INFECTION AND IMMUNITY, Sept. 1988, p. 2400-2406
0019-9567/88/092400-07$02.00/0
Copyright © 1988, American Society for Microbiology

Vol. 56, No. 9

Resistance to Plasmodium chabaudi in B10 Mice: Influence of the
H-2 Complex and Testosterone

FRANK WUNDERLICH,* HORST MOSSMANN,? MICHAEL HELWIG,! anp GABI SCHILLINGER!

Division of Parasitology, Institute of Zoology, University of Duesseldorf, D-4000 Duesseldorf,* and
Max Planck Institute for Inmunobiology, D-7800 Freiburg,* Federal Republic of Germany

Received 23 February 1988/Accepted 17 June 1988

Resistance to Plasmodium chabaudi has been examined in different inbred mouse strains bearing identical
H-2 haplotypes on different genetic backgrounds as well as in H-2-congenic mouse strains on B10 background.
Resistance is expressed in terms of percent survival after a challenge with 10° P. chabaudi-infected
erythrocytes. We can show that murine resistance to P. chabaudi is under complex polygenic control involving
a non-H-2 gene(s) as well as genes in both I-A and I-E subregions of the H-2 complex. Our data indicate in
particular that malaria protective antigens can be presented in context with I-A® molecules but not in context
with I-A* molecules. Resistance controlled by I-A” does not become apparent when I-E* molecules are
coincidentally expressed. Moreover, testosterone abrogates I-A”-controlled resistance to P. chabaudi.

Parasitic protozoans of the genus Plasmodium cause ma-
laria in humans and other vertebrates. The parasites asexu-
ally develop in the erythrocytes of the host (for a review, see
reference 4). The severity of Plasmodium infections varies
largely with the parasite-host combination, and considerable
variations exist even in a given host infected with a given
Plasmodium species (3, 6-8, 11). Recently, first attempts
have been undertaken to . identify genes in mice which
control resistance and susceptibility to Plasmodium infec-
tions. The results are still conflicting. Some authors claim
that resistance is controlled by one dominant autosomal gene
(39-41), presumably located on chromosome 1 (2). Other
authors, however, state that resistance is under polygenic
control (15) as in other protozoan infections in mice (42, 44).

In this context, two aspects are of particular interest.
First, an important role in the immune response in general is
played by the major histocompatibility complex, which
discriminates between self and nonself (23). The murine
major histocompatibility complex, the H-2 complex (25), has
been demonstrated to influence the susceptibility to different
types of infections caused, for example, by herpes simplex
virus type 1, cytomegalovirus, Listeria monocytogenes, and
Leishmania donovani (for a review, see reference 23). A
possible influence of H-2 genes on malaria infections has not
yet been unequivocally investigated to date (18). Second,
some information is available that murine resistance to
Plasmodium is sex dependent in that female mice are more
resistant than male mice. This is ascribed to a superior
erythropoietic system in female mice (40). However, it is
also conceivable that resistance is under a more direct
control of sex hormones. This prompted us to examine the
role of H-2 and the male sex hormone testosterone in
resistance and susceptibility to Plasmodium chabaudi in
mice.

MATERIALS AND METHODS

Parasite infection. Blood infections with P. chabaudi were
passaged weekly in NMRI mice (48). Parasitemia was mon-
itored in Giemsa-stained blood smears. Erythrocytes were
counted in a Neubauer chamber.

Mouse strains. The following mouse strains were bred in
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our own colony under specific pathogen-free conditions:
C57BL/10, B10.D2, B10.BR, B10.A, B10.A(3R), B10.A(4R),
B10.M, B10.RIII, BALB/c, and DBA/2J. F. Figueroa and J.
Klein (Max-Planck Institut fir Immungenetik, Tiibingen,
Federal Republic of Germany) kindly provided mice of the
following strains: C57BL/10, B10.A, B10.A(3R), B10.A(4R),
B10.RIII, and B10.OH. BALB/b mice were delivered from
Olac Laboratories (Bicester, England), and B10.A mice
were delivered from Jackson Laboratory (Bar Harbor,
Maine).

Resistance and susceptibility. All mice were challenged
with 10° P. chabaudi-parasitized erythrocytes obtained from
NMRI mice. Resistance was expressed in terms of percent
survival and time until death, i.e., mean survival of suc-
cumbing mice (40).

Castration. C57BL/10 males were castrated at 3 to 4 weeks
of age. Mice were anesthetized, and testes were pulled off
through a scrotal incision. The ductuli efferentes were tran-
sected by electrocautery, and testes and epididymis were
removed (33, 38).

Testosterone treatment. Castrated and female C57BL/10
mice were treated with Testoviron-Depot-10 (Schering
Corp., Berlin, Federal Republic of Germany). Treatment
started at age 3 to 4 weeks. Mice received 1.5 mg of
testosterone per week in two subcutaneous injections for 3
weeks and, subsequently, 2.1 mg of testosterone per week in
two injections for the following 4 weeks (33).

Phenylhydrazine treatment. Mice of strains C57BL/10 and
B10.A at age 10 to 12 weeks were intraperitoneally injected
with 0.08 mg of phenylhydrazine per g of mouse weight (30,
43). Reticulocytes were evaluated in Giemsa-stained blood
smears.

Metabolic labeling. P. chabaudi-infected erythrocytes
were isolated from NMRI mice as described previously (46,
47). Cells (2.5 X 10%/ml) were cultivated in phosphate-
buffered saline supplemented with 113 mM glucose and 3%
fetal calf serum (GIBCO Laboratories, Karlsruhe, Federal
Republic of Germany) at 25°C under 7% CO,, 3% O,, and
90% N,. The cells were incubated with [**Clisoleucine
(specific activity, 337 Ci/mmol; Amersham Corp., Braunsch-
weig, Federal Republic of Germany) in the presence and
absence of testosterone for 3 h.

In vitro proliferation of T lymphocytes. Female mice of
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TABLE 1. Resistance to P. chabaudi infections in female mice
with b and d H-2 haplotypes on different genetic backgrounds
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TABLE 2. Resistance to P. chabaudi in female B10 mice with
unrelated H-2 haplotypes

Mouse H-2 No. Surviving Time until death Mouse H-2 No. Surviving Time until death
strain haplotype tested mice (%) (no. of days = SD) strain haplotype tested mice (%) (no. of days = SD)
CS7BL/10 b 110 79 10.7 = 1.7 CS7BL/10 b 110 79 10.7 = 1.7
BALB/b b 23 15 11.6 + 3.9 B10.D2 d 30 77 114 =33
B10.D2 d 30 71 114 =33 B10.M f 12 33 12323
BALB/c d 24 25 122 = 3.1 B10.BR k 17 29 11.6 = 4.5
DBA/2) d 18 38 102 =19 B10.RIII r 16 81 11.7 £ 3.1

strains C57BL/10, B10.D2, B10.A(3R), and B10.A(4R) were
immunized at age 10 to 12 weeks by subcutaneous injection
of 200 pl of antigen at the base of the tail. The antigen
consisted of 108 P. chabaudi-infected erythrocytes which
were freeze-thawed in liquid nitrogen three times before
being emulsified in an equal volume of Freund complete
adjuvant. After 7 days, spleens were aseptically removed,
and splenic T lymphocytes were enriched by the nylon-wool
procedure (20). T-cell-enriched lymphocytes were seeded in
microwell plates with 96 round-bottom wells (Nunc, Wies-
baden, Federal Republic of Germany) at a concentration of 8
x 10* per well in 0.2 ml of RPMI 1640 supplemented with 10
g of kanamycin per ml, 10 pg of tylosin (Nunc) per ml, 2 X
1075 M mercaptoethanol, and 10% fetal calf serum. The
lymphocytes were cultivated in a humidified atmosphere of
5% CO, at 37°C. The cells were stimulated for 4 days with
one of the following: 2 pg of concanavalin A, 10° P.
chabaudi-infected erythrocytes, 10° noninfected erythro-
cytes, 10° free parasites, or 10° ghosts isolated from infected
erythrocytes. During the last 24 h of culture, the cells were
pulsed with 0.5 wCi of [*H]thymidine (specific activity, 2 Ci/
mmol) per well before being harvested with a cell harvester
(Nunc) and counted in a liquid scintillation counter (model
8000; Berthold, Wildbad, Federal Republic of Germany).

Preparation of malaria antigens. Erythrocytes were iso-
lated from noninfected NMRI mice as described previously
(46). P. chabaudi-infected erythrocytes were isolated from
infected NMRI mice, and free parasites and plasma mem-
branes of erythrocytes in the form of ghosts were prepared
by the procedure detailed previously (46, 47).

RESULTS

Non-H-2 gene(s). To examine resistance of different mouse
strains to P. chabaudi, we challenged mice with 10° P.
chabaudi-infected erythrocytes and determined percent sur-
vival. Mouse strains were termed resistant if more than 70%
of the mice survived the infection for at least 23 days. Strains
were susceptible if more than 60% of the mice succumbed to
the infection.

Females of mouse strains with identical H-2 haplotypes on
different non-H-2 backgrounds exhibited different levels of
resistance to P. chabaudi (Table 1). Mice with a BALB or
DBA background were susceptible, while strains with B10
background were resistant. This indicates that resistance
and susceptibility are controlled by a non-H-2 gene(s), which
confirms previously presented data (2, 15, 39-41).

H-2 complex. The results described above prompted us to
evaluate the possible influence of the H-2 complex on
resistance to P. chabaudi in female B10 mice. Table 2 shows
different levels of resistance in B10 strains carrying some
major different unrelated H-2 haplotypes. Resistant strains
were those with the b, d, and r H-2 haplotypes, in which
about 80% of the mice survived the challenge infection.

Mouse strains with the H-2 haplotypes fand k were suscep-
tible. It is obvious that genes in the H-2 complex influence
resistance and susceptibility to P. chabaudi.

Table 3 shows attempts to assign those H-2 genes influ-
encing resistance to the different (sub)regions of the H-2
complex. Mouse strains with the *‘resistant’’ H-2% and H-2¢
haplotypes and the *‘susceptible’’ H-2* haplotype are com-
pared with mouse strains carrying different recombinant d/k
and b/k H-2 haplotypes. Mice remained resistant or suscep-
tible when recombinations occurred in the D region. For
instance, the B10.OH strain (K? I D*) was resistant to P.
chabaudi, as was the B10.D2 strain (K? I” DP). Conversely,
B10.A mice (K* I* DP) were susceptible, as were B10.BR
mice (K* I* D¥). This indicates that the D region of the H-2
complex is not involved in the control of resistance to P.
chabaudi. Also, those class I molecules which are encoded
by the K region are apparently not involved. For instance,
B10.A(3R) mice which express K? were susceptible, as were
those strains which express K, such as B10.BR and B10.A.

Resistance and susceptibility to P. chabaudi are obviously
controlled by genes in the I region involving both the I-A and
the I-E subregions. Mouse strains were susceptible when
I-E* was expressed, as in B10.BR, B10.A, and B10.A(3R),
regardless of coincidental expression of I-A* or I-A? (Table
3). On the other hand, B10.A(4R) and C57BL/10 mice, which
do not express I-E genes at all, were susceptible and
resistant, respectively (Table 3). The relevant difference
between these two strains is in the I-A region: B10.A(4R)
mice possess I-A*, while C57BL/10 mice express I-A®.

Genes in the I region encode class II molecules which play
a dominant role in antigen presentation to T cells (22, 23). It
is therefore possible that antigen presentation and/or T cells
are defective with respect to malaria antigens in P. cha-
baudi-susceptible mice. To test this, mice from two resistant
strains, C57BL/10 and B10.D2, and from two susceptible
strains, B10.A and B10.A(4R), were immunized with P.
chabaudi-infected erythrocytes. After 7 days, T-cell-en-
riched lymphocytes were isolated from spleens and their
responses to different crude malaria antigens were measured
by in vitro proliferation assay. T-cell-enriched lymphocytes
from all mouse strains responded strongly to the T-cell
mitogen concanavalin A but did not significantly respond to
noninfected erythrocytes (Table 4). In contrast, infected
erythrocytes induced significant responses in the T-cell-
enriched lymphocytes as well as isolated host cell plasma
membranes and isolated free parasites did (Table 4). This
indicates that there is at least no general defect in antigen
presentation and/or in the ability of T cells to be stimulated
in P. chabaudi-susceptible strains.

Parasitemia and reticulocytosis. The different percentages
of survival and mortality among the different strains may
reflect differences in the outcome of overt infections,
courses of infections, and/or the efficiencies of the erythro-
poietic systems. The first possibility can be clearly excluded,
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TABLE 3. Resistance to P. chabaudi in female B10 mice with recombinant H-2 haplotypes
Mouse H-2 Allele at H-2 locus “: No. Surviving Time until death
i ' i . + SD
strain haplotype K Aq A, Ep E, s D tested mice (%) (no. of days *+ SD)
CS7BL/10 b b b b (b) (b) b b 110 79 10.7 = 1.7
B10.D2 d d d d d d d d 30 77 114 £33
B10.OH 02 d d d d d d k 8 75 16.5 = 3.5
B10.BR k k k k k k k k 17 29 11.6 £ 4.5
B10.A a k k k k k d d 51 12 112 £ 2.2
B10.A(3R) i3 b b b b k d d 38 29 11.8 + 3.3
B10.A(4R) h4 k k k (k) (b) b b 23 22 104 = 2.3

2 Designations as described by Klein et al. (24).

since all challenged mice were visibly sick on days 8 to 12
postinfection (p.i.), indicating that both surviving and suc-
cumbing mice had patent and even fulminant P. chabaudi
infections at about the same time in all strains. Incidentally,
the surviving mice remained alive and well even beyond day
23 p.i.

To detect possible different courses of the infections,
parasitemias were followed up in the resistant B10 strain and
the susceptible B10.A strain. However, the P. chabaudi
infections took about the same course in the surviving and
succumbing mice of both resistant and susceptible mouse
strains (Fig. 1 and 2). Parasitized erythrocytes appeared in
the peripheral blood on about day 4 p.i., and maximum
parasitemia occurred on approximately day 8 p.i. In surviv-
ing mice, maximum parasitemia was always followed by a
second, lower parasitemia peak occurring on approximately
day 16 p.i. on the average. Thereafter, parasitized erythro-
cytes disappeared from the peripheral blood. In some ani-
mals, however, they reappeared at a very low frequency on
about day 30 p.i. before they finally disappeared.

Finally, mice of the susceptible B10.A strain did not
appear to have a less effective erythropoietic system than
mice of the resistant B10 strain. Indeed, these two strains did
not significantly differ in their erythropoietic response to
phenylhydrazine-induced anemia (Fig. 3). In both strains,
maximum reticulocytosis, about 40 to 45%, occurred on day
6 after phenylhydrazine treatment.

Testosterone. In contrast to its effect in female mice, the
H-2 complex had no influence on resistance to P. chabaudi
in male mice. Indeed, male mice of all inbred strains exam-
ined proved susceptible, i.e., their survival rate was less
than 40% (Table 5). Likewise, resistance was not H-2
dependent when assessed in terms of time until death (Table
S5).

An influence of sex on mouse resistance to Plasmodium
infection has been repeatedly ascribed to a superior erythro-
poietic system in female versus male mice. However, there
was no significant difference when the erythropoietic re-
sponse to phenylhydrazine-induced anemia was compared

between male and female C57BL/10 mice (Fig. 3). Maximum
reticulocytosis (about 40%) occurred on day 6 post-
phenylhydrazine injection in both female and male mice.

Another reason for the sex-dependent resistance and
susceptibility might be that the expression of genes control-
ling resistance are modulated by sex hormones such as
testosterone. Indeed, castration of male B10 mice entailed a
dramatic increase in survival; about 78% of the castrated
mice survived the challenge infection (Table 6). Castrated
mice, however, became susceptible again when treated with
testosterone (Table 6). Also, female mice were able to be
converted from resistant to susceptible by testosterone
treatment (Table 6). It is noteworthy that the effect of
testosterone is obviously mediated by the host, since para-
site growth within erythrocytes, measured as incorporation
of [**Clisoleucine in P. chabaudi-infected erythrocytes in
vitro, was not affected (Fig. 4).

DISCUSSION

The present study shows that female mice exhibit different
strain-dependent levels of resistance to blood stage infec-
tions of P. chabaudi, manifested in different percentages of
survival. This resistance is obviously controlled by a non-
H-2 gene(s), is influenced by genes of the H-2 complex (cf.
also reference 31), and is depressed by testosterone. Thus,
our data support the view that murine resistance to P.
chabaudi is under not unigenic (2, 39—41) but rather complex
polygenic control (15) and even involves delicate hormonal
modulation. The latter in particular may explain the ob-
served heterogeneity of survival and mortality within a
genetically homogenous inbred strain. However, the reason
that polygenic control becomes apparent only in terms of
percent survival and mortality but not in terms of time until
death, which appears to be identical in the succumbing mice
of most strains, remains unknown.

Murine resistance to P. chabaudi differs from the well-
known phenomenon of innate resistance described for hu-
man pathogenic Plasmodium species (for reviews, see refer-

TABLE 4. In vitro proliferation of T-cell-enriched lymphocytes from spleens of B10 mice immunized against P. chabaudi

T cell source

Stimulation by “:

(no. of mice) ConA niE iE iG Pa
CS57BL/10 (4) 113 = 19 3.8 0.7 52 %20 3.5+ 1.0 1.0 £ 0.1
B10.D2 (4) 51+15 0.6 = 0.0 84x14 2708 9.6 £ 1.3
B10.A (6) 106 + 30 1.0 £ 0.1 27 23+ 8 36 = 14
B10.A4R) (3) 54 £ 16 13 +0.5 195 9.7 £ 3.6 16 = 8

“ ConA, Concanavalin A; niE, noninfected erythrocytes; iE, infecte
infected erythrocytes. Values are stimulation index + standard error.

a

erythrocytes; iG, ghosts isolated from infected erythrocytes; Pa, parasites isolated from
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FIG. 1. P. chabaudi infections in C57BL/10 mice. Mice were
challenged with 10° P. chabaudi-infected erythrocytes, and percent
survival and parasitemia were evaluated for 12 surviving (H) and 9
succumbing mice (@), respectively. Means = standard deviations
are given.
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ences 9 and 26). Innate resistance is due to different
genetically controlled disorders manifested in defects in host
erythrocytes, such as anomalies in hemoglobin (9, 26),
absence of glycophorin (34-36) or Duffy blood group anti-
gens (27-29), deficiencies in glucose-6-phosphate dehydro-
genase (26, 37), or ovalocytic forms of erythrocytes (21).
Such host cell defects normally prevent parasitemia or
permit only a delayed outcome of parasitemias which are
clinically not overt. However, similar defects in erythro-
cytes do not occur in the inbred mouse strains we have
investigated here, since P. chabaudi obviously causes ful-
minant blood stage infections in both resistant and suscep-
tible strains. In addition, parasitemias even take about the
same course in the resistant B10 strain and the susceptible
B10.A strain. Thus, murine resistance is due to genetically
determined mechanisms which help to overcome fully de-
veloped infections, entailing a clearance of parasitized eryth-
rocytes from the peripheral blood. It is unlikely that such a
clearance is due primarily to a superior erythropoietic sys-
tem in resistant versus susceptible strains, since chemically
induced erythropoiesis takes about the same course in
resistant B10 mice as in susceptible B10.A mice. Rather, the
clearance signals the development of protective immune
mechanisms.

Indeed, it is consistent with this view that mice which
have resisted a P. chabaudi infection have acquired immu-
nity against homologous rechallenge as shown previously
(45). Moreover, it is consistent that resistance depends on
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FIG. 2. P. chabaudi infections in female B10.A mice. Percent
survival and parasitemia were evaluated for 6 surviving (H) and 6

succumbing mice (@), respectively. Means * standard deviations
are given.

the I region and obviously not on the K and D regions of the
H-2 complex, as shown by our studies with intra-H-2 recom-
binant mouse strains on B10 background. However, this
does not necessarily mean that the K and D loci are not
important for the defense against those Plasmodium species
which invade preferentially reticulocytes, for example, P.
yoelii. Indeed, it has been shown in P. yoelii infections that
reticulocytes express increased levels of K and D antigens
(19).

The influence of the I region appears to be quite complex,
involving genes of both I-A and I-E subregions. For instance,
mice are resistant when only I-A? molecules are expressed.
However, when I-E¥ is coincidentally expressed with I-A® or
when only I-A* is expressed, mice are susceptible. Our data
indicate that susceptible strains are not defective in their

TABLE 5. Susceptibility to P. chabaudi in male
H-2-congenic B10 mice

Mouse H-2 No. Surviving Time until death

strain haplotype tested mice (%) (no. of days + SD)
C57BL/10 b 53 8 11.3 =28
B10.D2 d 40 38 11.1 + 2.8
B10.M f 15 13 12.6 = 2.5
B10.RIII r 24 17 129 + 1.6
B10.A a 49 2 10.8 = 1.9
B10.OH 02 13 0 12.7 = 1.7
B10.A(4R) h4 56 0 11.7 £ 2.5
B10.A(3R) i3 16 0 113+ 14
B10.BR k 27 0 11.4 = 3.2
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FIG. 3. Phenylhydrazine-induced reticulocytosis in C57BL/10
and B10.A mice. (a) Means * standard deviations from 12 male (W)
and 12 female (@) C57BL/10 mice. (b) Means * standard deviations
from 14 female B10.A mice.

overall capacity to present malaria antigens and/or in the
responsiveness of their T cells to malaria antigens. How-
ever, it is possible that susceptible mice are not able to
present and/or recognize those malaria antigens that are
relevant for protective immunity. For instance, the protec-
tive malaria antigen(s) is obviously presented in context with
I-A® molecules but not in context with I-A* molecules. The
latter might be not suited for that, for example, because of an
unfavorable structure and/or conformation (for a review, see
reference 23). Moreover, protective antigens presented in
context with I-A? may be down-regulated by I-E*-controlled
reactions. Evidence that I-A® molecules are especially ap-
propriate for presenting malaria antigens has also been
provided recently by other authors (5, 10). It was shown that
only I-A%-expressing mice and not those expressing I-A* are
capable of mounting an effective antibody response after
immunization with repeats of the tetrapeptide Asn-Ala-Asn-
Pro. These (NANP), repeats are the immunodominant re-
petitive sequences of the circumsporozoite protein of P.

TABLE 6. Effects of castration and testosterone on susceptibility
and resistance to P. chabaudi infections in CS7BL/10 mice

No. Survivin, Time until death

Sex and treatment tested mice (%f (no. of days * SD)
Male 26 0 9.7 +2.0
Male, castration 24 78 10+ 2
Male, castration 15 0 9.1 +1.6

+ testosterone
Female 28 76 96 + 1.0
Female, testosterone 15 0 123 £ 2.6
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FIG. 4. Incorporation of [**Clisoleucine in P. chabaudi-infected
erythrocytes. Erythrocytes were isolated and incubated in vitro
without testosterone (@) or in the presence of 0.45 pg (W) or 4.5 pg
(A) of testosterone per ml.

falciparum, which have been recently tested as vaccine
immunogens in human volunteers (1, 14).

Furthermore, our data show that testosterone abrogates
the I-A®-controlled resistance to P. chabaudi. Male B10
mice which are susceptible become resistant by castration
and are normally reconverted to susceptibility by testoste-
rone treatment. In addition, testosterone renders the resis-
tant female B10 mice susceptible to P. chabaudi. The
mechanisms by which testosterone exerts its abrogative
action are totally unknown. We can exclude only a direct
effect of testosterone on parasites, i.€., testosterone does not
accelerate growth and multiplication of parasites within
erythrocytes. In this context, three observations which point
to linkages between the H-2 complex and testosterone are
worth mentioning. First, the metabolism of testosterone and,
more generally, androgen metabolism in mice are under
polygenic control, but the major role is played by the Hom-1
locus, presumably linked to the H-2 complex (for a review,
see reference 22). Second, male mice possess a sex-limited
protein, designated Slp antigen, which is expressed by the §
region of the H-2 complex and which is under control of
testosterone (12, 13, 32, 33). Third, the susceptible female
B10.A mice are known to possess higher levels of endoge-
nous testosterone than female mice of the resistant B10
strain (16, 17, 22).

Whatever the malaria-relevant ‘testosterone target’ may
be, the fact per se that testosterone negatively interferes
with the development of protective immune mechanisms
against malaria parasites has an important implication for the
vaccine and vaccination trials.
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