Supporting Information

β -Aminoethyltrifluoroborates: Efficient Aminoethylations via Suzuki-Miyaura Cross-Coupling

Gary A. Molander* and Fabricio Vargas

Roy and Diana Vagelos Laboratories, Department of Chemistry
University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323
gmolandr@sas.upenn.edu

Table of Contents

General Considerations	S2
General Method for the Preparation of Potassium $oldsymbol{eta}$ -Aminoethy	ltrifluoroborates
•••••	S2
Representative Procedure for the Cross-coupling Reaction	of Potassium β-
Aminoethyltrifluoroborates and Aryl Electrophiles	S5
References	S19
NMR Spectra	S20

General Considerations: Commercially available reagents were used without further purification. N-Boc Vinyl carbamate¹ and N-Cbz Vinyl carbamate² were prepared

according to the procedures described in the literature. THF was distilled from Na/benzophenone ketyl. Toluene was dried by passing through a column of activated alumina. All other solvents were HPLC grade and used as received. Melting points (°C) were determined using a Thomas-Hoover melting point apparatus and are uncorrected.

¹H, ¹³C, ¹¹B and ¹⁹F NMR spectra were recorded at 500, 125.8, 128.4 and 470.8 MHz, respectively. Analytical thin-layer chromatography (TLC) was performed on silica gel plates (0.25mm) precoated with a fluorescent indicator. Visualization was effected with ultraviolet light or KMnO₄ (in aq K₂CO₃/NaOH). Standard flash chromatography procedures³ were performed using 40-63 µm silica gel (200 X 400 mesh). Mass spectra were performed at the mass spectrometry facilities at the University of Pennsylvania.

General Method for the Preparation of Potassium β -Aminoethyltrifluoroborates.⁴

Potassium 2-(9H-Carbazol-9-yl)ethyltrifluoroborate (1a): A solution of 2,5-dimethylhexa-2,4-diene (1.81 g, 16.5 mmol) in THF (20 mL) was treated with BH₃.THF solution (7.5 mL, 7.5 mmol) at 0 °C. The mixture was stirred for 3 h at 0 °C, and treated with a solution of 9-vinylcarbazole (0.58 g, 3 mmol) in THF (3 mL) while maintaining the temperature at 0 °C. The reaction mixture was allowed to warm to room temperature, stirred for 3 h, cooled in an ice bath, and H₂O (1 mL) was carefully added. After an additional 1.5 h at room temperature, a 37 % aqueous solution of CH₂O (2.5 mL) was added. The mixture was stirred overnight, quenched with brine, and the resulting mixture was extracted with EtOAc. The organic layers were combined, dried (MgSO₄) and then filtered. The solvent was removed under vacuum, and to the residue was added KHF₂ (0.94 g, 12 mmol),

acetone (10 mL) and H₂O (4 mL). The mixture was stirred for 4 h at room temperature. evaporated, and the residue was extracted with hot acetone. The organic phases were evaporated and the resulting solids were dried under high vacuum. The crude compound was purified by dissolving in acetone and precipitating in Et₂O to obtain the title compound 1a as a white solid (0.85 g, 94% yield). mp = > 210 °C; ¹H NMR (500 MHz, Acetone-d6) δ 8.08 (d, 2H, J = 7.1 Hz), 7.47 (d, 2H, J = 8.1 Hz), 7.40-7.37 (m, 2H), 7.13-7.10 (m, 2H), 4.35-4.32 (m, 2H), 0.77-0.73 (m, 2H); ¹³C NMR (125.8 MHz, Acetone-*d6*) δ 141.1, 126.0, 123.4, 120.7, 118.7, 109.9, 42.0; ¹¹B NMR (128.4 MHz, Acetone-d6) δ 5.40 (br s); ¹⁹F NMR (470.8 MHz, Acetone-d6) δ -141.8 (m); \mathbb{R} (neat) 3053, 2909, 1698, 1595, 1484, 1453, 1255, 752, 725 cm⁻¹; HRMS (ES-) m/z calcd. for C₁₄H₁₂BF₃N (M-K⁺) 262.1014, found 262.1012.

Potassium 2-(2-Oxoazepan-1-vl)ethyltrifluoroborate (1b): This compound was obtained by the general method for the preparation of potassium β -aminoethyltrifluoroborates using N-vinylcaprolactam (0.41 g, 3 mmol) as the starting material. The title compound was obtained as a white solid (0.56 g, 76% yield). mp = > 210 °C; ¹H NMR (500 MHz, DMSO-d6) δ 3.20-3.18 (m, 2H), 3.12-3.08 (m, 2H), 2.31-2.29 (m, 2H), 1.60-1.56 (m, 2H), 1.51-1.45 (m, 4H), 0.16-0.12 (m, 2H); ¹³C NMR (125.8 MHz, DMSO-d6) δ172.9, 47.3, 45.7, 36.9, 29.3, 28.5, 23.1; ¹¹B NMR (128.4 MHz, DMSO-d6) δ3.93 (br s); ¹⁹F NMR (470.8 MHz, DMSO-d6) δ-141.2 (m); IR (neat) 2921, 1620, 1494, 1454, 1249, 1229, 1006, 962, 869 cm⁻¹; HRMS (ES-) m/z calcd. for C₈H₁₄BF₃NO (M-K⁺) 208.1120, found 208.1114.

Potassium 2-(2-Oxopvrrolidin-1-vl)ethyltrifluoroborate (1c): This KF₃B

compound was obtained by the general method for the preparation of potassium β -aminoethyltrifluoroborates using N-vinyl-2-pyrrolidone (0.330 g, 3 mmol) as the starting material. The title compound was obtained as a white solid (0.440 g, 68% yield). mp = > 195 °C; 1 H NMR (500 MHz, DMSO-d6) δ 3.25 (t, 2H, J = 7.1 Hz), 3.04-3.01 (m, 2H), 2.12 (t, 2H, J = 7.8 Hz), 1.87-1.81 (m, 2H), 0.17-0.12 (m, 2H); ¹³C NMR (125.8 MHz, DMSO-d6) δ 172.3, 45.5, 40.4, 31.0, 17.2; ¹¹B NMR (128.4 MHz, DMSO-d6) δ 4.93 (br s); ¹⁹F NMR (470.8 MHz, DMSO-d6) δ -142.3 (m); \mathbb{R} (neat) 2913, 2359, 1658, 1495, 1450, 1293, 1246, 1024, 967, 860 cm⁻¹; HRMS (ES-) m/z calcd. for $C_6H_{10}BF_3NO (M-K^+)$ 180.0807, found 180.0816.

Potassium 2-(tert-Butoxycarbonylamino)ethyltrifluoroborate (1d): KF₃B This compound was obtained on a 1 mmol scale by the general method for the preparation of potassium β -aminoethyltrifluoroborates using N-Boc vinylcarbamate¹ (143 mg, 1 mmol) as the starting material. The title compound was obtained as a white solid (130 mg, 52% yield). mp = > 185 °C; ¹H NMR (500 MHz, DMSO-d6) δ 5.79 (s, 1H), 2.85-2.81 (m, 2H), 1.34 (s, 9H), 0.14-0.12 (m, 2H); ¹³C NMR (125.8 MHz, DMSO-d6) δ155.1, 76.6, 38.5, 28.3; ¹¹B NMR (128.4 MHz, DMSO-d6) δ 3.93 (br s); ¹⁹F NMR (470.8 MHz, DMSO-d6) δ -136.6 (m); IR (neat) 3411, 2975, 2360, 1676, 1522, 1364, 1034 cm⁻¹; HRMS (ES-) m/z calcd. for C₇H₁₄BF₃NO₂ (M-K⁺) 212.1069, found 212.1078.

Potassium 2-(Benzyloxycarbonylamino)ethyltrifluoroborate (1e): KF₃B This compound was obtained on a 1 mmol scale by the general method for the preparation of potassium *β*-aminoethyltrifluoroborates using *N*-Cbz vinylcarbamate² (177 mg, 1 mmol) as the starting material. The title compound was obtained as a white solid (133 mg, 50% yield). mp = > 195 °C; ¹H NMR (500 MHz, DMSO-*d6*) δ 7.34-7.25 (m, 5H), 6.36 (br s, 1H), 4.93 (s, 2H), 2.90-2.86 (m, 2H), 0.16-0.13 (m, 2H); ¹³C NMR (125.8 MHz, CD₃CN) δ 156.1, 137.9, 128.4, 127.7 (2C), 65.3, 39.1; ¹¹B NMR (128.4 MHz, DMSO-*d6*) δ 4.17 (br s); ¹⁹F NMR (470.8 MHz, DMSO-*d6*) δ -136.9 (m); IR (neat) 3411, 2975, 2360, 1686, 1522, 1272 cm⁻¹; HRMS (ES-) *m/z* calcd. for C₁₀H₁₂BF₃NO₂ (M-K⁺) 246.0913, found 246.0923.

Representative Procedure for the Cross-coupling Reaction of Potassium β Aminoethyltrifluoroborates and Aryl Electrophiles.

4-(2-(9H-Carbazol-9-yl)ethyl)benzonitrile (2a). To a mixture of potassium β-aminoethyltrifluoroborate 1a (165 mg, 0.55 mmol), 4-bromobenzonitrile (91 mg, 0.5 mmol), Cs₂CO₃ (487 mg, 1.5 mmol), and PdCl₂(dppf)_CH₂Cl₂ (20.4 mg, 0.025 mmol) was added toluene/H₂O (3:1, 3.2 mL). The reaction was heated at 80 °C with stirring under a nitrogen atmosphere for 12 h, and then cooled to room temperature. A saturated solution of NH₄Cl was added and the resulting mixture was extracted with CH₂Cl₂. The organic layers were combined, dried (MgSO₄) and then filtered. The solvent was removed under vacuum, and the crude product was purified by silica gel chromatography (eluting with hexane/ethyl acetate) to afford a white solid (133 mg, 90% yield). mp = 155-157 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.08 (d, 2H, J = 7.7)

Hz), 7.46 (d, 2H, J = 7.6 Hz), 7.41-7.38 (m, 2H), 7.23-7.19 (m, 4H), 7.14 (d, 2H, J = 7.8 Hz), 4.53 (t, 2H, J = 7.0 Hz), 3.19 (t, 2H, J = 7.0 Hz); ¹³C NMR (125.8 MHz, CDCl₃) δ 144.2, 139.9, 132.2, 129.6, 125.7, 122.8, 120.4, 119.1, 118.7, 110.5, 108.2, 44.1, 35.2; IR (neat) 2360, 2228, 1995, 1454, 1347, 751, 722 cm⁻¹; HRMS (CI+) m/z calcd. for $C_{21}H_{16}N_2$ (M⁺) 296.1313, found 296.1319.

1-(4-(2-(9H-Carbazol-9-yl)ethyl)phenyl)ethanone (2b). This product was obtained by the general method from the reaction of potassium
$$\beta$$
-aminoethyltrifluoroborate 1a (165 mg, 0.55 mmol), and 4-bromoacetophenone (99 mg, 0.5 mmol) to afford the title compound as a white solid (127 mg, 82%). mp = 124-126 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, 2H, J = 7.7 Hz), 7.81 (d, 2H, J = 8.1 Hz), 7.42-7.39 (m, 2H), 7.28-7.20 (m, 6H), 4.52 (t, 2H, J = 7.4 Hz), 3.17 (t, 2H, J = 7.4 Hz), 2.54 (s, 3H); ¹³C NMR (125.8 MHz, CDCl₃) δ 197.6, 144.2, 140.0, 135.6, 129.0, 128.6, 125.6, 122.8, 120.3, 119.0, 108.3, 44.3, 35.1, 26.5; IR (neat) 1995, 1678, 1605, 1452, 1266, 749, 722 cm⁻¹; HRMS (CI+) m/z calcd. for C₂₂H₁₉NO (M⁺) 313.1466, found 313.1464.

yl)ethyl)phenyl)(phenyl)methanone (2c). This product was obtained by the general method from the reaction of potassium β-aminoethyltrifluoroborate **1a** (165 mg, 0.55 mmol), and 4-bromobenzophenone (130 mg, 0.5 mmol) to afford the title compound as a pale yellow solid (147 mg, 79% yield). mp = 87-89 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, 2H, J

= 7.7 Hz), 7.67 (d, 2H, J = 8.2 Hz), 7.61 (d, 2H, J = 8.0 Hz), 7.57-7.55 (m, 1H), 7.45-7.39 (m, 4H), 7.27-7.21 (m, 4H), 7.15 (d, 2H, J = 7.9 Hz), 4.57 (t, 2H, J = 7.2 Hz), 3.21 (t, 2H, J = 7.2 Hz); ¹³C NMR (125.8 MHz, CDCl₃) δ 196.3, 143.3, 140.0, 137.5, 135.9, 132.2, 130.2, 129.9, 128.6, 128.1, 125.5, 122.8, 120.3, 118.9, 108.4, 44.3, 35.1; IR (neat) 3053, 1711, 1658, 1605, 1484, 1453, 1278, 750, 724 cm⁻¹; HRMS (CI+) m/z calcd. for $C_{27}H_{21}NO(M^+)$ 375.1623, found 375.1614.

Methyl 4-(2-(9H-Carbazol-9-yl)ethyl)benzoate (2d).

This product was obtained by the general method from the reaction of potassium β -aminoethyltrifluoroborate

1a (165 mg, 0.55 mmol), and methyl 4-bromobenzoate (107 mg, 0.5 mmol) to afford the title compound as a white solid (137 mg, 84% yield). mp = 113-115 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, 2H, J = 7.7 Hz), 7.91 (d, 2H, J = 8.2 Hz), 7.43-7.39 (m, 2H), 7.29-7.20 (m, 6H), 4.53 (t, 2H, J = 7.7 Hz), 3.89 (s, 3H), 3.18 (t, 2H, J = 7.7 Hz); ¹³C NMR (125.8 MHz, CDCl₃) δ 166.8, 144.0, 140.0, 129.8, 128.8, 128.5, 125.6, 122.8, 120.3, 119.0, 108.3, 51.9, 44.3, 35.1; IR (neat) 1995, 1718, 1484, 1452, 1278, 749, 723 cm⁻¹; HRMS (CI+) m/z calcd. for C₂₂H₁₉NO₂ (M⁺) 329.1415, found 329.1411.

4-(2-(9H-Carbazol-9-yl)ethyl)benzaldehyde (2e). This product was obtained by the general method from the reaction of potassium β -aminoethyltrifluoroborate **1a** (165

mg, 0.55 mmol), and 4-bromobenzaldehyde (92 mg, 0.5 mmol) to afford the title compound as a white solid (125 mg, 84% yield). mp = 130-132 °C; ¹H NMR (500 MHz,

CDCl₃) δ 9.89 (s, 1H), 8.07 (d, 2H, J = 7.7 Hz), 7.68 (d, 2H, J = 7.8 Hz), 7.40-7.36 (m, 2H), 7.23-7.19 (m, 6H), 4.49 (t, 2H, J = 7.2 Hz), 3.16 (t, 2H, J = 7.2 Hz); ¹³C NMR (125.8 MHz, CDCl₃) δ 191.7, 145.8, 139.9, 134.9, 129.9, 129.4, 125.6, 122.8, 120.3, 119.0, 108.3, 44.1, 35.2; IR (neat) 1995, 1697, 1604, 1484, 1452, 748, 721 cm⁻¹; HRMS (CI+) m/z calcd. for C₂₁H₁₇NO (M⁺) 299.1310, found 299.1305.

9-(4-Chlorophenethyl)-9H-carbazole (2f): This product was obtained by the general method from the reaction of potassium β-aminoethyltrifluoroborate 1a (165 mg, 0.55 mmol), and 4-bromochlorobenzene (95 mg, 0.5 mmol) to afford the title compound as a white solid (110 mg, 73% yield). mp = 143-145 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, 2H, J = 7.7 Hz), 7.43-7.40 (m, 2H), 7.28-7.18 (m, 6H), 7.04 (d, 2H, J = 8.2 Hz), 4.48 (t, 2H, J = 7.5 Hz), 3.08 (t, 2H, J = 7.5 Hz); ¹³C NMR (125.8 MHz, CDCl₃) δ 140.0, 137.1, 132.4, 130.1, 128.7, 125.6, 122.8, 120.3, 119.0, 108.4, 44.6, 34.5; IR (neat) 1995, 1595, 1487, 1453, 1235, 753, 723 cm⁻¹; HRMS (CI+) m/z calcd. for C₂₀H₁₆CIN (M⁺) 305.0971, found 305.0974.

9-(4-(Trifluoromethyl)phenethyl)-9H-carbazole (2g). This product was obtained by the general method from the reaction of potassium β -aminoethyltrifluoroborate 1a (165 mg, 0.55 mmol), and 4-bromobenzotrifluoride (112 mg, 0.5 mmol) to afford the title compound as a white solid (125 mg, 74% yield). mp = 101-103 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, 2H, J = 7.7 Hz), 7.47 (d, 2H, J = 7.9 Hz), 7.42-7.39 (m, 2H), 7.26-7.21

(m, 6H), 4.52 (t, 2H, J = 7.4 Hz), 3.17 (t, 2H, J = 7.4 Hz); ¹³C NMR (125.8 MHz, CDCl₃) δ 142.8, 140.0, 129.1, 129.0 (q, ${}^{2}J_{CF} = 32.6$ Hz), 125.6, 125.4 (q, ${}^{3}J_{CF} = 3.8$ Hz), 124.1 (q, ${}^{1}J_{CF} = 271.6$ Hz), 122.9, 120.4, 119.0, 108.3, 44.4, 35.0; ¹⁹F NMR (470.8 MHz, CDCl₃) δ -62.8 (s); IR (neat) 2360, 1995, 1484, 1452, 1325, 1121, 1067, 749, 723 cm⁻¹; HRMS (CI+) m/z calcd. for C₂₁H₁₆F₃N (M⁺) 339.1234, found 339.1229.

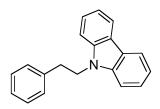
O₂N

9-(4-Nitrophenethyl)-9H-carbazole (2h): This product was obtained by the general method from the reaction of potassium β -aminoethyltrifluoroborate **1a** (165 mg, 0.55

mmol), and 1-bromo-4-nitrobenzene (101 mg, 0.5 mmol) to afford the title compound as a yellow solid (124 mg, 79% yield). mp = 137-139 °C; 1 H NMR (500 MHz, CDCl₃) δ 8.08 (d, 2H, J = 8.1 Hz), 8.01 (d, 2H, J = 8.6 Hz), 7.40-7.36 (m, 2H), 7.23-7.16 (m, 6H), 4.53 (t, 2H, J = 7.1 Hz), 3.22 (t, 2H, J = 7.1 Hz); 13 C NMR (125.8 MHz, CDCl₃) δ 146.8, 146.3, 139.9, 129.6, 125.7, 123.7, 122.9, 120.4, 119.2, 108.2, 44.0, 35.0; IR (neat) 1995, 1598, 1515, 1484, 1452, 1343, 749, 723 cm $^{-1}$; HRMS (CI+) m/z calcd. for C₂₀H₁₆N₂O₂ (M $^{+}$) 316.1211, found 316.1197.

CN CN

2-(2-(9H-Carbazol-9-yl)ethyl)benzonitrile (2i). This product was obtained by the general method from the reaction of potassium β -aminoethyltrifluoroborate **1a** (165 mg, 0.55 mmol),


and 2-bromobenzonitrile (91 mg, 0.5 mmol) to afford the title compound as a white solid (125 mg, 85% yield). mp = 133-135°C; 1 H NMR (500 MHz, CDCl₃) δ 8.07 (d, 2H, J = 7.4 Hz), 7.64 (d, 1H, J = 7.4 Hz), 7.43-7.20 (m, 8H), 7.02 (d, 1H, J = 7.6 Hz), 4.59 (t,

2H, J = 7.4 Hz), 3.35 (t, 2H, J = 7.4 Hz); ¹³C NMR (125.8 MHz, CDCl₃) δ 142.3, 140.0, 132.9, 132.8, 130.4, 127.3, 125.8, 122.9, 120.3, 119.1, 117.9, 112.4, 108.4, 43.4, 33.9; IR (neat) 2360, 2221, 1595, 1484, 1453, 1325, 749, 723 cm⁻¹; HRMS (ES+) m/z calcd. for $C_{21}H_{16}N_2Na$ (M+Na⁺) 319.1211, found 319.1208.

 $1\hbox{-}(3\hbox{-}(2\hbox{-}(9H-Carbazol\hbox{-} 9\hbox{-} yl)ethyl) phenyl) ethanone \eqno(2j).$

This product was obtained by the general method from the reaction of potassium β -aminoethyltrifluoroborate **1a** (165

mg, 0.55 mmol), and 2-bromoacetophenone (99 mg, 0.5 mmol) to afford the title compound as a white solid (123 mg, 79% yield). mp = 121-123 °C; 1 H NMR (500 MHz, CDCl₃) δ 8.08 (d, 2H, J = 7.5 Hz), 7.75-7.73 (m, 1H), 7.57 (br s, 1H), 7.42-7.37 (m, 2H), 7.31-7.19 (m, 6H), 4.53 (t, 2H, J = 7.2 Hz), 3.18 (t, 2H, J = 7.2 Hz), 2.40 (s, 3H); 13 C NMR (125.8 MHz, CDCl₃) δ 198.0, 140.0, 139.2, 137.3, 133.5, 128.7, 128.6, 126.6, 125.6, 122.8, 120.3, 119.0, 108.5, 44.4, 34.9, 26.4; IR (neat) 3048, 2929, 1676, 1584, 1486, 1455, 1350, 1294, 750, 723 cm $^{-1}$; HRMS (ES+) m/z calcd. for C₂₂H₁₉NONa (M+Na $^{+}$) 336.1364, found 336.1361.

9-Phenethyl-9H-carbazole (2k): This product was obtained by the general method from the reaction of potassium β -aminoethyltrifluoroborate **1a** (165 mg, 0.55 mmol), and

bromobenzene (78 mg, 0.5 mmol) to afford the title compound as a white solid (120 mg, 89% yield). mp = 109-111 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, 2H, J = 7.7 Hz), 7.44-7.41 (m, 2H), 7.32 (d, 2H, J = 8.1 Hz), 7.26-7.17 (m, 7H), 4.51 (t, 2H, J = 7.7 Hz),

3.11 (t, 2H, J = 7.7 Hz); ¹³C NMR (125.8 MHz, CDCl₃) δ 140.1, 138.6, 128.7, 128.5, 126.5, 125.5, 122.8, 120.3, 118.8, 108.4, 44.7, 35.1. IR (neat) 1995, 1596, 1483, 1452, 1325, 747, 723 cm⁻¹; HRMS (CI+) m/z calcd. for $C_{20}H_{17}N$ (M⁺) 271.1361, found 271.1359.

9-(2,4,6-Trimethylphenethyl)-9H-carbazole (2l): This product was obtained by the general method from the reaction of potassium β -aminoethyltrifluoroborate 1a (165 mg, 0.55 mmol), and 2-bromomesitylene (99 mg, 0.5 mmol) to afford

the title compound as a white solid (137 mg, 88% yield). mp = 134-136 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, 2H, J = 7.8 Hz), 7.46-7.44 (m, 2H), 7.40 (d, 2H, J = 8.1 Hz), 7.25-7.22 (m, 2H), 6.88 (s, 2H), 4.37 (t, 2H, J = 8.1 Hz), 3.12 (t, 2H, J = 8.1 Hz), 2.40 (s, 6H), 2.27 (s, 3H); ¹³C NMR (125.8 MHz, CDCl₃) δ 140.1, 136.3, 135.9, 131.9, 129.2, 125.7, 122.9, 120.4, 118.9, 108.3, 41.9, 28.6, 20.7, 19.9; IR (neat) 1995, 1483, 1460, 1450, 1343, 747, 719 cm⁻¹; HRMS (CI+) m/z calcd. for C₂₃H₂₃N (M⁺) 313.1830, found 313.1821.

Me N

9-(4-Methylphenethyl)-9H-carbazole (2m). This product was obtained by the general method from the reaction of potassium β -aminoethyltrifluoroborate 1a (165 mg, 0.55

mmol), and 4-bromotoluene (85 mg, 0.5 mmol) to afford the title compound as a white solid (115 mg, 81% yield). mp = 117-119 °C; 1 H NMR (500 MHz, CDCl₃) δ 8.09 (d, 2H, J = 7.7 Hz), 7.43 (t, 2H, J = 7.2 Hz), 7.34 (d, 2H, J = 8.1 Hz), 7.21 (t, 2H, J = 7.7 Hz),

7.08 (s, 4H), 4.46 (t, 2H, J = 7.8 Hz), 3.06 (t, 2H, J = 7.8 Hz), 2.31 (s, 3H); ¹³C NMR (125.8 MHz, CDCl₃) δ 140.1, 136.1, 135.5, 129.3, 128.6, 125.6, 122.8, 120.3, 118.8, 108.5, 44.9, 34.7, 21.0; IR (neat) 1995, 1697, 1514, 1487, 1463, 1455, 1345, 745, 718 cm⁻¹; HRMS (CI+) m/z calcd. for C₂₁H₁₉N (M⁺) 285.1517, found 285.1502.

9-(4-Methoxyphenethyl)-9H-carbazole (2n). This product was obtained by the general method from the reaction of potassium β-aminoethyltrifluoroborate 1a (165 mg, 0.55 mmol), and 4-bromoanisole (93 mg, 0.5 mmol) to afford the title compound as a white solid (105 mg, 70% yield). mp = 85-87 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, 2H, J = 7.7 Hz), 7.44-7.41 (m, 2H), 7.32 (d, 2H, J = 8.2 Hz), 7.24-7.20 (m, 2H), 7.08 (d, 2H, J = 8.6 Hz), 6.80 (d, 2H, J = 8.6 Hz), 4.46 (t, 2H, J = 7.6 Hz), 3.76 (s, 3H), 3.05 (t, 2H, J = 7.6 Hz); ¹³C NMR (125.8 MHz, CDCl₃) δ 158.4, 140.1, 130.7, 129.7, 125.6, 122.8, 120.3, 118.8, 114.0, 108.5, 55.2, 45.0, 34.2. IR (neat) 3049, 1995, 1511, 1484, 1462, 1452, 1247, 749, 723 cm⁻¹; HRMS (CI+) m/z calcd. for C₂₁H₁₉NO (M⁺) 301.1466, found 301.1458.

N-(4-(2-(9H-Carbazol-9-yl)ethyl)phenyl)acetamide (20): This product was obtained by the general method from the reaction of potassium β - aminoethyltrifluoroborate 1a (165 mg, 0.55 mmol), and 4-bromoacetanilide (107 mg, 0.5 mmol) to afford the title compound as a white solid (119 mg, 73% yield). mp = 179-181 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, 2H, J = 7.7 Hz), 7.42-7.41 (m, 2H), 7.37 (d,

2H, J = 8.1 Hz), 7.31 (d, 2H, J = 8.1 Hz), 7.23-7.20 (m, 2H), 7.11-7.09 (m, 3H), 4.48 (t, 2H, J = 7.4 Hz), 3.08 (t, 2H, J = 7.4 Hz), 2.15 (s, 3H); ¹³C NMR (125.8 MHz, CDCl₃) δ 168.1, 140.1, 136.4, 134.6, 129.3, 125.6, 122.8, 120.3, 120.1, 118.8, 108.5, 44.8, 34.5, 24.5; IR (neat) 1995, 1656, 1513, 1452, 1324, 749, 722 cm⁻¹; HRMS (CI+) m/z calcd. for $C_{22}H_{20}N_2O$ (M⁺) 328.1575, found 328.1587.

Me Ne

9-(2-Methylphenethyl)-9H-carbazole (2p). This product was obtained by the general method from the reaction of potassium β -aminoethyltrifluoroborate **1a** (165 mg, 0.55 mmol), and 2-

bromotoluene (85 mg, 0.5 mmol) to afford the title compound as a white solid (112 mg, 79% yield). mp = 97-99 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.09 (d, 2H, J = 7.7 Hz), 7.45-7.41 (m, 2H), 7.33 (d, 2H, J = 8.2 Hz), 7.23-7.20 (m, 2H), 7.14-7.11 (m, 4H), 4.47 (t, 2H, J = 7.8 Hz), 3.11 (t, 2H, J = 7.8 Hz), 2.32 (s, 3H); ¹³C NMR (125.8 MHz, CDCl₃) δ 140.1, 136.9, 136.1, 130.4, 129.4, 126.8, 126.3, 125.6, 122.9, 120.3, 118.9, 108.3, 43.6, 32.4, 19.3; IR (neat) 2939, 1627, 1490, 1461, 1346, 743, 722 cm⁻¹; HRMS (CI+) m/z calcd. for C₂₁H₁₉N (M⁺) 285.1517, found 285.1509.

MeO N

9-(3-Methoxyphenethyl)-9H-carbazole (2q). This product was obtained by the general method from the reaction of potassium β -aminoethyltrifluoroborate 1a (165)

mg, 0.55 mmol), and 2-bromoanisole (93 mg, 0.5 mmol) to afford the title compound as a white solid (102 mg, 68% yield). mp = 81-83 °C; 1 H NMR (500 MHz, CDCl₃) δ 8.09 (d, 2H, J = 7.7 Hz), 7.44-7.41 (m, 2H), 7.31 (d, 2H, J = 8.1 Hz), 7.23-7.17 (m, 3H), 6.79 (d,

1H, J = 7.4 Hz), 6.75 (d, 1H, J = 8.1 Hz), 6.62 (br s, 1H), 4.50 (t, 2H, J = 7.7 Hz), 3.66 (s, 3H), 3.08 (t, 2H, J = 7.7 Hz); ¹³C NMR (125.8 MHz, CDCl₃) δ 159.7, 140.2, 140.1, 129.6, 125.6, 122.8, 121.0, 120.3, 118.8, 114.5, 112.1, 108.5, 55.1, 44.7, 35.1; IR (neat) 3050, 2937, 1599, 1486, 1454, 1325, 1259, 1152, 749, 723 cm⁻¹; HRMS (CI+) m/z calcd. for C₂₁H₁₉NO (M⁺) 324.1364, found 324.1359.

5-(2-(9H-Carbazol-9-yl)ethyl)furan-2-carbaldehyde (2r). This product was obtained by the general method from the reaction of potassium
$$\beta$$
 - aminoethyltrifluoroborate 1a (165 mg, 0.55 mmol), and 5-bromo-2-furaldehyde (87 mg, 0.5 mmol) to afford the title compound as a yellow oil (89 mg, 62% yield). ¹H NMR (500 MHz, CDCl₃) δ 9.51 (s, 1H), 8.06 (d, 2H, J = 7.6 Hz), 7.43-7.39 (m, 2H), 7.29 (d, 2H, J = 8.1 Hz), 7.24-7.20 (m, 2H), 6.98 (d, 1H, J = 3.5 Hz), 5.98 (d, 1H, J = 3.5 Hz), 4.65 (t, 2H, J = 6.9 Hz), 3.24 (t, 2H, J = 6.9 Hz); ¹³C NMR (125.8 MHz, CDCl₃) δ 177.0, 159.1, 152.2, 139.8, 125.7, 123.2, 122.9, 120.3, 119.2, 110.6, 108.2, 41.1, 27.8; IR (neat) 3050, 2819, 1674, 1519, 1485, 1454, 751, 725 cm⁻¹; HRMS (CI+) m/z calcd. for C₁₉H₁₅NO₂ (M⁺) 289.1102, found 289.1101.

9-(2-(pyridin-3-yl)ethyl)-9H-carbazole (2s). This product was obtained by the general method from the reaction of potassium β -aminoethyltrifluoroborate 1a (165 mg, 0.55 mmol), and 3-bromopyridine (79 mg, 0.5 mmol) to afford the title compound as a white solid (93 mg, 69% yield). mp = 104-106 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.46 (d, 1H, J = 1.8 Hz),

8.43 (dd, 1H, J = 4.7, 1.4 Hz), 8.08 (d, 2H, J = 7.7 Hz), 7.42-7.39 (m, 2H), 7.26-7.20 (m, 5H), 7.06-7.04 (m, 1H), 4.53 (t, 2H, J = 7.2 Hz), 3.14 (t, 2H, J = 7.2 Hz); ¹³C NMR (125.8 MHz, CDCl₃) δ 149.9, 148.1, 140.0, 136.3, 134.0, 125.7, 123.3, 122.9, 120.4, 119.0, 108.3, 44.3, 32.3; IR (neat) 3049, 1594, 1484, 1455, 1350, 749, 726 cm⁻¹; HRMS (ES+) m/z calcd. for C₁₉H₁₇N₂ (M+H⁺) 273.1391, found 273.1390.

tert-Butyl 5-(2-(9H-Carbazol-9-yl)ethyl)-1H-indole-1-carboxylate (2t). This product was obtained by the general method from the reaction of potassium β -aminoethyltrifluoroborate 1a (165 mg, 0.55 mmol), and

N-Boc-4-bromoisoquinoline⁵ (147 mg, 0.5 mmol) to afford the title compound as a white solid (129 mg, 63% yield). mp = 128-130 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.13-8.11 (m, 3H), 7.59 (br s, 1H), 7.47-7.40 (m, 5H), 7.25-7.21 (m, 3H), 6.51 (d, 1H, J = 3.5 Hz), 4.54 (t, 2H, J = 7.8 Hz), 3.21 (t, 2H, J = 7.8 Hz), 1.69 (s, 9H); ¹³C NMR (125.8 MHz, CDCl₃) δ 149.7, 140.1, 134.1, 132.9, 130.9, 126.2, 125.6, 125.0, 122.9, 120.8, 120.3, 118.8, 115.3, 108.5, 107.0, 83.6, 45.3, 35.0, 28.2; IR (neat) 3052, 2978, 1731, 1455, 1372, 1348, 1131, 750, 722 cm⁻¹; HRMS (CI+) m/z calcd. for C₂₇H₂₆N₂O₂ (M⁺) 410.1094, found 410.1097.

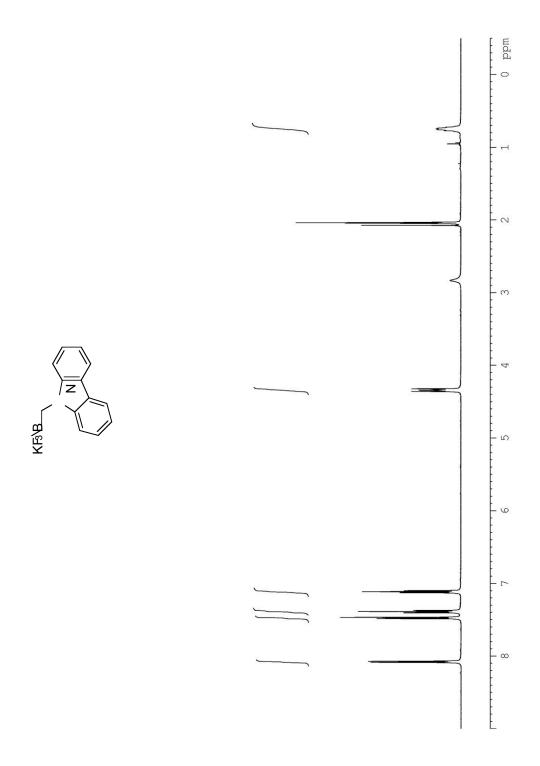
1-(5-(2-(9H-Carbazol-9-yl)ethyl)thiophen-2-

yl)ethanone (2u). To a mixture of potassium β aminoethyltrifluoroborate 1a (165 mg, 0.55 mmol), 2-

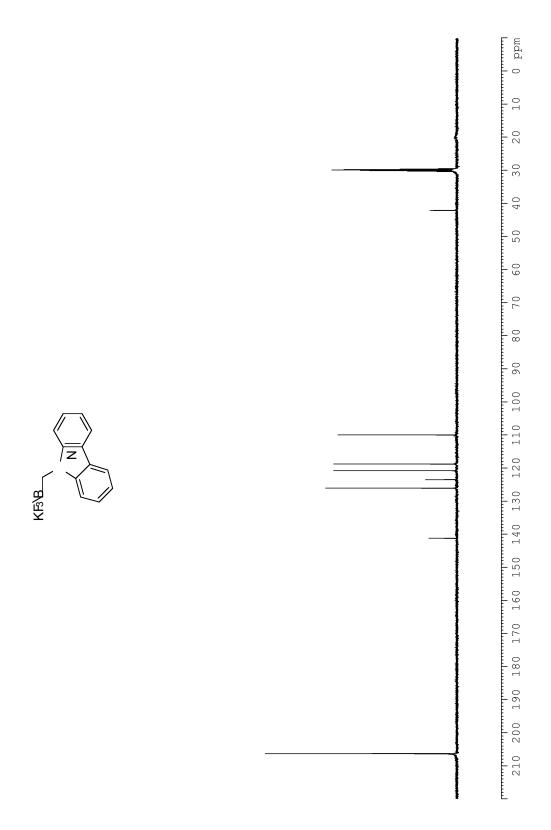
acetyl-5-bromo-thiophene (102 mg, 0.5 mmol), Cs₂CO₃ (487 mg, 1.5 mmol), Pd(OAc)₂

(2.3 mg, 0.01 mmol), and RuPhos (9.3 mg, 0.02 mmol) was added toluene/H₂O (3:1, 3.2 mL). The reaction was heated at 80 °C with stirring under a nitrogen atmosphere for 12 h, and then cooled to room temperature. A saturated solution of NH₄Cl was added and the resulting mixture was extracted with CH₂Cl₂. The organic layers were combined, dried (MgSO₄) and then filtered. The solvent was removed under vacuum, and the crude product was purified by silica gel chromatography (eluting with hexane/ethyl acetate) to afford a yellow solid (112 mg, 71% yield). mp = 94-96 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.08 (d, 2H, J = 7.7 Hz), 7.43-7.39 (m, 3H), 7.29 (d, 2H, J = 8.1 Hz), 7.24-7.21 (m, 2H), 6.62 (d, 1H, J = 3.7 Hz), 4.55 (t, 2H, J = 7.3 Hz), 3.33 (t, 2H, J = 7.3 Hz), 2.47 (s, 3H); ¹³C NMR (125.8 MHz, CDCl₃) δ 190.3, 150.0, 143.2, 139.9, 132.8, 127.1, 125.7, 122.9, 120.4, 119.2, 108.3, 44.3, 29.8, 26.4; IR (neat) 3051, 2925, 2360, 1659, 1454, 1326, 1277, 750, 724 cm⁻¹; HRMS (CI+) m/z calcd. for C₂₀H₁₇NOSNa (M+Na⁺) 342.0928, found 342.0927.

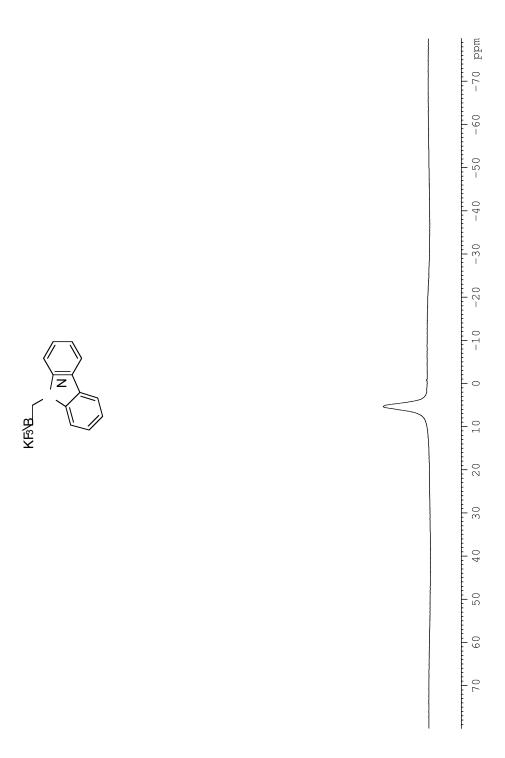
4-(2-(2-Oxoazepan-1-yl)ethyl)benzonitrile (3a). To a mixture of potassium β-aminoethyltrifluoroborate 1b (54.3 mg, 0.22 mmol), 4-bromobenzonitrile (36.4 mg, 0.2 mmol), Cs₂CO₃ (195 mg, 0.6 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol), and RuPhos (9.3 mg, 0.02 mmol) was added toluene/H₂O (3:1, 1.2 mL). The reaction was heated at 80 °C with stirring under a nitrogen atmosphere for 12 h, and then cooled to room temperature. A saturated solution of NH₄Cl was added and the resulting mixture was extracted with CH₂Cl₂. The organic layers were combined, dried (MgSO₄) and then filtered. The solvent was removed under vacuum, and the crude product was purified by preparative TLC

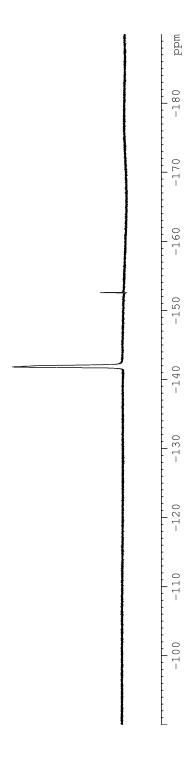

(basic alumina; eluting with hexane/ethyl acetate) to afford a white solid (37.7 mg, 78% yield). mp = 72-74 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.58 (d, 2H, J = 8.1 Hz), 7.34 (d, 2H, J = 8.1 Hz), 3.61 (t, 2H, J = 7.4 Hz), 3.26-3.24 (m, 2H), 2.90 (t, 2H, J = 7.3 Hz), 2.51-2.49 (m, 2H), 1.70-1.62 (m, 4H), 1.57-1.53 (m, 2H); ¹³C NMR (125.8 MHz, CDCl₃) δ 175.7, 144.8, 132.2, 129.6, 118.8, 110.2, 50.4, 49.8, 37.2, 34.6, 29.8, 28.5, 23.3; IR (neat) 3436, 2930, 2226, 1637, 1445, 1367, 1196, 824 cm⁻¹; HRMS (CI+) m/z calcd. for $C_{15}H_{19}N_2O$ (M+H⁺) 243.1497, found 243.1496.

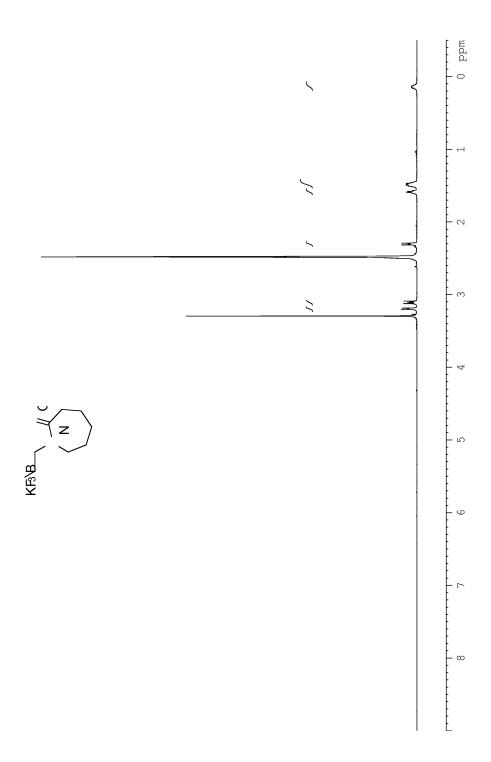
4-(2-(2-Oxopyrrolidin-1-yl)ethyl)benzonitrile (3b). To a mixture of potassium β -aminoethyltrifluoroborate 1c (48.1 mg, 0.22 mmol), 4-bromobenzonitrile (36.4 mg, 0.2 mmol), Cs₂CO₃ (195 mg, 0.6 mmol), Pd(OAc)₂ (2.3 mg, 0.01 mmol), and RuPhos (9.3 mg, 0.02 mmol) was added toluene/H₂O (3:1, 1.2 mL). The reaction was heated at 80 °C with stirring under a nitrogen atmosphere for 12 h, and then cooled to room temperature. A saturated solution of NH₄Cl was added and the resulting mixture was extracted with CH₂Cl₂. The organic layers were combined, dried (MgSO₄) and then filtered. The solvent was removed under vacuum, and the crude product was purified by preparative TLC (basic alumina; eluting with hexane/ethyl acetate) to afford a white solid (30.3 mg, 71% yield). mp = 88-90°C; ¹H NMR (500 MHz, CDCl₃) δ 7.59 (d, 2H, J = 8.0 Hz), 7.33 (d, 2H, J = 8.0 Hz), 3.55 (t, 2H, J = 7.3 Hz), 3.27 (t, 2H, J = 7.1 Hz), 2.91 (t, 2H, J = 7.5 Hz), 2.34 (t, 2H, J = 8.0 Hz), 2.00-1.94 (m, 2H); ¹³C NMR (125.8 MHz, CDCl₃) δ 174.9, 144.3, 132.3, 129.4, 118.8, 110.5, 47.5, 43.3, 33.8, 30.8, 17.9; IR (neat) 3459, 2930, 2227, 1667, 1463, 1426, 1289, 825 cm⁻¹; HRMS (CI+) m/z calcd. for $C_{13}H_{15}N_2O$ (M+H⁺) 215.1184, NHBoc tert-Butyl 4-Cyanophenethylcarbamate (4a). This product was obtained by the general method from the reaction of potassium β -aminoethyltrifluoroborate 1d (55.2 mg, 0.22 mmol), and 4-bromobenzonitrile (36.4 mg, 0.2 mmol) to afford the title compound as a white solid (35.9 mg, 73% yield). mp = 76-78 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.59 (d, 2H, J = 8.1 Hz), 7.30 (d, 2H, J = 7.9 Hz), 4.57 (br s, 1H), 3.39-3.38 (m, 2H), 2.86 (app t, 2H, J = 7.0 Hz), 1.42 (s, 9H); ¹³C NMR (125.8 MHz, CDCl₃) δ 155.7, 144.7, 132.3, 129.6, 118.8, 110.3, 79.5, 41.2, 36.4, 28.3; IR (neat) 3357, 2977, 2228, 1697, 1505, 1251, 1170, 823 cm⁻¹; HRMS (CI+) m/z calcd. for C₁₄H₁₉N₂O₂ (M+H⁺) 247.1446, found 247.1445.

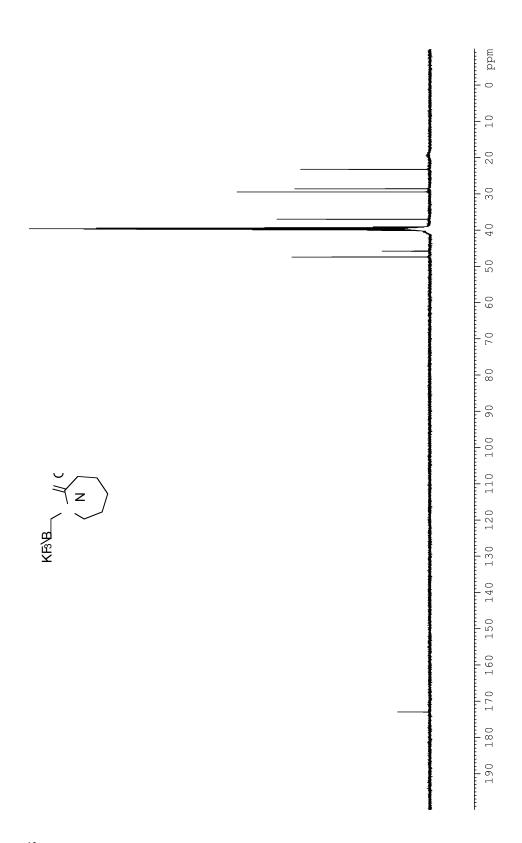

NHCbz Benzyl 4-Cyanophenethylcarbamate (4b). This product was obtained by the general method from the reaction of potassium β -aminoethyltrifluoroborate 1e (62.7 mg, 0.22 mmol), and 4-bromobenzonitrile (36.4 mg, 0.2 mmol) to afford the title compound as a white solid (39.7 mg, 71% yield). mp = 81-83°C; ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, 2H, J = 7.9 Hz), 7.37-7.31 (m, 5H), 7.27 (d, 2H, J = 7.7 Hz), 5.08 (s, 2H), 4.78 (br s, 1H), 3.48-3.44 (m, 2H), 2.88 (app t, 2H, J = 6.6 Hz); ¹³C NMR (125.8 MHz, CDCl₃) δ 156.1, 144.3, 136.3, 132.3, 129.5, 128.5, 128.2, 128.1, 118.7, 110.4, 66.7, 41.6, 36.2; IR (neat) 3341, 2938, 2359, 2227, 1703, 1529, 1248, 1136, 823 cm⁻¹; HRMS (CI+) m/z calcd. for C₁₇H₁₆N₂O₂ (M+H⁺) 281.1290, found 281.1284.

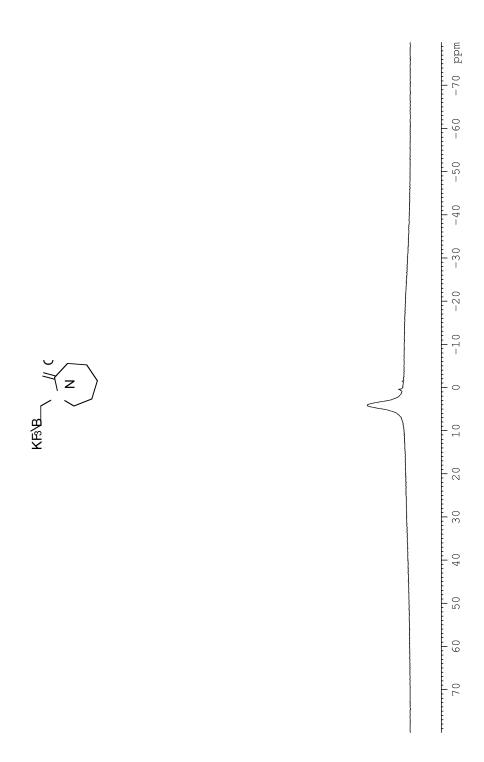
References

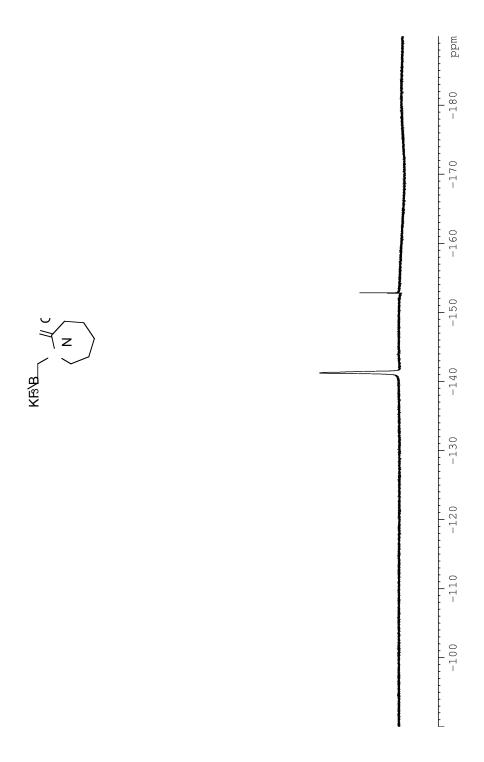

- (1) *N*-Boc Vinyl carbamate was prepared according to the procedure described for the Cbz analogue (Reference 2); using *tert*-butanol instead of benzyl alcohol.
- (2) Wieber, G. M; Hegedus, L. S.; Åkermark, B.; Michalson, E. T. J. Org. Chem. 1989, 54, 4649-4653.
- (3) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
- (4) Kalinin, A. V.; Scherer, S.; Snieckus, V. Angew. Chem. Int. Ed. 2003, 42, 3399-3404.
- (5) Prieto, M.; Zurita, E.; Rosa, E.; Munoz, L.; Lloyd-Williams, P.; Giralt, E. J. Org. Chem. **2004**, *69*, 6812-6820.

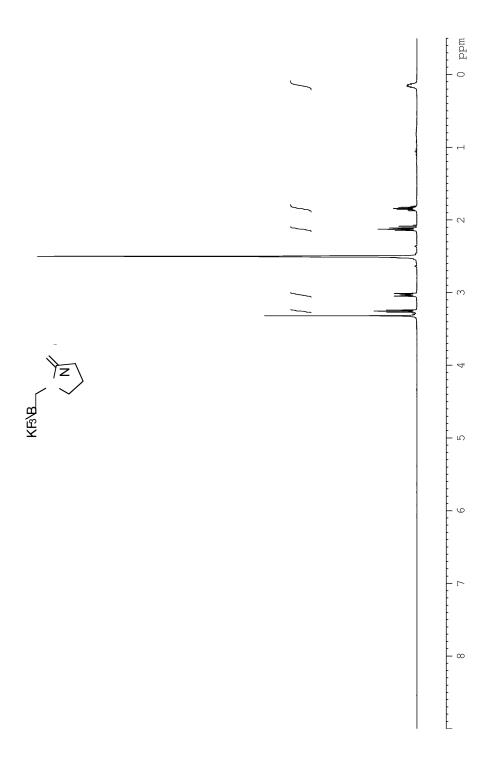

¹H NMR (500 MHz, Acetone-*d6*) Spectrum of **1a**

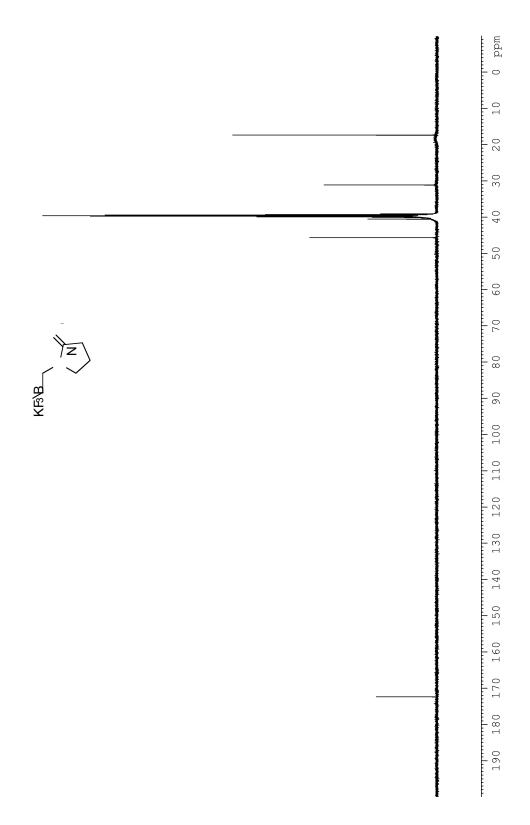

¹³C NMR (125.8 MHz, Acetone-*d6*) Spectrum of **1a**


¹¹B NMR (128.4 MHz, Acetone-*d6*) Spectrum of **1a**

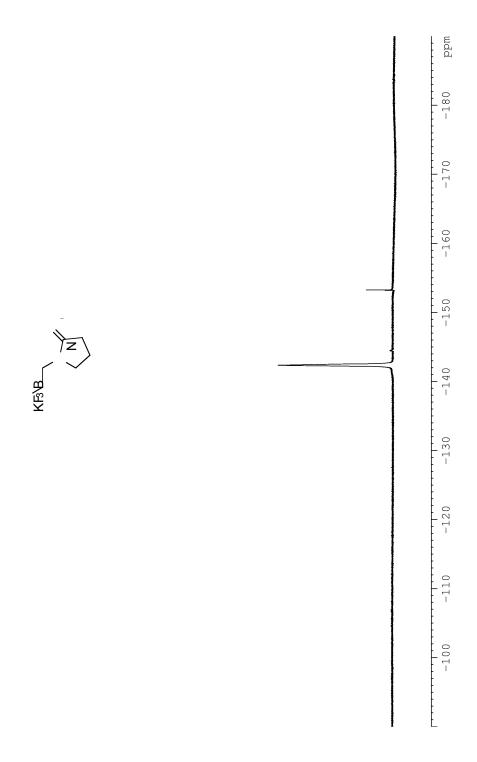

¹⁹F NMR (470.8 MHz, Acetone-*d6*) Spectrum of **1a**

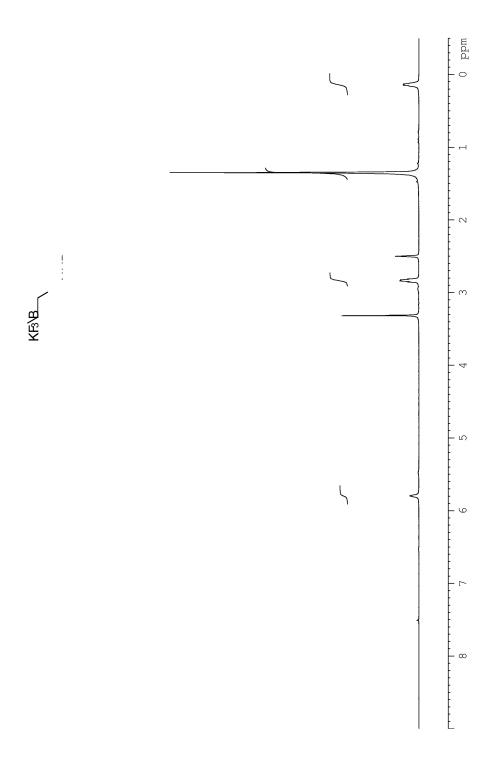

¹H NMR (500 MHz, DMSO-*d6*) Spectrum of **1b**

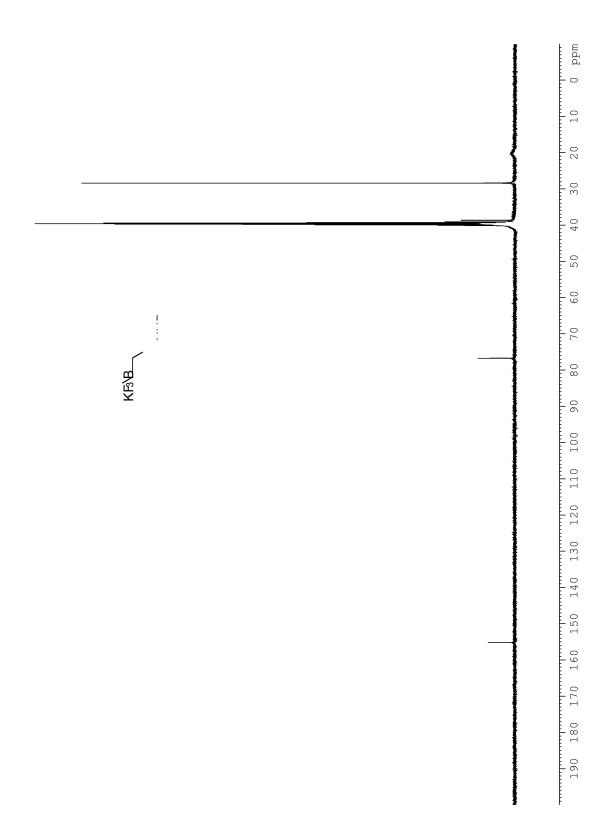

¹³C NMR (125.8 MHz, DMSO-*d6*) Spectrum of **1b**

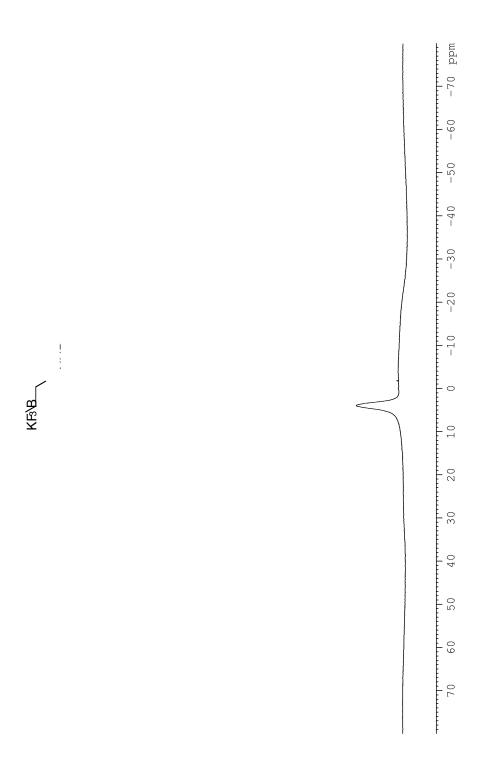

¹¹B NMR (128.4 MHz, DMSO-*d6*) Spectrum of **1b**

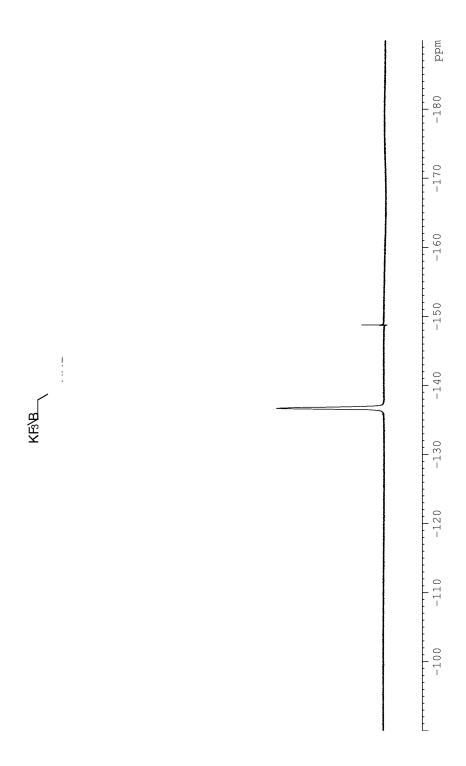

¹⁹F NMR (470.8 MHz, DMSO-*d6*) Spectrum of **1b**

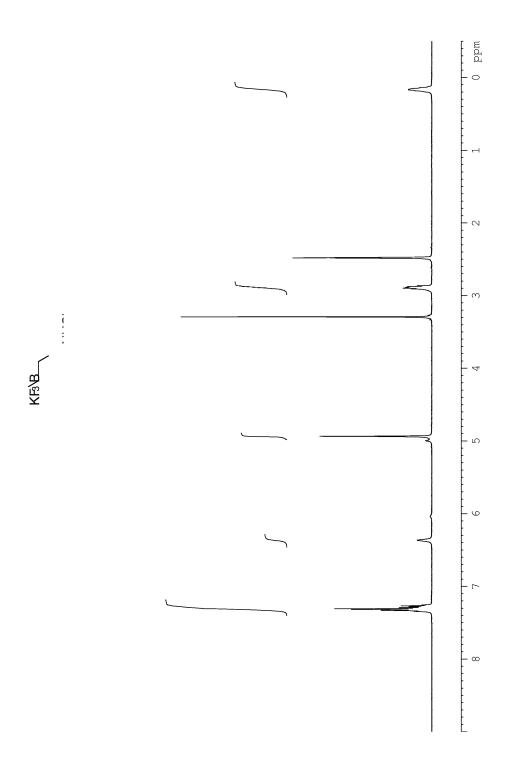

 1 H NMR (500 MHz, DMSO-d6) Spectrum of 1c

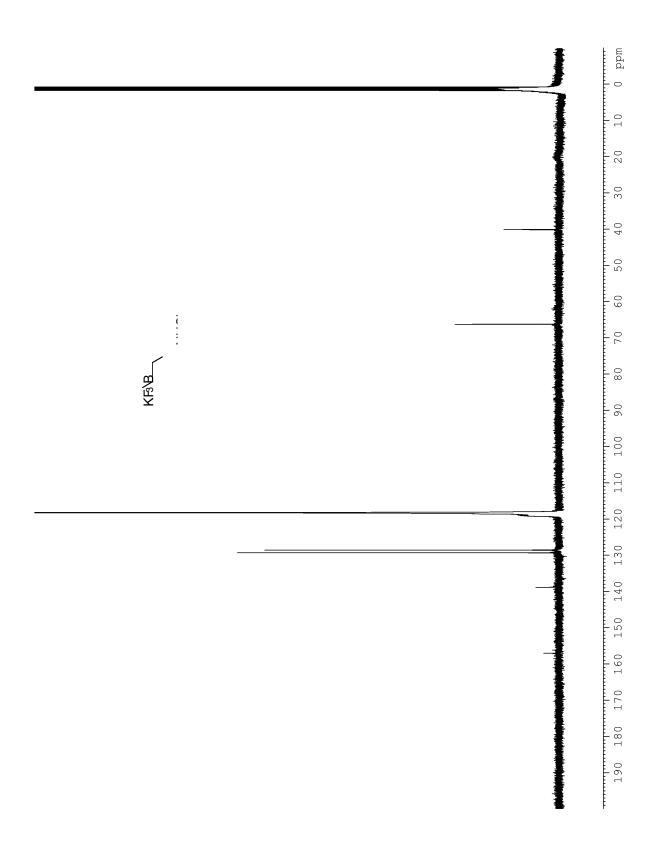

 13 C NMR (125.8 MHz, DMSO-d6) Spectrum of 1c

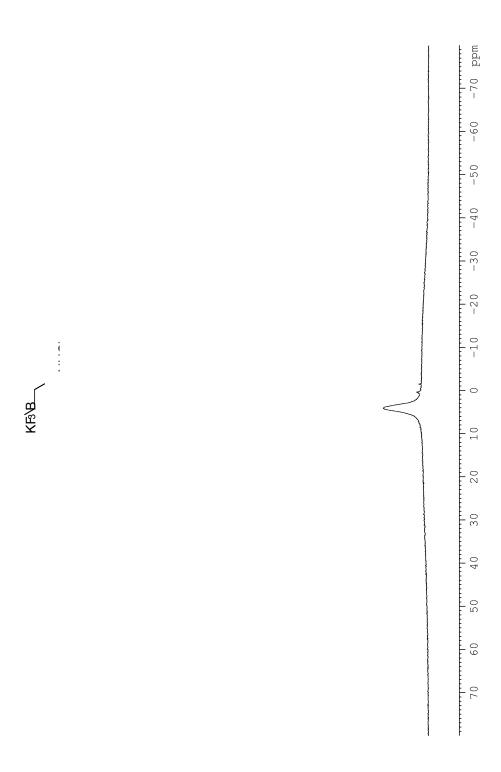

¹¹B NMR (128.4 MHz, DMSO-*d6*) Spectrum of **1c**

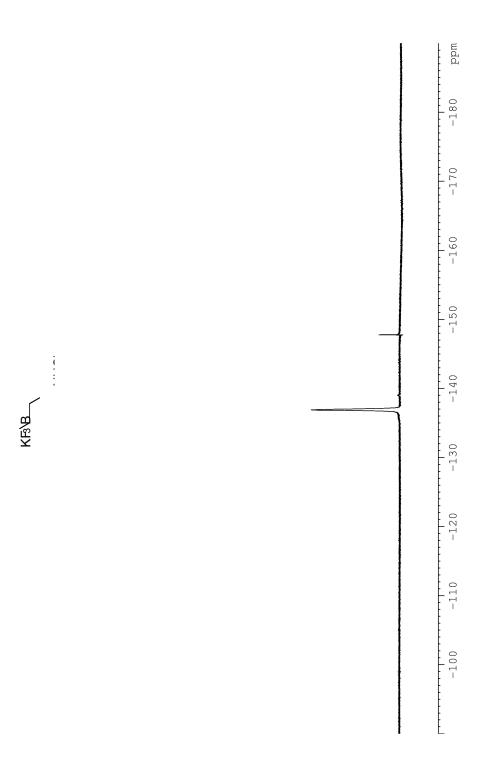

¹⁹F NMR (470.8 MHz, DMSO-*d6*) Spectrum of **1c**

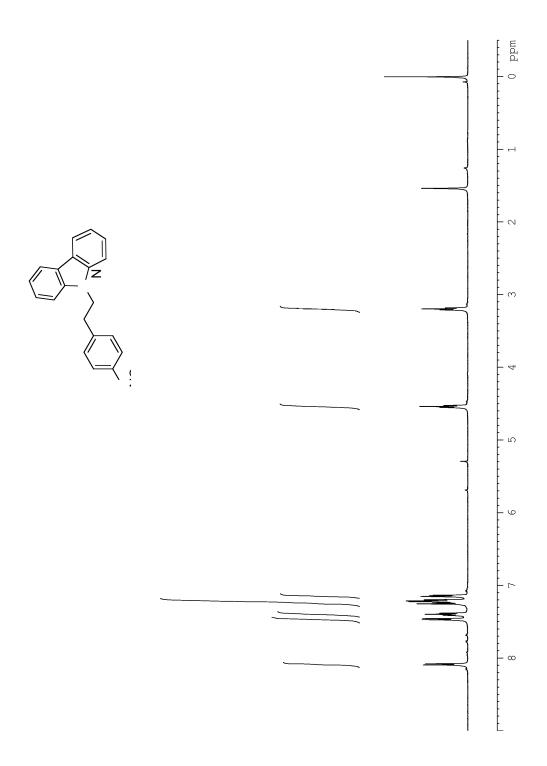

¹H NMR (500 MHz, DMSO-*d6*) Spectrum of **1d**

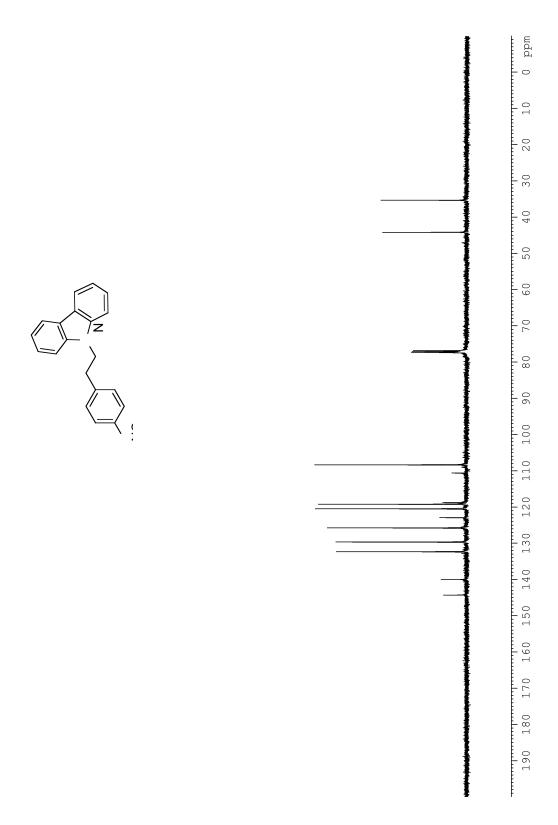

¹³C NMR (125.8 MHz, DMSO-*d6*) Spectrum of **1d**

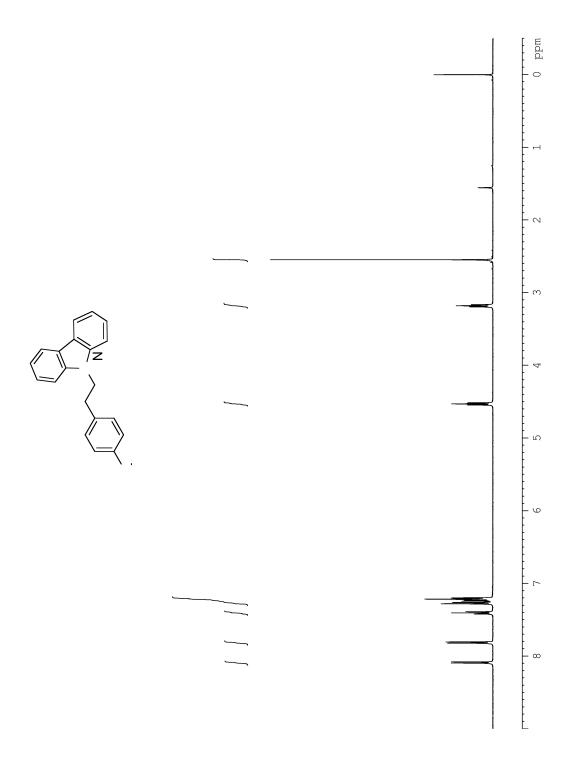

¹¹B NMR (128.4 MHz, DMSO-*d6*) Spectrum of **1d**

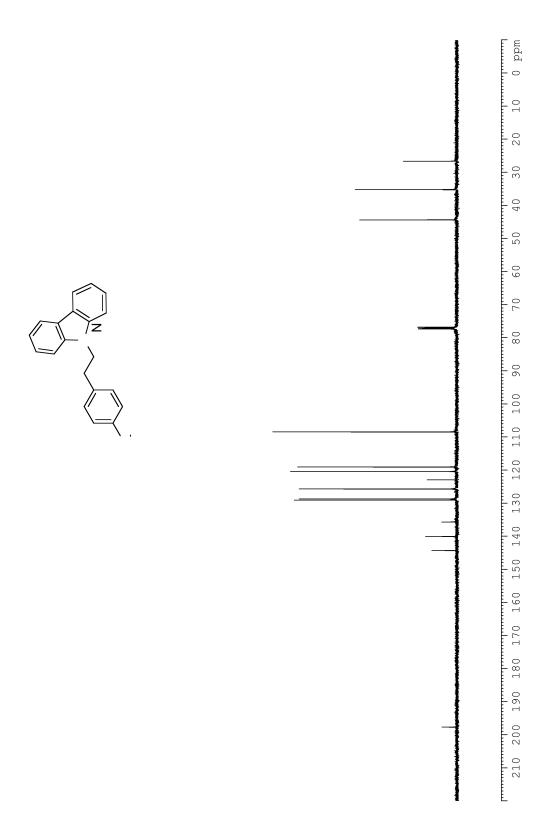

¹⁹F NMR (470.8 MHz, DMSO-*d6*) Spectrum of **1d**

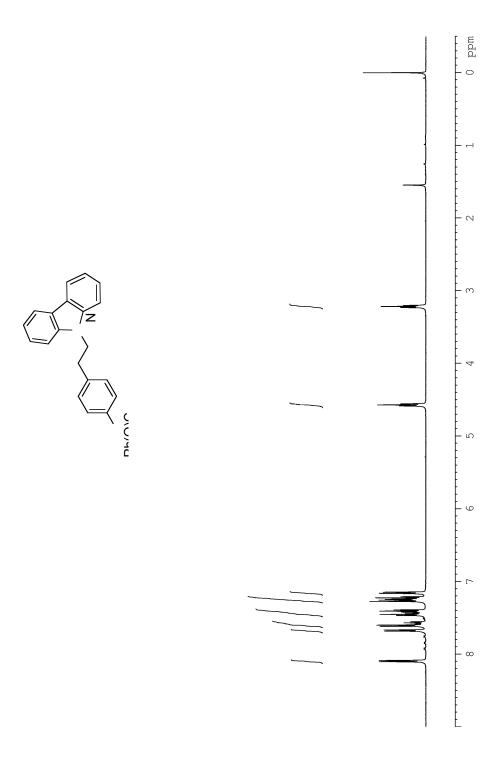

¹H NMR (500 MHz, DMSO-*d6*) Spectrum of **1e**

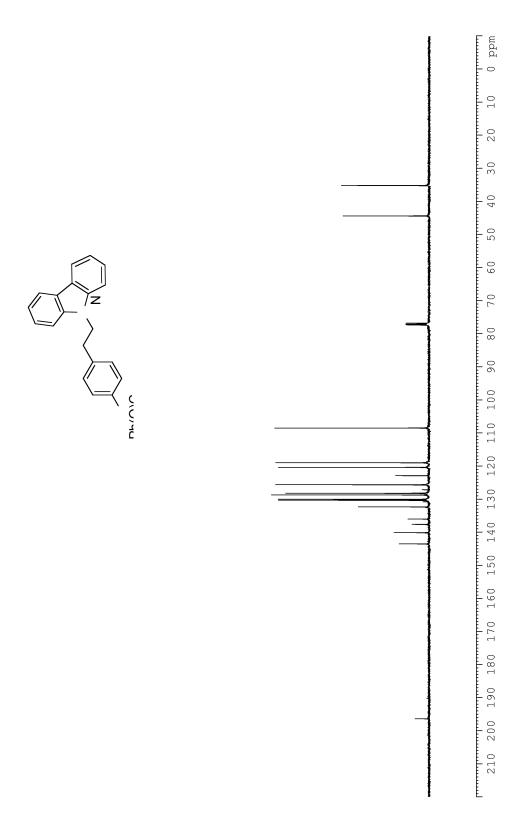

 13 C NMR (125.8 MHz, CD₃CN) Spectrum of 1e

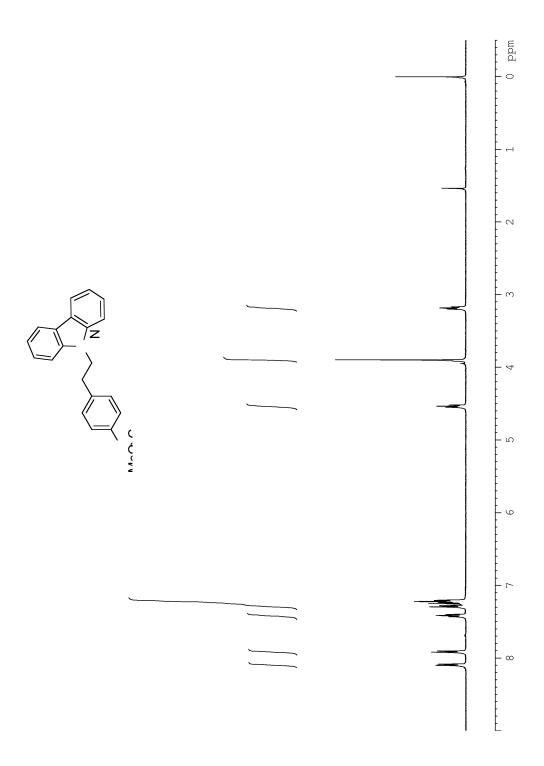

¹¹B NMR (128.4 MHz, DMSO-d6) Spectrum of **1e**

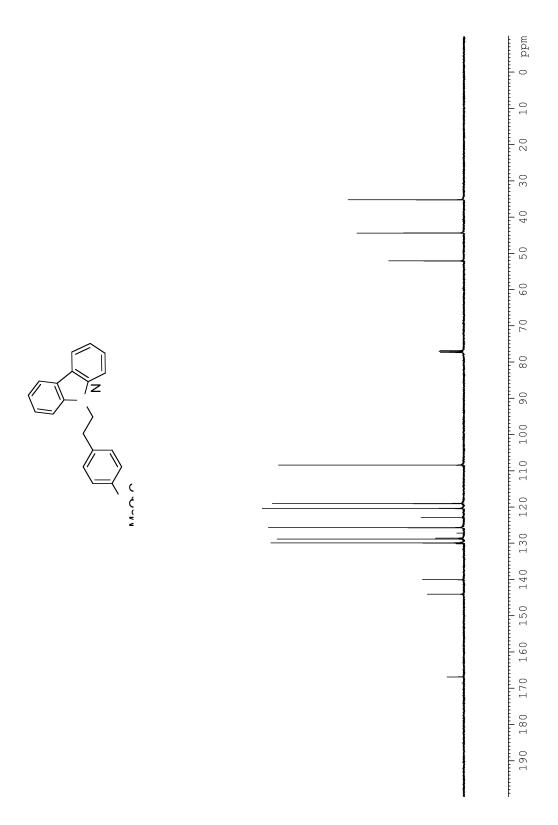

¹⁹F NMR (470.8 MHz, DMSO-*d6*) Spectrum of **1e**

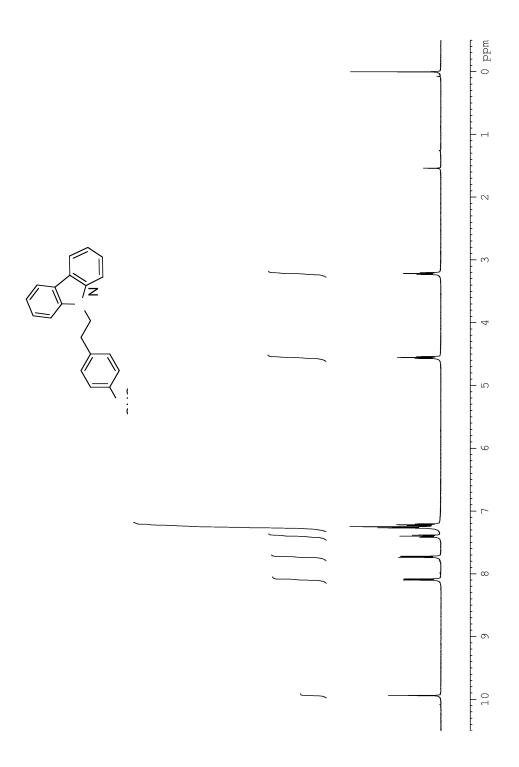

¹H NMR (500 MHz, CDCl₃) Spectrum of **2a**

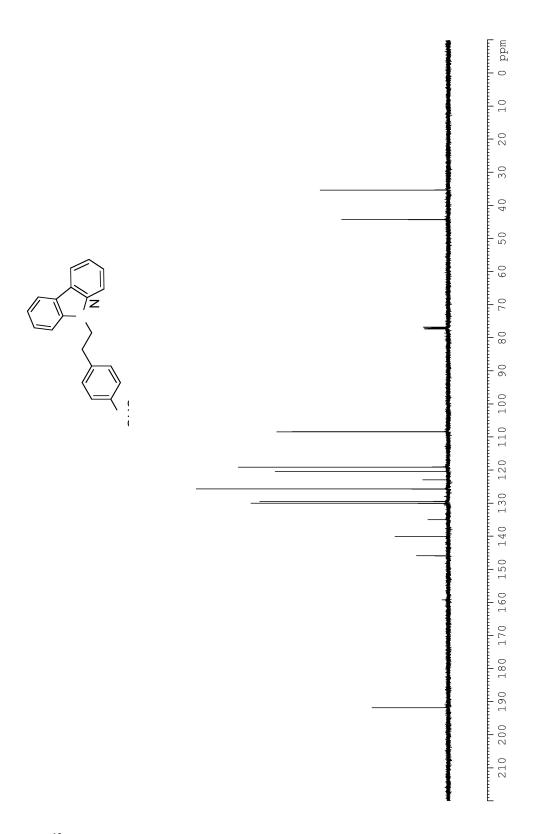

¹³ C NMR (125.8 MHz, CDCl₃) Spectrum of **2a**

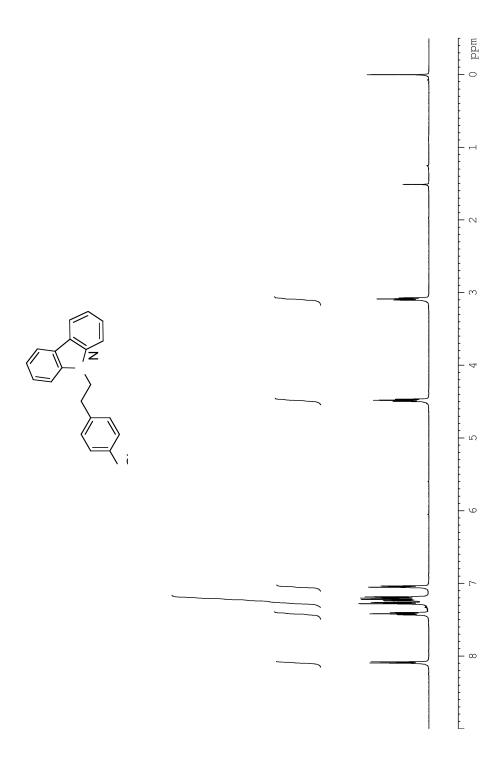

¹H NMR (500 MHz, CDCl₃) Spectrum of **2b**

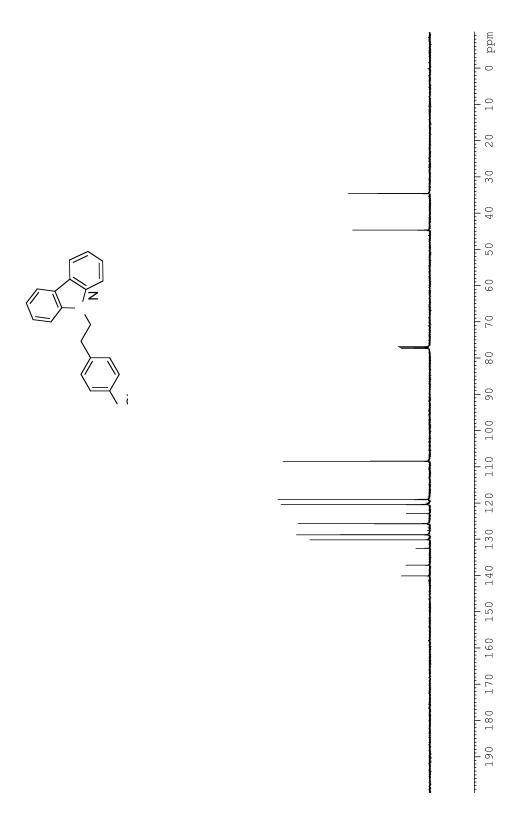

¹³ C NMR (125.8 MHz, CDCl₃) Spectrum of **2b**

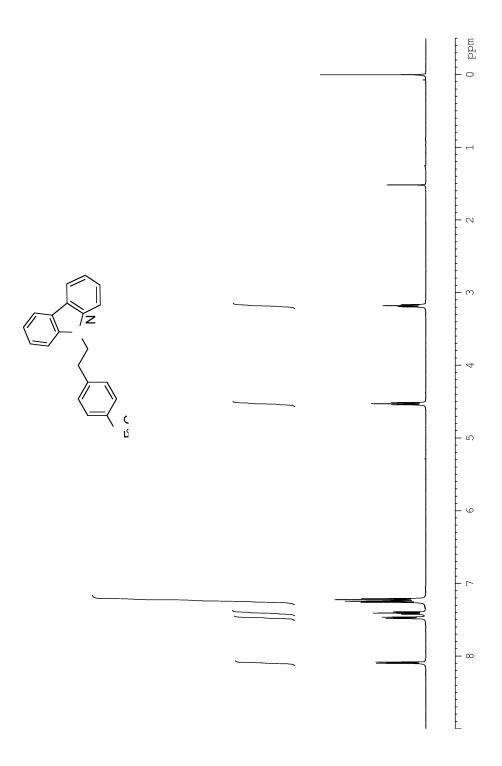

¹H NMR (500 MHz, CDCl₃) Spectrum of **2c**

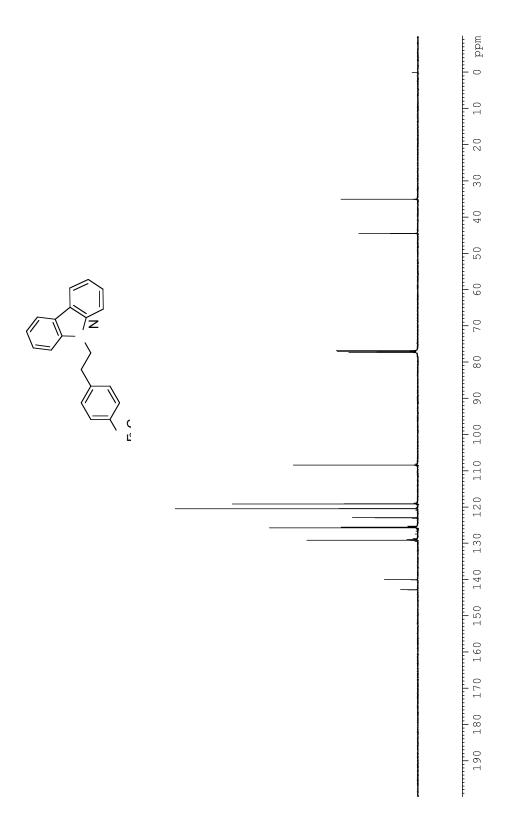

¹³ C NMR (125.8 MHz, CDCl₃) Spectrum of **2c**

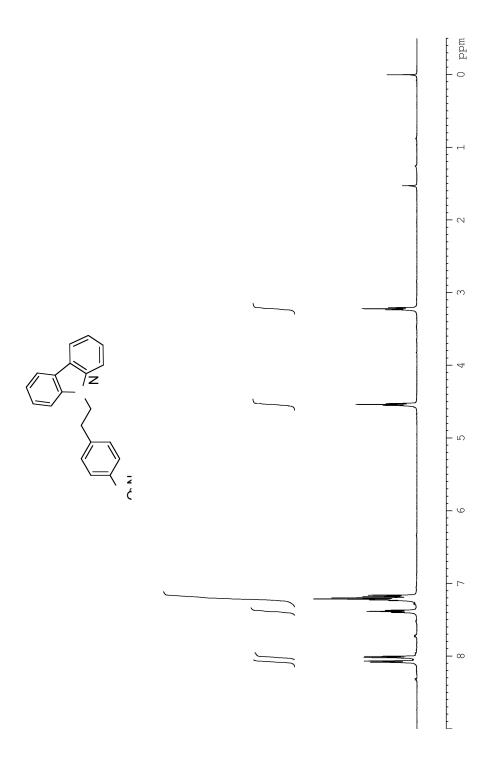

¹H NMR (500 MHz, CDCl₃) Spectrum of **2d**


¹³ C NMR (125.8 MHz, CDCl₃) Spectrum of **2d**

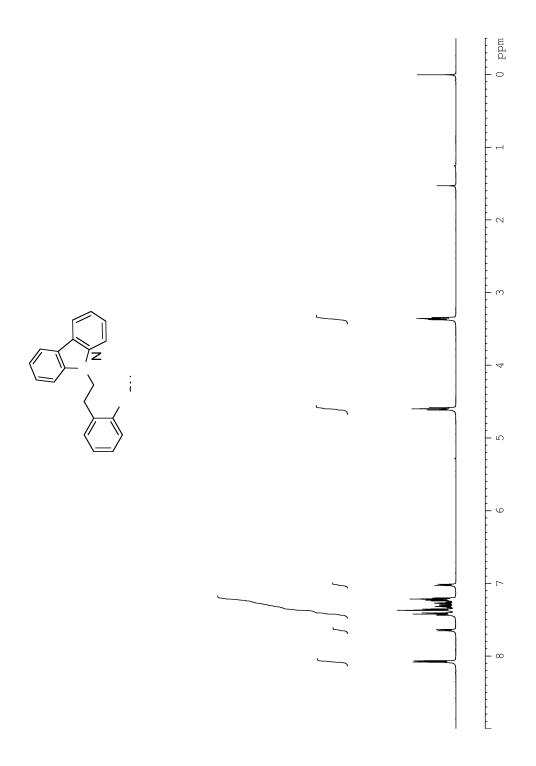

¹H NMR (500 MHz, CDCl₃) Spectrum of **2e**

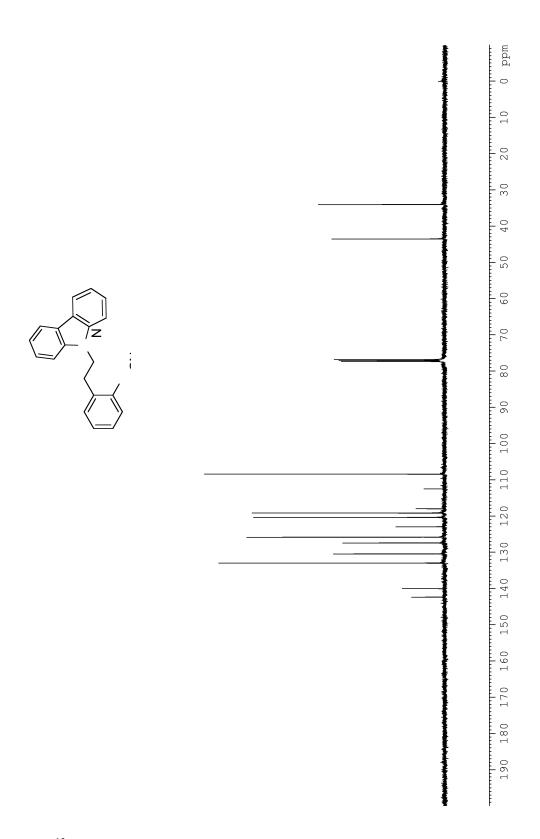

¹³ C NMR (125.8 MHz, CDCl₃) Spectrum of **2e**

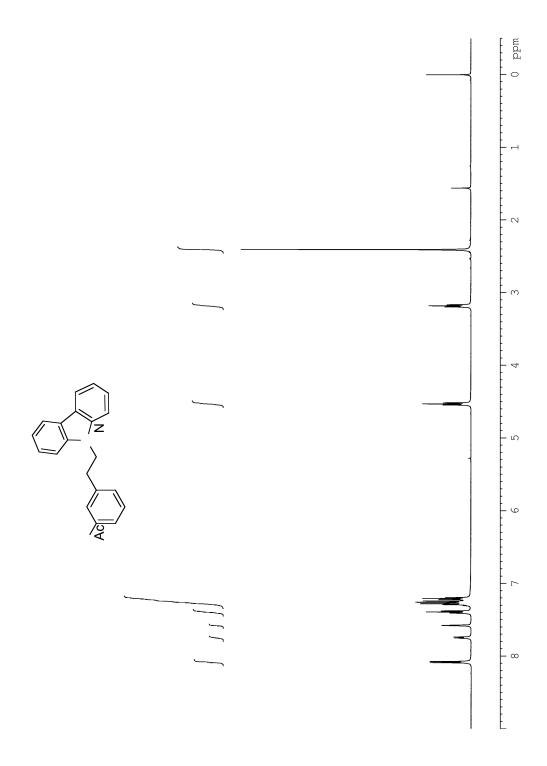

¹H NMR (500 MHz, CDCl₃) Spectrum of **2f**

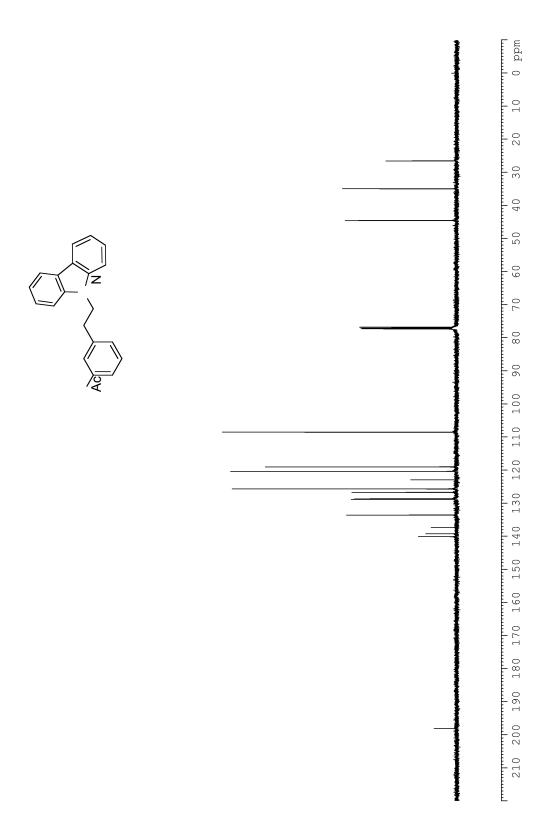

¹³ C NMR (125.8 MHz, CDCl₃) Spectrum of **2f**

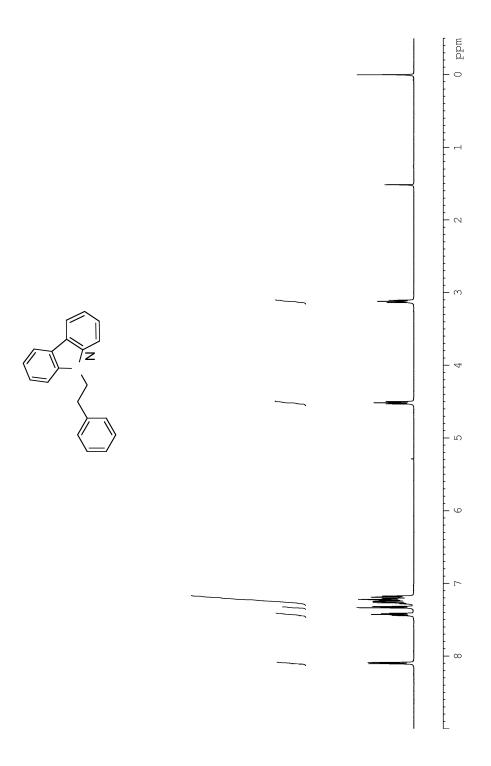
¹H NMR (500 MHz, CDCl₃) Spectrum of **2g**

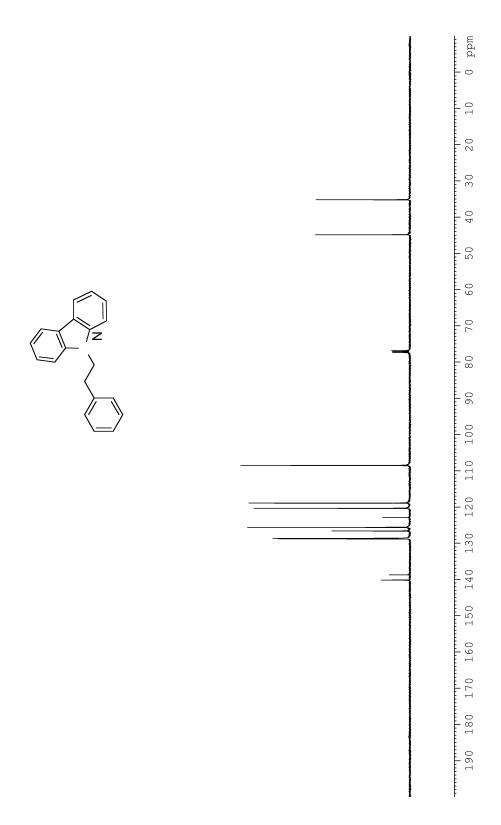

¹³ C NMR (125.8 MHz, CDCl₃) Spectrum of **2g**

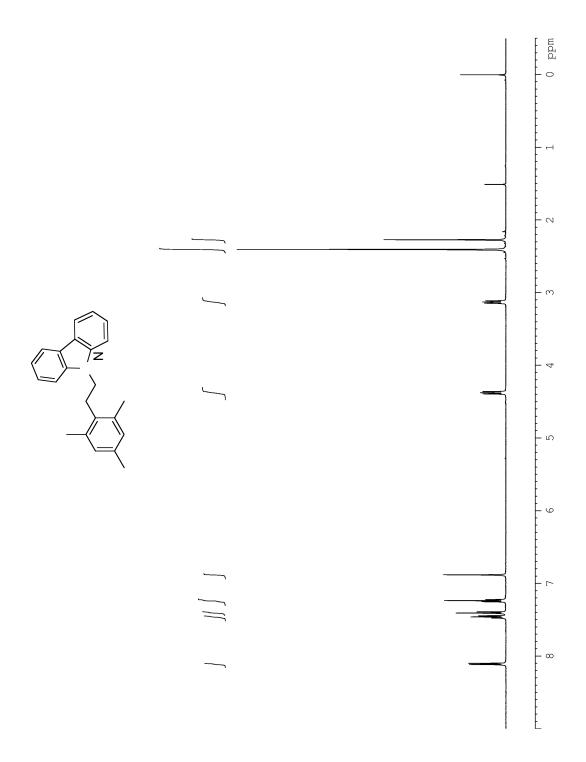

¹H NMR (500 MHz, CDCl₃) Spectrum of **2h**

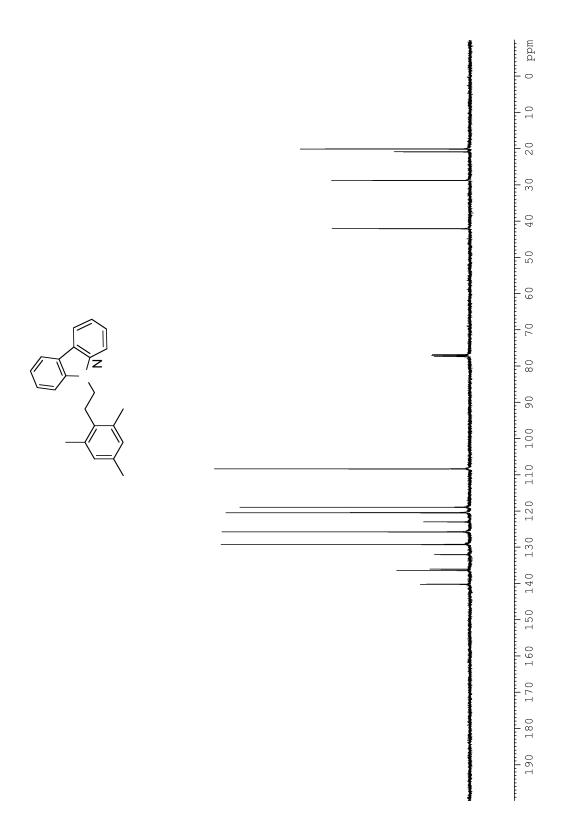

¹³ C NMR (125.8 MHz, CDCl₃) Spectrum of **2h**

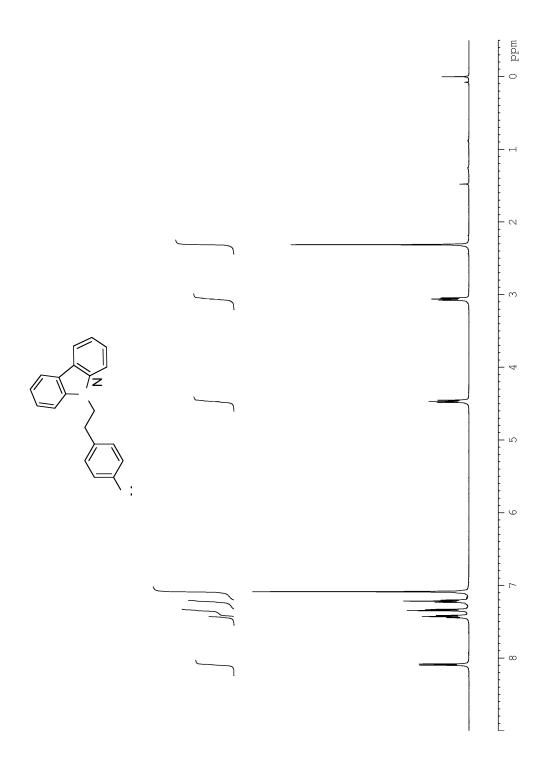

¹H NMR (500 MHz, CDCl₃) Spectrum of **2i**

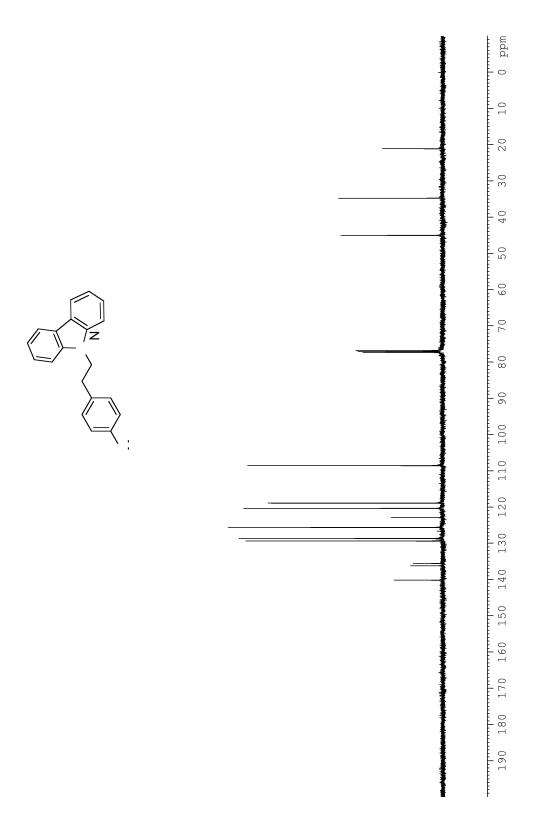

¹³ C NMR (125.8 MHz, CDCl₃) Spectrum of **2i**

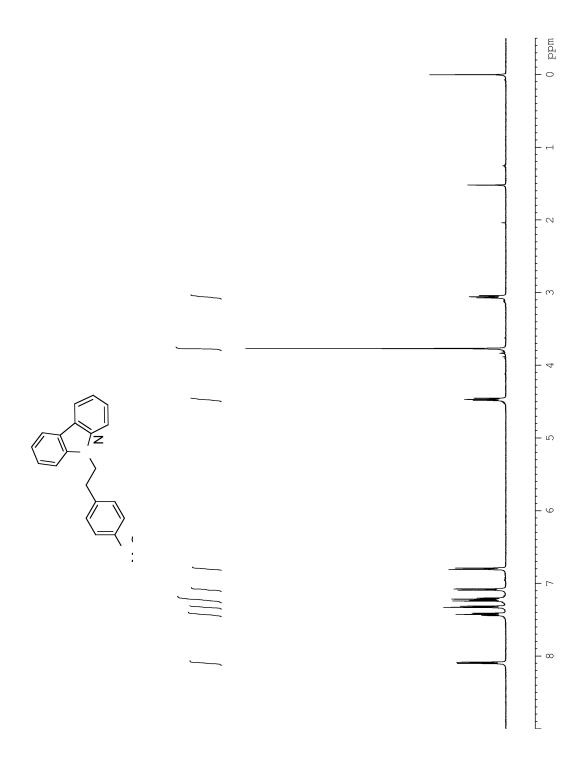

¹H NMR (500 MHz, CDCl₃) Spectrum of **2j**

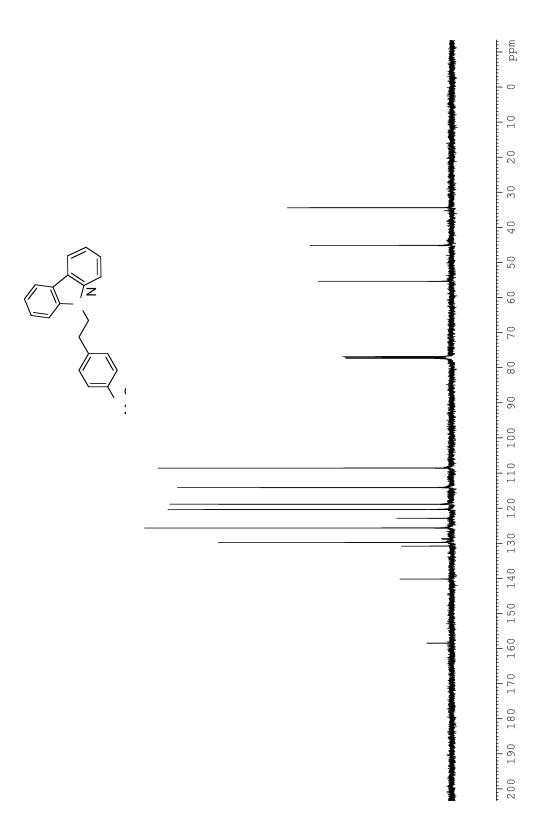

¹³ C NMR (125.8 MHz, CDCl₃) Spectrum of **2j**

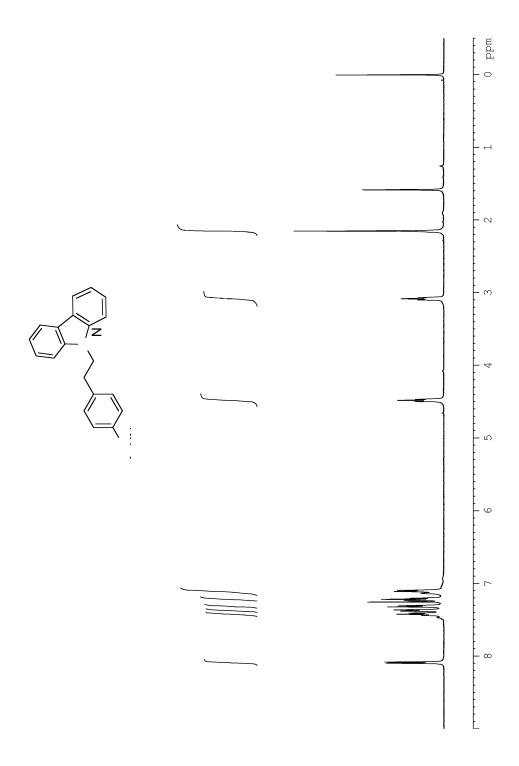

¹H NMR (500 MHz, CDCl₃) Spectrum of **2k**

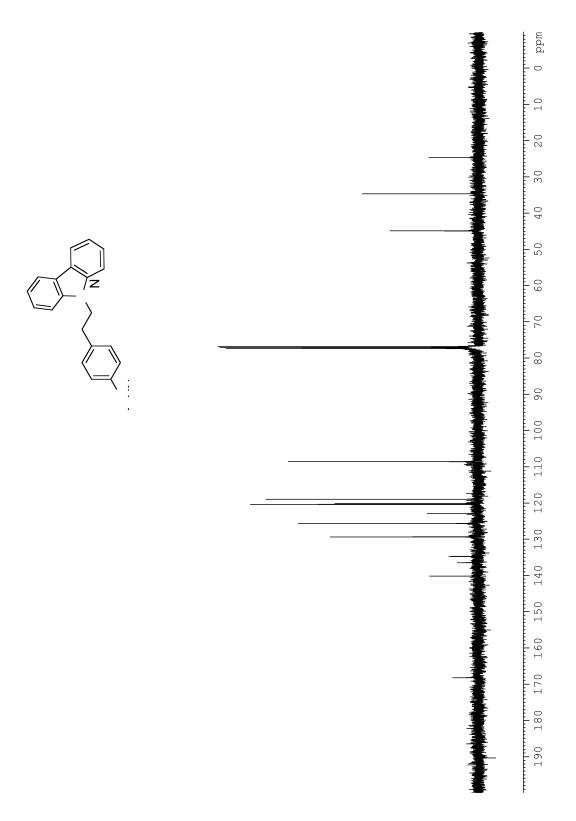

¹³ C NMR (125.8 MHz, CDCl₃) Spectrum of **2k**

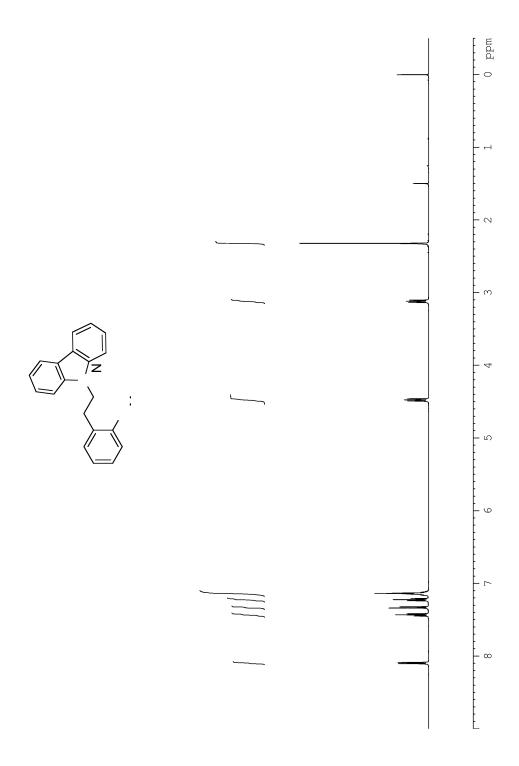

¹H NMR (500 MHz, CDCl₃) Spectrum of **21**

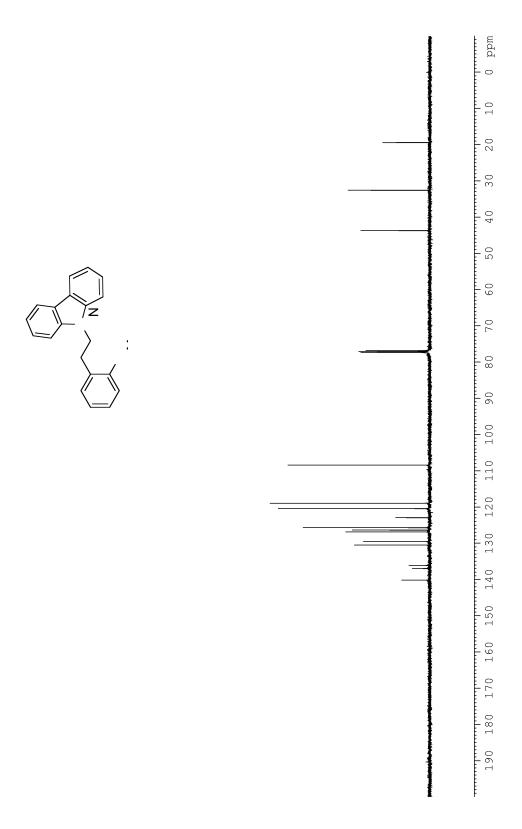

¹³ C NMR (125.8 MHz, CDCl₃) Spectrum of **21**

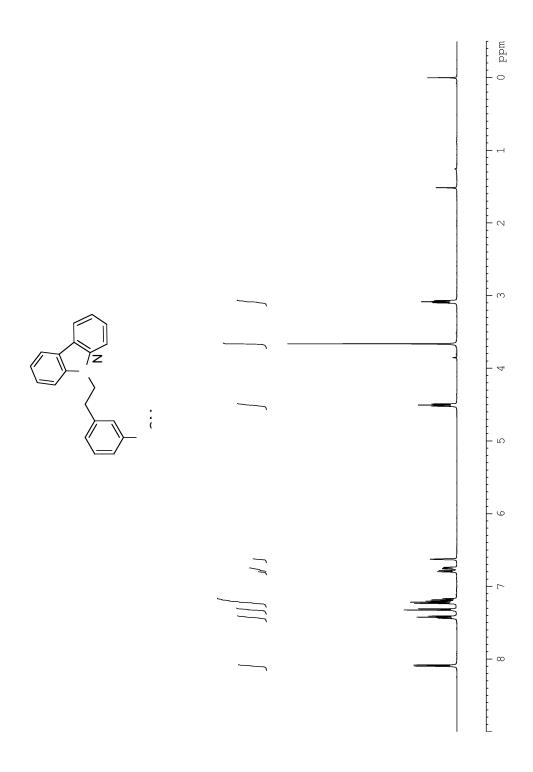

¹H NMR (500 MHz, CDCl₃) Spectrum of **2m**

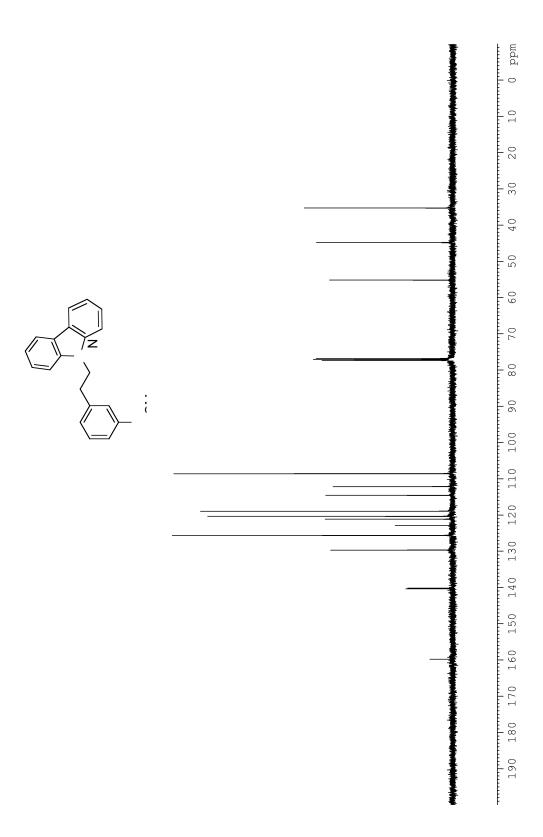

¹³ C NMR (125.8 MHz, CDCl₃) Spectrum of **2m**

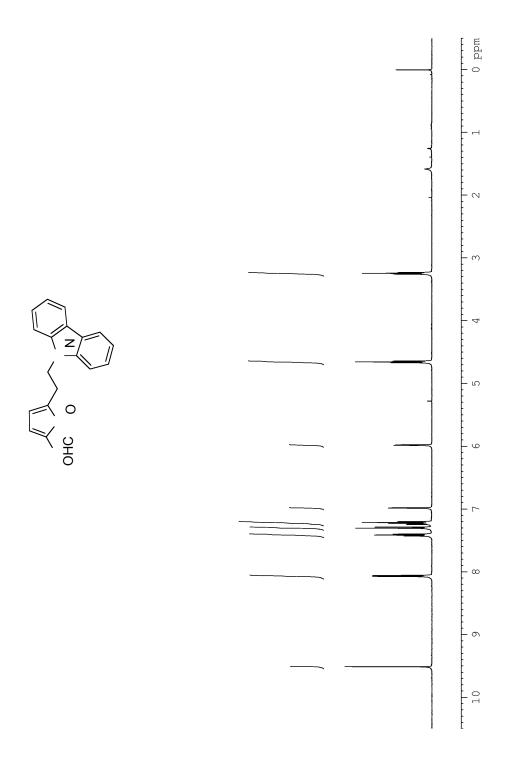

¹H NMR (500 MHz, CDCl₃) Spectrum of **2n**

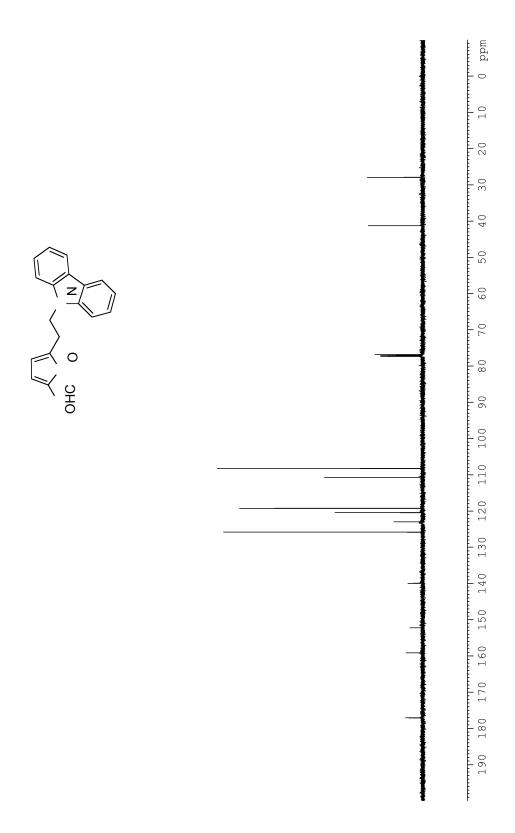

¹³ C NMR (125.8 MHz, CDCl₃) Spectrum of **2n**

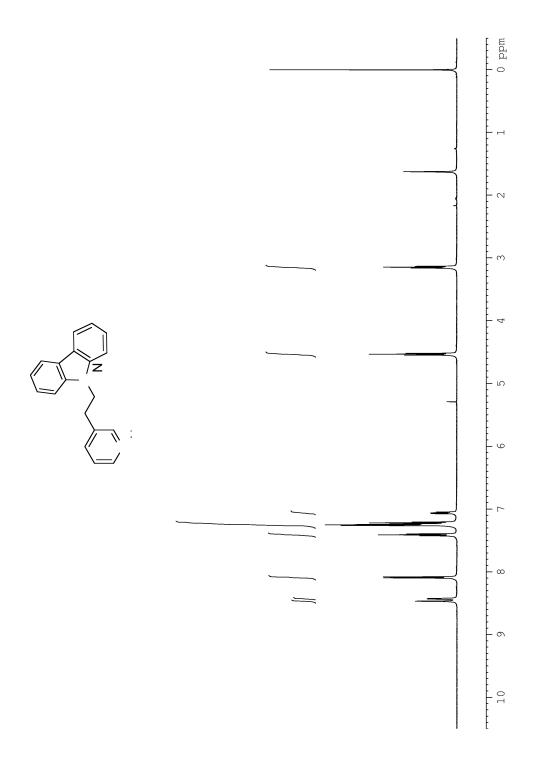

¹H NMR (500 MHz, CDCl₃) Spectrum of **20**

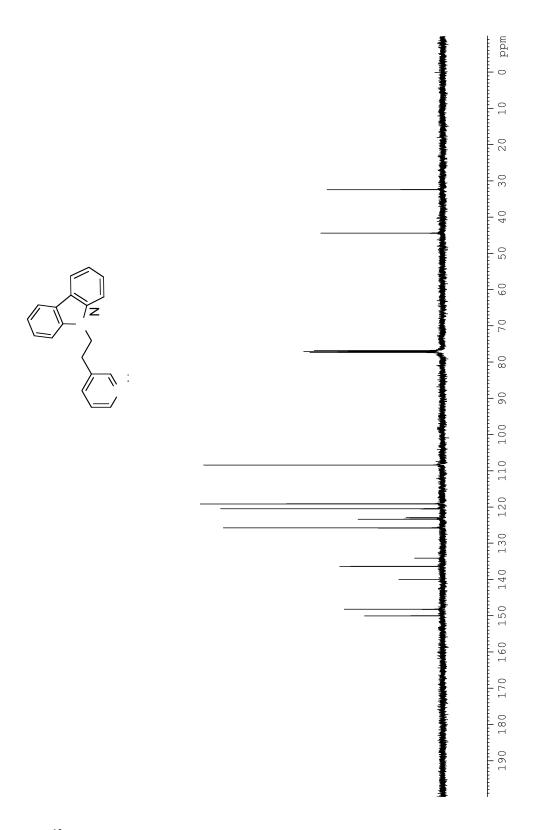

¹³ C NMR (125.8 MHz, CDCl₃) Spectrum of **20**

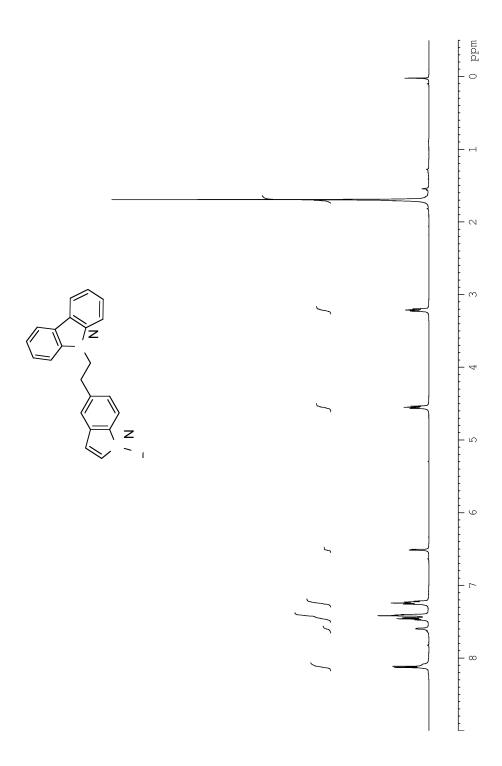

¹H NMR (500 MHz, CDCl₃) Spectrum of **2p**

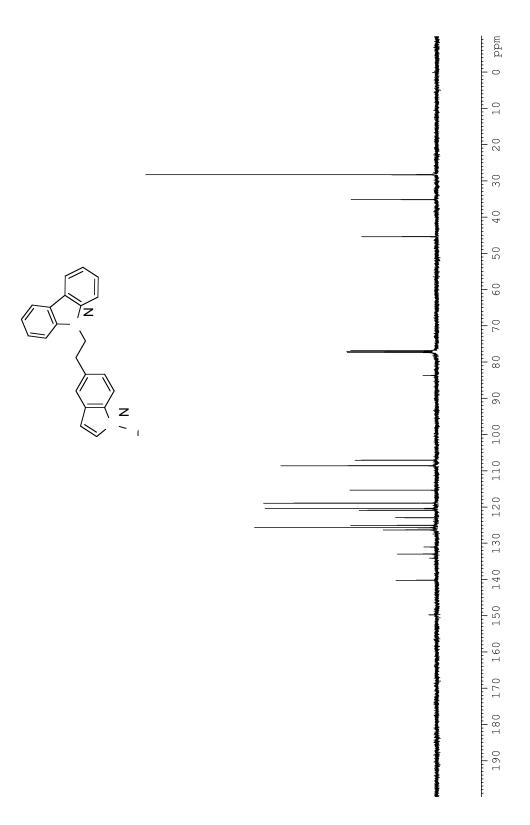

¹³ C NMR (125.8 MHz, CDCl₃) Spectrum of **2p**

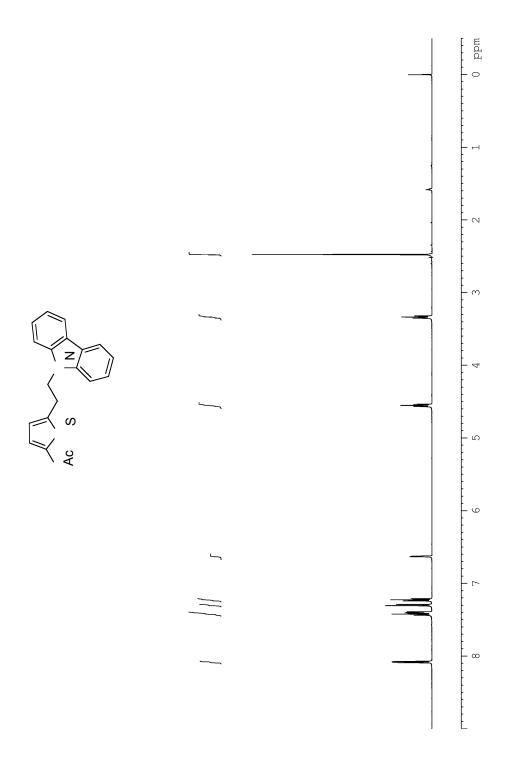

¹H NMR (500 MHz, CDCl₃) Spectrum of **2q**

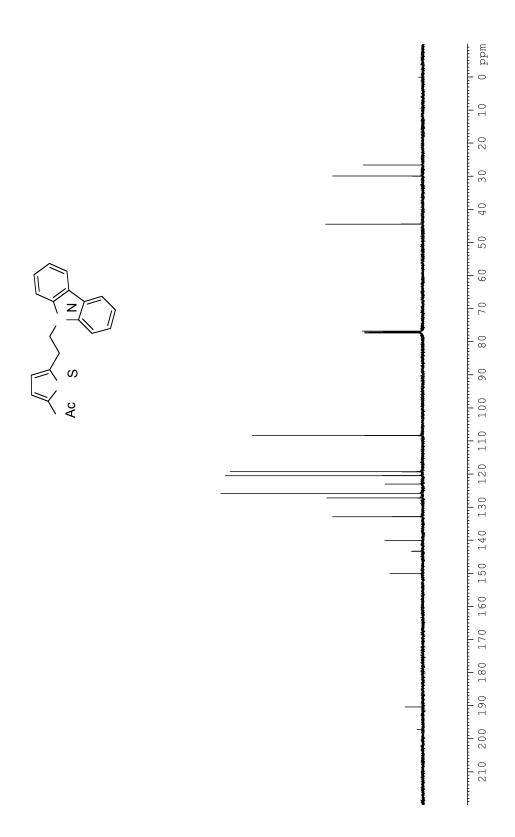

¹³ C NMR (125.8 MHz, CDCl₃) Spectrum of **2q**

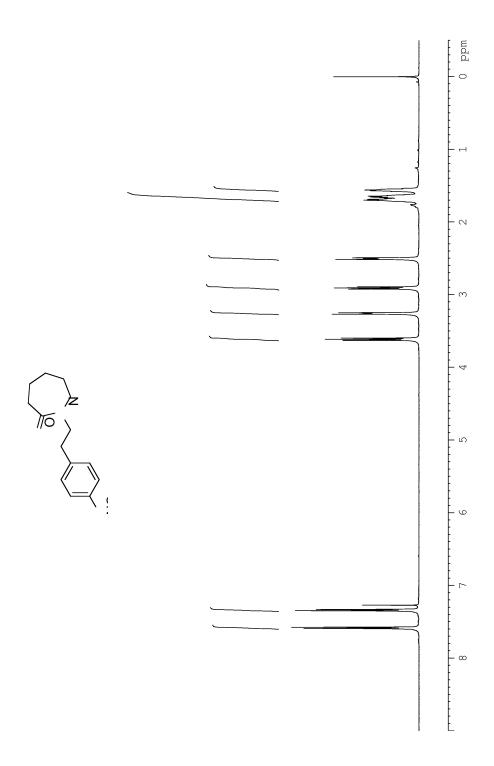

¹H NMR (500 MHz, CDCl₃) Spectrum of **2r**


¹³ C NMR (125.8 MHz, CDCl₃) Spectrum of **2r**

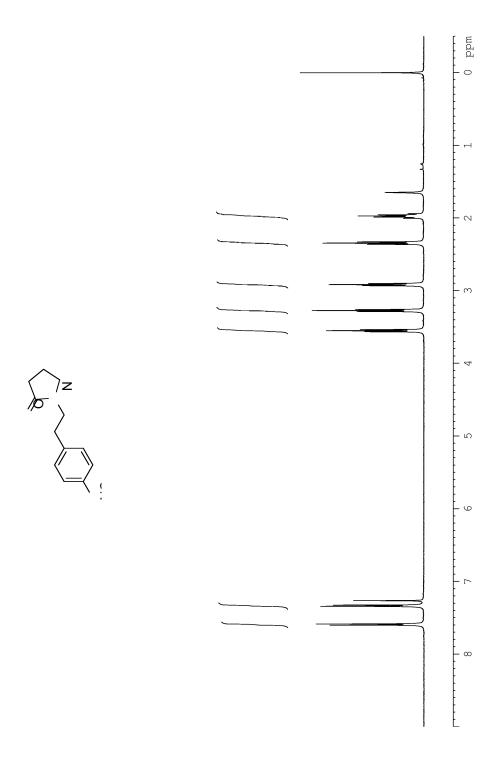

¹H NMR (500 MHz, CDCl₃) Spectrum of **2s**

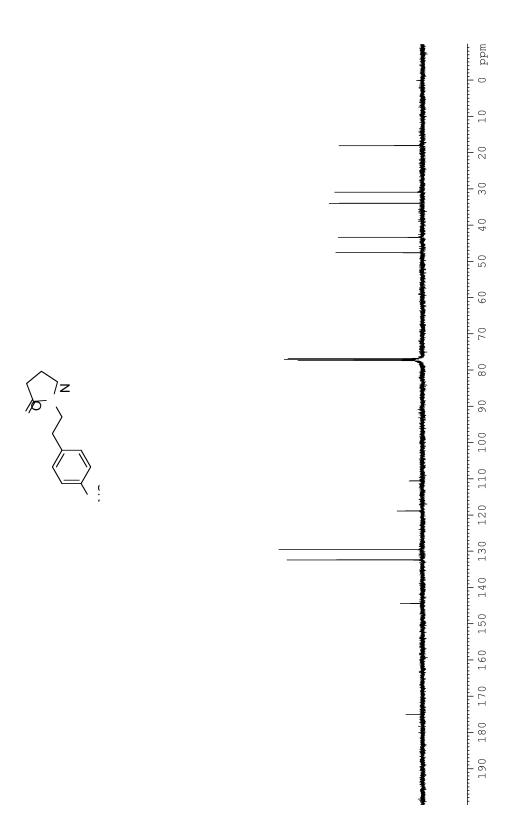

¹³ C NMR (125.8 MHz, CDCl₃) Spectrum of **2s**

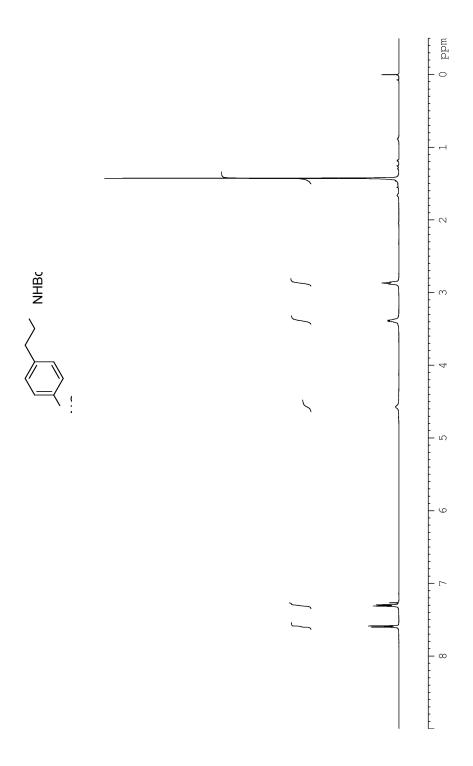

¹H NMR (500 MHz, CDCl₃) Spectrum of **2t**

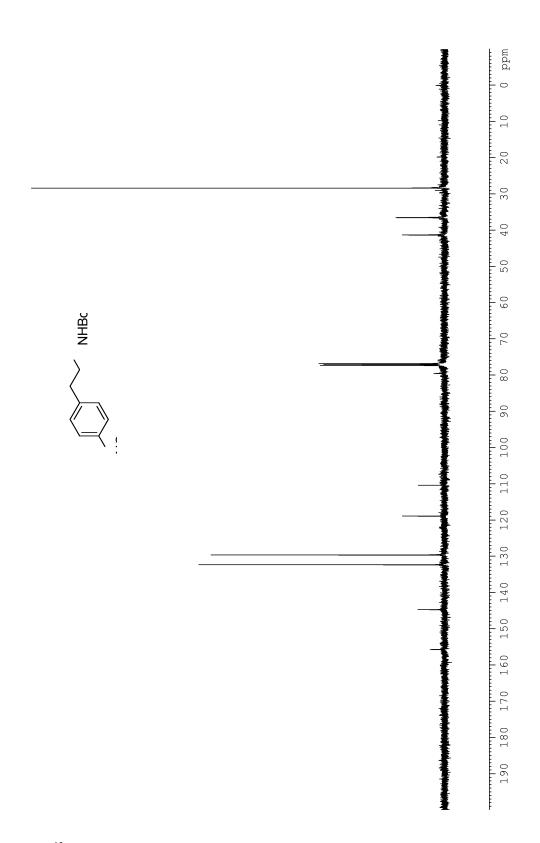

¹³ C NMR (125.8 MHz, CDCl₃) Spectrum of **2t**

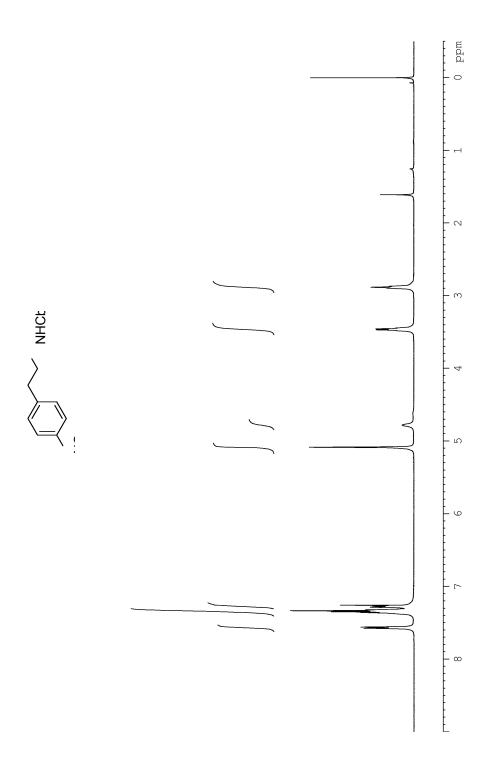
¹H NMR (500 MHz, CDCl₃) Spectrum of **2u**

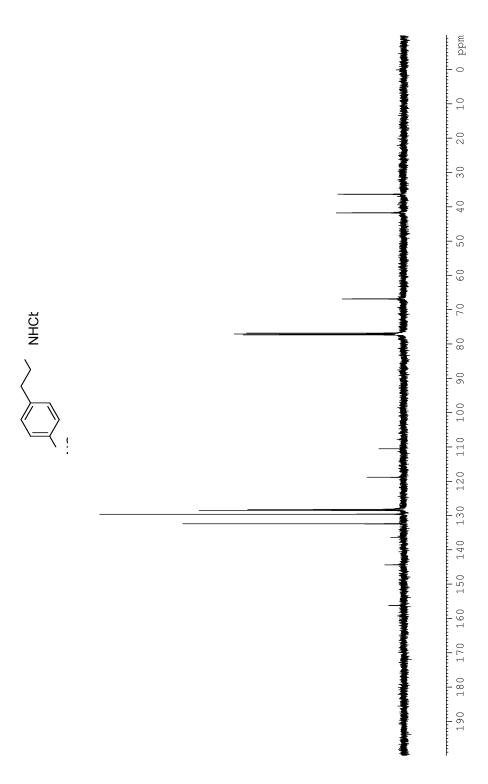

¹³ C NMR (125.8 MHz, CDCl₃) Spectrum of **2u**


¹H NMR (500 MHz, CDCl₃) Spectrum of **3a**


¹³ C NMR (125.8 MHz, CDCl₃) Spectrum of **3a**


¹H NMR (500 MHz, CDCl₃) Spectrum of **3b**


¹³ C NMR (125.8 MHz, CDCl₃) Spectrum of **3b**


¹H NMR (500 MHz, CDCl₃) Spectrum of **4a**

¹³ C NMR (125.8 MHz, CDCl₃) Spectrum of **4a**

¹H NMR (500 MHz, CDCl₃) Spectrum of **4b**

¹³ C NMR (125.8 MHz, CDCl₃) Spectrum of **4b**