteoblasts.

Supplemental Figure 2. SIBLING family genes are downstream target genes in androgen signal transduction pathways in osteoblasts. Real-time PCR shows a decrease in SIBLING family gene expression in primary AR^{-/Y} osteoblasts and MC3T3-E1 cells transfected with siRNA-AR, compared with control cells. (A) Primary osteoblasts from neonatal calvaria of Wild-type and AR^{-/Y} mice and (B) MC3T3-E1 cells stably transfected with siRNA-control (pCMV-U6), siRNA-AR, were stimulated with or without 10⁻⁸ M of DHT in differentiation medium. The relative mRNA expression patterns of SPP1, DSPP, BSP and DMP1 were determined by real-time PCR. (C) The fold expression profiles of SPP1, DSPP, BSP and DMP1 mRNA in MC3T3-E1 cells treated with 10⁻⁸ M of DHT were analyzed by real-time PCR, compared with the control (ethanol) at each time point as indicated. Data are representative of three independent experiments and are shown as mean \pm SEM. *p < 0.05, as compared with control. (D) AREs verified through the identifying gene promoters in the NCBI database are shown with positions relative to the transcriptional start site. Light gray background represents the sequence to be the same as experimental consensus sequence and the heavy gray background represents the sequence to be same as putative consensus sequence. A consensus sequence indicates the relative frequency and importance of nucleotides in the motif. (E) ChIP assay for AR binding to DMP1 and DSPP promoter. Immunoprecipitations were performed with AR antibody. AR regulates the SIBILING family genes through binding to these gene promoters that contains androgen response elements (AREs).

ALP activity in newborr	, 7-week and	12-week old male mice
-------------------------	--------------	-----------------------

	wild-type	AR- ^{/Y}
Calvaria (newborn)	23384 ± 670	18753 ±1223*
Plasma (7 weeks)	102 ±7.38	110 ±4.71
Plasma (12 weeks)	70 ± 15.9	57 ± 10.3

(Unit = n mole *p*-nitrophenol/mg protein/minute)

Relative to age-matched wild-type littlermates, ALP activity is significantly elevated in newborn calvaria (N=6) but not in plasma (N>7) from 7- and 12-week-old $AR^{-/Y}$ mice.*p<0.05 for ANOVA test.

Primer sequences used for Real-time PCR

Gene	Primer Sequence
AKP2	Forward: CAC CTG CCT TAC CAA CTC TTT TG Reverse: GGC TAC ATT GGT GTT GAG CTT TT
DMP1	Forward: GAG AAC TTC GCT GAG GTT TTG AC Reverse: CCC AAA GGA ACA CAA GGA GAA T
DSPP	Forward: TGT GGC TGT GCC TCT TCT AAC A Reverse: TCG CTA AGT ACC TGC TCT CCT ATC TC
BSP	Forward: CAG AGG AGG CAA GCG TCA CT Reverse: CTG TCT GGG TGC CAA CAC TG
SPP1	Forward: GAT GCC ACA GAT GAG GAC CTC Reverse: CTG GGC AAC AGG GAT GAC AT
β-actin	Forward: AGG CCA ACC GTG AAA AGA TG Reverse: TGT GGT ACG ACC AGA GGC ATA C