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1. Review of Fisher Information and Basic Results.

We recall that the Kullback-Leibler (KL) divergence between two distributions p(x) and
q(x), defined as

DKL(p||q) =
∫

dx p(x) log
p(x)
q(x)

, (1)

is a measure of the statistical difference between the two distributions, and is 0 if and only
if p and q are the same distribution. Now given a multidimensional family of distributions
p(x|s), parameterized by the vector s, the infinitesimal KL divergence between two nearby
distributions given by s and s + δs is in general approximated by the Fisher information
matrix Jk,l(s) defined in the main paper, so that DKL

[
p(x|s)||P (x|s + δs)

]
≈ 1

2 δsT J(s)δs.
In the special case when the family p(x|s) is a family of gaussian distributions whose

mean µ(s) depends explicitly on s, and whose covariance C is independent of s, both the
KL-divergence and Fisher information matrix take simple forms. In this case we have

DKL

[
p(x|s1)||P (x|s2)

]
=

1
2
[
µ(s1)− µ(s2)

]T
C−1

[
µ(s1)− µ(s2)

]
, (2)

and

Jk,l(s) =
∂µ(s)T

∂sk
C−1 ∂µ(s)

∂sl
. (3)

Futhermore, when the mean µ of the family only depends linearly on the parameter s, it
is easy to see that the Fisher information (3) becomes independent of s, and the quadratic
approximation to the KL-divergence through the Fisher information becomes exact.

Now specializing to the linear network considered in the main paper, using (3) it is
straightforward to compute the full Fisher information matrix. The network state at time n
has the solution x(n) =

∑∞
k=0 Wkvsk+

∑∞
k=0 Wkz(n− k). Because the noise is gaussian, the
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conditional distribution P (x(n)|s) is also gaussian, with mean µ(s) =
∑∞

k=0 Wkvsk and noise
covariance matrix Cn = ε

∑∞
k=0 WkWkT . As above, the mean is only linearly dependent on

the signal, and the noise covariance is independent of the signal, so J is independent of the
signal history and takes the form

Jk,l = vT WkT C−1
n Wlv. (4)

We call this matrix the Fisher Memory Matrix (FMM). Its individual matrix elements have
simple interpretations. First consider a simpler scenario in which a single input pulse sk

enters the network at time n− k. Then the network state at time n has the solution x(n) =
Wkvsk +

∑∞
m=0 Wmz(n−m). The Fisher information that x(n) retains about this pulse is

a single number, and is easily shown to be identical to the diagonal element Jk,k of the FMM
in (4). Thus the digonal of the FMM is a memory curve, called the Fisher Memory Curve
(FMC) in the main text, and it captures the decay of the memory trace of a single pulse.

Now consider a scenario in which two pulses sk and sl enter the network at times n−k and
n− l. A short computation shows that the Fisher information between x(n) and both pulses
is a 2 × 2 symmetric matrix whose diagonals are Jk,k and Jl,l and whose off diagonals are
both Jk,l. Thus the off diagonal elements of the FMM in (4) capture the interference between
two pulses entering the system at k and l timesteps in the past. As we shall see below, such
interference can arise physically through the collision of signals entering the network at the
two different times.

We note that in general, the Fisher information that an output variable x contains about
an input s can be thought of as a signal to noise ratio. This interpretation is especially
precise in the situation where x is linearly proportional to s plus some additive gaussian
noise. For example, consider the one dimensional case x = g ∗ s + z, where g is a scalar
input-output gain and z is a gaussian random variable with variance ε. Then the Fisher
information that x has about s is simply g2

ε , the ratio of the squared signal gain to the noise
variance. Similarly, at any given time, the Fisher information that the vector input vs + z
to the network has about the signal s can be computed to be v·v

ε , which is again a squared
signal gain to noise ratio. Finally, k timesteps, after a pulse has entered the network, it is
embedded in the network state in the direction Wkv (the signal gain). Jk,k is essentially
this squared signal gain divided by the noise covariance Cn. When measured in units of the
input SNR 1

ε (recall we normalize v so that v · v = 1) Jk,k then represents the fraction of
the input SNR remaining in the network state x about an input pulse entering the network
k timesteps in the past.

2. Spacetime unification of spatial and temporal Fisher information.

Here we show that the spatial Fisher information matrix Js, defined in Eqn. 8 in the
main text, and the temporal FMM, defined in the main text and computed above in (4), can
both be understood within a unified spacetime framework. In this framework, the network
receives a more general spatiotemporal input in which each neuron i receives an independent
signal si(n− k). This generalizes the case considered in the main paper in which si(n− k) =
vis(n−k). The Fisher information that x(n) retains about this spatiotemporal signal is then
a matrix with indices in spacetime,

Jst
(k,i),(l,j) = [WkT C−1

n Wl]i,j . (5)

The structure of Jst is exceedingly simple. First, it obeys the spacetime sum rule,

TrJst =
N

ε
, (6)
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where the trace is over the diagonal spacetime elements. Thus the total spacetime SNR of
the network is simply the number of degrees of freedom over the noise variance, independent
of the recurrent connectivity W. Furthermore, this total SNR is distributed equally among
N spacetime eigenvectors of Jst, each with eigenvalue 1/ε. The (unnormalized) form of
these eigenvectors is Uk,i = [WkT v]i where v is an arbitrary non-zero N -dimensional vector,
as can be easily verified. The rest of the eigenvalues are zero. Thus, εJst is a projection
operator that projects the N × T (where T is the duration of the signal) dimensional space
of all possible input trajectories onto those that are realizable by the system dynamics.
This simple structure arises due to the linearity of the dynamics and the fact that both the
gaussian noise and the signal enter the network in the same way, and hence are modified by
the network dynamics in the same way regardless of the structure of W.

Both the FMM J and the spatial Fisher information Js arise naturally from the spacetime
Fisher information Jst. The FMM (4) is a projection of the spacetime Fisher information (5)
onto the fixed spatial structure v of the temporal input. Js, arises as a partial temporal trace
over Jst, and thus measures the information in the network’s spatial degrees of freedom xi(n)
about the entire signal history. As a consequence of the spacetime sum rule (6), the total
information in all N degrees of freedom is TrJs = N

ε , independent of W. But as noted in the
main text, Js serves as an interesting order parameter for nonnormality. It is proportional to
the identity matrix for every normal matrix, whereas for nonnormal matrices the departure of
Js from the identity captures the anisotropy inherent in the hidden feedforward connectivity
of a nonnormal matrix.

3. Analytical Results for Fisher Memory Matrices.

Delay Ring

We first consider the delay ring of length N . Here Wij = d(i−j) mod N where d is a
vector with components dk =

√
α δk,1. When the input v is localized to a single neuron, the

FMM is

Jk1k2 =

{
1
εα

k1+k2
2 (1− α) |k1 − k2| = mN,m = 0, 1, . . .

0 otherwise.
(7)

In addition to the diagonal FMC discussed in the main text, the full FMM also has a series
of off diagonal bands indicating interference between signals entering the network at time
differences that are integer multiples of N . Physically this interference arises because a past
signal can percolate m times around the ring and collide with an incoming signal. The m′th
off diagonal registers this effect. It is smaller than the diagonal by a factor of αmN which is
the square of the attenuation experienced by a signal traversing the ring m times.

Inhomogenous Delay Line

A delay line is a feedforward chain whose only nonzero matrix elements are Wi+1,i =
√

αi

for i = 1 . . . N −1. The noise covariance Cn is diagonal, with (Cn)ii =
∑i−1

m=1

∏i−1
p=m αp. The

FMC depends on how the signal enters the delay line. The optimal choice is to place the
signal at the source, so that vi = δi,1. Then the FMC takes the form

Jk,k =
∏k

m=1 αm

ε
∑k+1

m=1

( ∏k
p=m αp

) , k = 0 . . . N − 1, (8)

and 0 otherwise. This result can be directly understood as a signal to noise ratio. Information
about the signal k timesteps in the past is stored exclusively in neuron k +1. The numerator
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is the squared signal amplification as it propagates from the source to this neuron. Each
product term in the denominator sum represents the amplification of upstream noise that
enters neuron m at k + 1 − m timesteps in the past and collides with the signal at neuron
k + 1.

By dividing the top and bottom of (8) by the numerator
∏k

m=1 αm, and using Am ≡
||Wmv||2 =

∏m
p=1 αp, one can see that the FMC takes the form stated in Eqn. 10 of the

main paper:

Jk,k =
1

ε
∑k

m=0 A−1
m

, k = 0 . . . N − 1. (9)

Finally we note that the FMM for the delay line is diagonal so the FMC determines the
FMM. More generally, this is true for any layered feedforward structure which has feedforward
connections only between successive layers, and in which the signal enters within a single layer.
Physically, this lack of interference occurs because it is impossible for two signals entering
the network at two different times to collide with each other.

Random Symmetric Matrices

We next consider the ensemble of random symmetric matrices in which the elements Wij

are chosen independently from a zero mean gaussian distribution with variance α
4N , subject

to the constraint Wij = Wji. The eigenvalues of W are distributed on the real axis r
according to Wigner’s semicircular law

ρWig
α (r) =

{
2

πα

√
α− r2 |r| <

√
α

0 |r| >
√

α.
(10)

When v couples to all modes of W with equal strength, the FMM reduces to the moments
of this distribution as N →∞:

Jk1k2 = 〈rk1+k2〉ρWig
α

− 〈rk1+k2+2〉ρWig
α

. (11)

These moments are given by

〈rk〉ρWig
α

=

{
2

k+2

(
k

k/2

)
(α

4 )
k
2 k even

0 k odd.
(12)

Thus a generic symmetric matrix displays interference between signals entering at even, but
not odd, time separations. Physically this interference arises from loops of length 2 in the
random symmetric ensemble. Explictly, the FMC is

Jk,k =
1

k + 1

(
2k

k

)
(
α

4
)k − 1

k + 2

(
2k + 2
k + 1

)
(
α

4
)k+1. (13)

This curve is the mean field theory for the FMC of random symmetric matrices, plotted
in black in Fig. 2C of the main paper. As seen in Fig. 2C, it agrees well with numerical
simulations of the FMC for random symmetric matrices for N = 1000.

Random Orthogonal Matrices

Let W =
√

αO, where O is a random orthogonal matrix. The eigenvalues of O are
uniformly distributed in the complex plane on a circle of radius

√
α. Thus they are of the
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form
√

αeiφ with a uniform density over the phase φ. The Fisher memory matrix is then

Jk1k2 =
1
ε

∫ 2π

0

dφ

2π
α

k1+k2
2 ei(k2−k1)φ(1− α). (14)

=
1
ε

α
k1+k2

2 (1− α) δk1,k2 . (15)

Thus the FMM is diagonal with the memory curve decaying exponentially as αk for all α < 1.
We note that for large N , with 1 − α finite, the FMM of a random orthogonal matrix on
average is identical to the FMM of the delay ring.

4. Asymptotics of the Fisher Memory Curve for Normal Matrices.

When the input v couples to each eigenmode i of a normal connectivity matrix W with
a uniform strength vi = 1√

N
, the FMC only depends on the distribution ρ(r) of eigenvalue

magnitudes of W. We will now derive the asymptotics of the FMC under this assumption on
the input coupling v, indicating afterwards how this assumption can be relaxed. We have,

Jk,k =
1
ε

∫ √
α

0

dr ρ(r)r2k(1− r2) =
1
ε

∫ √
α

0

dr eln(ρ(r))+2k ln(r)+ln(1−r2), (16)

where
√

α is the magnitude of the largest eigenvalue of W. If
√

α remains far from 1, then
for large k this integral is dominated by the largest value of r, and so the asymptotic FMC
decays exponentially: Jkk ∝ αk for large k. If

√
α is close to 1, and ρ(r) has a continuous

density near 1, this integral is dominated by the behavior of ρ(r) near 1. In general this
behavior is characterized by an exponent ν so that limr→

√
α ρ(r) ∝ (

√
α− r)ν . Integrability

of ρ(r) requires that ν > −1. To extract the k dependence in Jkk in the case where
√

α is
close to 1, we perform the change of variables r =

√
α− x

2k in (16) to obtain

Jk,k =
1
ε

1
2k

∫ 2k
√

α

0

dx eln(ρ(
√

α− x
2k ))+2k ln(

√
α− x

2k )+ln(1−(
√

α− x
2k )2). (17)

For large k, this integral is dominated by small values of x
2k . By substituting the asymptotic

behavior of ρ(r) into (17), taking the limit
√

α → 1, and expanding in the small parameter
x
2k , we obtain

Jk,k ≈
1
ε

1
2k

∫ 2k
√

α

0

dx e−x+(ν+1) ln x
2k +ln 2 ≈ 1

ε

1
(2k)ν+2

∫ ∞

0

dx 2xν+1e−x. (18)

Thus asymptotically, Jkk decays as a power law: Jk,k ∝ 1
kν+2 .

It is now clear that the original assumption that v couple with equal strength to all
eigenmodes of W is not strictly necessary for this derivation. As long as v couples to the
slowest modes roughly evenly, then the power law Jk,k ∝ 1

kν+2 will remain unaltered. More
precisely, if v(r) denotes the total strength with which v couples to all eigenmodes of W
with eigenvalue magnitude r, as long as the product obeys limr→

√
α v(r)ρ(r) ∝ (

√
α − r)ν ,

the asymptotics of of the FMC are the same.

5. Fisher Information, Signal Statistics, and Alternative Memory Measures.

Both the ability to use the current state x(n) to reconstruct the past signal history s, and
the mutual information between x(n) and s constitute alternative measures of memory perfor-
mance. However, unlike the FMM, these measures both depend on the signal statistics. Here
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we assume a zero mean gaussian signal with covariance matrix Sk1k2 = 〈s(n− k1)s(n− k2)〉
and outline the relationship between the FMM J, the signal statistics S, and both these
alternative measures.

First, the FMM provides a lower bound on signal reconstruction performance. Consider
a network that has been placed into a particular state x(n) given a signal history s. Suppose
that readout neurons offer a corresponding signal reconstruction ŝ based on x(n). We allow
for the possiblity of a bias b(s) = 〈̂s|s〉 − s in the reconstruction. Then the Cramer-Rao
theorem for biased estimators places a lower bound on the reconstruction uncertainty, or
covariance of ŝ, through the FMM:

Cov(̂s|s) ≥ (I + B)J−1(I + B)T , (19)

where B is a bias matrix with elements Bk1k2 = ∂bk1/∂sk2 .
Because of the underlying gaussianity, the Cramer-Rao bound is indeed saturated by the

optimal linear estimator of the input history. This estimator can be realized by an array
of T readout neurons whose output is ŝ = Ux(n), where U is a T × N matrix of readout
weights. Optimizing the mean square error of the estimate (averaging over both noise and
signal statistics) one obtains Uopt = SPT C−1 where P is an N × T matrix with elements
Pik = (Wkv)i and C is the total covariance of x(n). C decomposes into signal and noise
covariances, C = Cs + Cn, where Cn is defined above, and Cs = PSPT . The estimator
covariance and bias matrices can be computed in terms of the FMM:

Cov(̂s|s) = S1/2J̃(I + J̃)−2S1/2, (20)

B = S1/2J̃(I + J̃)−1S−
1
2 − I, (21)

where we have introduced J̃ = S1/2JS1/2. Using (20) and (21) one can check that (19) is
saturated.

Also, a useful quantity that is related to the error of the estimator is the matrix of
estimator-signal correlation, M = 〈̂ssT 〉 which for the optimal estimator reduces to M =
SPT C−1PS. This performance measure can also be written in terms of the FMM and signal
statistics as

M = S1/2J̃(I + J̃)−1S1/2. (22)

The digaonal of this matrix was the memory curve, studied in [1] primarily for random
orthogonal matrices.

Alternatively, the mutual information between the present state and the past signal,
given by I[x(n) ; s] = H[x(n)] − H[x(n)|s], where H denotes ensemble entropy, also has
simple relationship with J and S:

I[x(n) ; s] =
1
2

log det(I + J̃). (23)

Overall relations (19), (22) and (23) dissect more complex measures of memory perfor-
mance into simpler contributions from the FMC, interference represented by off diagonal
elements of the FMM, and the signal statistics. For example, from (23), one can show that
for uncorrelated signal statistics, so that J̃ = J, interference due to off-diagonal elements
in J will degrade memory performance. This can be proven using the Hadamard inequality
detA ≤

∏T
k=0 Ak,k, which holds for any matrix A. Applying it to the matrix A = I + J

we see that for a given network that has no interference, or a diagonal FMM J, modifying it
to introduce interference by turning on off-diagonal FMM elements while keeping the FMC
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fixed, will reduce the mutual information (23) in the system. However, if the input signal is
correlated, it may be beneficial to introduce interference matched to the signal correlations
to improve memory performance.

The relation between the reconstruction memory and the Fisher memory (22) simplifies
considerably when the signal is white, so that S = I, and there is no network interference,
so that the FMM is diagonal. In this case, the memory function m(k) is related to the FMC
J(k) through m(k) = J(k)

1+J(k) . A useful measure of the time delay over which inputs can be
reconstructed is the time kc at which the memory function m(k) falls to 1

2 , i.e. kc is the
solution to m(kc) = 1

2 . This occurs when the SNR J(k) drops to 1.
To see the effects of strong transient nonnormal amplification on the reconstruction mem-

ory m(k) it is useful to compare the memory properties of random orthogonal matrices (or
equivalently, for large N , the delay ring), and the delay line with amplification. In the former
case from (15), kc is determined by the condition αkc(1 − α) = ε. Since the FMC on the
left hand side decays exponentially, kc can be extensive only when both the decay constant
α is close to 1, so that 1 − α = ρ

N , and when the noise is inversely proportional to N , so
that ε = εo

N , for ρ and εo both O(1) [1]. On the other hand, from the expression for the ho-
mogenous delay line with gain

√
α in the main paper, the condition for kc is αkc 1−α

1−αkc+1 = ε.
When α > 1, for large k < N , the left hand side asymptotes to a finite value 1 − 1

α . Thus
as long as the α > 1

1−ε , m(k) will remain above 1
2 for any finite value of ε < 1. Thus due

to transient nonnormal amplification, the reconstruction memory can be extensive, even for
finite ε = O(1), whereas in the normal case, or for any case in which the FMC decays expo-
nentially, the noise must be small (ε < O(1/N)) in order for reconstruction memory to be
extensive.

6. A Dynamical Bound on the Fisher Memory Curve.

Here we prove the upper bound

Jk,k ≤
1

ε
∑k

m=0
1

||Wmv||2
∀ k ≥ 0. (24)

Consider a single input pulse s0 entering the network at time 0. The state of the system at
a time k ≥ 0 is then

x(k) = Wkvs0 +
k∑

m=0

Wk−mz(m) +
−1∑

m=−∞
Wk−mz(m). (25)

Jk,k is the Fisher information that x(k) retains about s0. In (25) we have explicitly divided
the noise into two parts: 1) noise that enters the network either at the same time as, or
after, the signal (times m = 0, . . . , k) and 2) noise that enters the network before the signal
(times m ≤ −1). Now consider an “improved” network state x̄(k) in which some of the noise
entering the network in (25) is removed. Specifically, we will remove all noise entering the
network before the signal (z(m) → 0, ∀m ≤ −1). Now consider noise entering the network at
time m after the signal, with 0 ≤ m ≤ k. At this time the signal is embedded in the direction
Wmv in network space. We will further remove noise that is orthogonal to the direction in
which the signal is embedded. This can accomplished by applying the projection operator
WmvvTWmT

||Wmv||2 to z(m) before it enters the network. Both these noise removal operations
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lead to the improved state

x̄(k) = Wkvs0 + Wkv
k∑

m=0

vT WmT z(m)
||Wmv||2

. (26)

By construction, the actual dynamical state x(k) is related to the improved state x̄(k) by
the addition of gaussian noise that is uncorrelated with the signal s0, and with the noise that
is already present in x̄(k). In general, the addition of such noise can never increase the Fisher
information. Thus if we denote by J̄k,k, the Fisher information that x̄(k) retains about the
input pulse s0, then J̄k,k constitutes an upper bound on Jk,k, i.e. Jk,k ≤ J̄k,k.

We now compute the upper bound J̄k,k. x̄(k) is gaussian distributed with conditional
mean 〈x̄(k)|s0〉 = Wkvs0 and noise covariance matrix C̄ = εWkvvT WkT ∑k

m=0
1

||Wmv||2 .

We then have J̄k,k = 1
εv

T WkT C̄−1Wkv. Although C̄ is a rank 1 matrix, to compute J̄k,k,
we need only compute C̄−1 within the 1 dimensional subspace spanned by Wkv. Within
this subspace C̄ is invertible, and using the relation vT WkT (WkvvT WkT )−1Wkv = 1, we
obtain J̄k,k to be equal to the righthand side of (24), thus proving (24).

7. Uniqueness of the Delay Line.

Here we show that the delay line is essentially the only network that saturates the upper
bound (24). More precisely, for any connectivity W and v which saturates (24), we show
that there exists an L ≤ N dimensional orthonormal basis of network space such that

(1) When restricted to this basis, the matrix elements of W are identical to the connectivity

matrix of a delay line of length L, i.e. Wij =
√

αi δi,i−1, for i = 2, . . . , L and W1j = 0,∀ j.

(2) v feeds into its source (vi = δi,1).

(3) For any vector u orthogonal to the L dimensional subspace spanned by this basis, and

for any vector x in this subspace, both uT Wx and xT Wu are 0. Thus no other states feed
into or out of this delay line.

The idea behind the proof is to examine the conditions under which the re-addition of the
removed noise to x̄(k) in (26) to get back x(k) in (25) does not reduce the Fisher information
J̄k,k, so that J̄k,k = Jk,k.

First we note that any noise added to the network state x̄(k), that lives in the direction
in which the signal s0 is embedded, necessarily decreases the Fisher information. Consider a
network state x̃(k) related to x̄(k) in (26) by x̃(k) = x̄(k) + Wkv

||Wkv||η, where η is a gaussian

noise with variance 〈(δη)2〉. This extra, rank 1 noise lives only in the direction Wkv in
which the signal s0 is embedded in x̄(k). Denoting J̃k,k the Fisher information that the
“corrupted” x̃(k) retains about s0, we show that J̃k,k < J̄k,k. The noise covariance of x̃(k)

is C̃ = C̄ + WkvvTWkT

||Wkv||2 〈(δη)2〉. Its inverse is

C̃
−1

= C̄−1 − C̄−1WkvvT WkT C̄−1

||Wkv||2
〈(δη)2〉 + vT WkT C̄−1Wkv

, (27)
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where again C̄ is the noise covariance of x̄(k). Then

J̃k,k = vT WkT C̃
−1

Wkv = J̄k,k −
J̄2

k,k

||Wkv||2
〈(δη)2〉 + J̄k,k

, (28)

which clearly, is strictly less than J̄k,k.
Now we introduce a particular network state x̃(k) whose Fisher information about s0 is

intermediate between that of x(k) in (25) and that of x̄(k) in (26). We do this by reintroducing
the noise that was removed back into x̄(k), allowing it to propagate up to time k, but then
keeping only noise that lives in the the direction Wkv in which the signal s0 is embedded at
time k, using the projection operator WkvvTWkT

||Wkv||2 . This procedure yields

x̃(k) = x̄(k) +
WkvvT WkT

||Wkv||2

{
k∑

m=0

Wk−m

[
I− WmvvT WmT

||Wmv||2

]
z(m) +

−1∑
m=−∞

Wk−mz(m)

}
.

(29)
By construction, we have Jk,k ≤ J̃k,k ≤ J̄k,k. Now if W and v are such that the bound
(24) is saturated (i.e. Jk,k = J̄k,k), we must then have J̃k,k = J̄k,k. Now x̃(k) has the form

x̄(k) + Wkv
||Wkv||η, where η is a random variable which can be read off from (29). Then we

have seen above that we will have J̃k,k = J̄k,k only when this variable is identically zero.
Requiring this condition then yields a set of necessary conditions that W and v must obey
to saturate (24):

vT WkT Wk−m

[
I− WmvvT Wm

||Wmv||2

]
= 0, m = 0, . . . , k, ∀ k ≥ 0. (30)

vT WkT Wk−m = 0, ∀m ≤ −1, k ≥ 0. (31)

These conditions are intuitive. (30) states that any network state x which is orthogonal to
the signal Wmv at time m, remains orthogonal to the signal for all future time, as both x
and the signal dynamically propagate through the network W. (31) requires that for any
state x the network may be in at a time m ≤ −1 before the signal enters, the evolution
of this state will always remain orthogonal to the instantaneous signal embedding direction
Wkv for all future time k ≥ 0.

We now examine the mathematical consequences of these constraints on W and v. First
note that by multiplying both sides of (31) on the right by v one can conclude that (31)
implies that vT WkT Wnv = ||Wkv||2 δk,n∀ k, n ≥ 0. Thus the sequence of L vectors
v,Wv, . . . ,WL−1v form an orthogonal basis for network space. We leave open the pos-
sibility that WLv = 0 for some L < N , so that these vectors do not span all of network
space.

Then the set of vectors ei = Wi−1v
||Wi−1v|| , i = 1, . . . L forms an orthonormal basis for an L

dimensional subspace of network space. We compute the matrix elements of W and v in this

basis. It is straightforward to see that these elements are given by Wij = ||Wi−1v||
||Wi−2v||δj−1,i−2,

for i = 2, . . . , N , W1j = 0, ∀j, and vi = δi,1. Thus, restricted to this basis, W is a delay line
of length L and v feeds into its source, proving claims (1) and (2) above.

We now examine the interaction of this delay line with states orthogonal to the L dimen-
sional subspace above. Let u be such a state. We begin by showing that vT WlT Wnu = 0
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for l = 0, . . . , L−1 and ∀m ≥ 0. For any l, and n ≥ l+1, this condition follows from applying
(31) to u with k = l and m = l−n. For any l and n ≤ l, this condition follows from applying

(30) to u with k = l and m = l−n, which yields vT WlT Wn

[
I−Wl−nvvTWl−n

||Wl−nv||2

]
u = 0,∀u.

However, under the special assumption that u is orthogonal to Wlv,∀ l = 0, . . . , L − 1, we
can drop the projection operator, and conclude that vT WlT Wnu = 0, as claimed. Now we
simply note that for n = 1, we have vT WlT Wu = 0,∀ l = 0, . . . , L−1, which means no state
orthogonal to the delay line feeds into the delay line. Also the statement that no state along
the delay line evolves into a state orthogonal to the delay line follows trivially from the fact
that uT WWlv = uT Wl+1v = 0. This proves claim (3) above, completing the proof that
the delay line is the unique network that saturates (24).

8. Transient Amplification, Extensive Memory and Finite Dynamic Range.

Here we examine the consequences of the dynamical upper bound (24). We first make
precise the statement that superlinear amplification for a time of order N is required for
extensive memory. We then show that networks whose neurons operate within a limited
dynamic range cannot achieve extensive memory; the area under the FMC for such networks
is at most proportional to

√
N.

Both results depend upon the following theorem,( k∑
m=1

1
Am

)( k∑
m′=1

Am′

)
≥ k(k + 1)

2
, (32)

where Am is any positive real number. This can be proved as follows. First note that the
left hand side of (32) does not depend on the order of Am for m = 1, . . . , k, so we are free
to reorder this set of numbers in decreasing order, so that Am′ ≥ Am for m′ ≤ m. Then the
left hand side of (32) becomes

k∑
m=1

k∑
m′=1

Am′

Am
≥

k∑
m=1

m∑
m′=1

Am′

Am
≥

k∑
m=1

m∑
m′=1

1 =
k(k + 1)

2
, (33)

thereby proving (32). The first inequality arises because we drop all terms in which m′ > m
and the second inequality is a consequence of the reordering.

Now we use (24) and (32) to make precise the relationship between extensive memory
and superlinear amplification. We have,

1
εJk,k

≥ 1 +
k∑

m=1

1
||Wmv||2

≥ 1 +
k(k + 1)

2
∑k

m=1 ||W
mv||2

. (34)

The first inequality is equivalent to (24) while the second is an application of (32) with
Am = ||Wmv||2. Thus

Jk,k ≤
1/ε

1 + k(k+1)
2Tk

, (35)

where we have defined Tk ≡
∑k

m=1 ||W
mv||2 to be the area under the signal amplification

profile up to time k. Now for any network to possess extensive memory, the FMC must
remain above a finite value (that is independent of N) up to time N . In order to achieve this
for large N , (35) reveals that the area under the signal amplification profile must at least
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grow quadratically in time up to time N . This means the amplification profile itself must
grow superlinearly. Any slower growth would result in a decay of the FMC according to (35),
thereby precluding the possibility of extensive memory.

Now we consider the case of finite dynamic range. This means that the activity of each
neuron i is constrained to lie between −

√
R and

√
R. Thus the norm of the network state

xT x cannot exceed NR. On the other hand, the average norm of the network state while
the network is receiving both noise and signal is

〈xT x〉 =
∞∑

m=0

||Wmv||2 + ε

∞∑
m=0

TrWTmWm. (36)

The constraint that 〈xT x〉 ≤ NR then automatically limits the area under the signal ampli-
fication profile so that Tk ≤ NR ∀ k. Substituting this result into (35) yields the following
bound on the FMC for any network operating within a finite dynamic range R:

Jk,k ≤
1/ε

1 + k(k+1)
2NR

. (37)

This reproduces Eqn. 12 in the main text. The area under this bound is O(
√

NR
ε ). Thus

finite dynamic range precludes the possiblity of extensive memory.

9. The Divergent Fan Out Network.

Here we analyze the divergent fan out network shown in Fig. 5A of the main paper. This
network consists of L layers labelled by l = 1, . . . , L with Nl neurons in layer l. The signal
enters the first layer which has a single neuron (N1 = 1). We consider for simplicity all to
all connectivity from each layer l to l + 1 of uniform strength

√
γl.

We first analyze the dynamical amplification provided by this network. If all neurons of
layer l have activity xl, the propagated signal at each node of the next layer is glxl where
the local gain gl is gl = Nl

√
γl. As long as gl ≤ 1, single neuron activities will remain within

their finite dynamic range. On the other hand, the total amplification of the signal as it
arrives in layer k + 1, namely ||Wkv||2 ≡ Ak can still be large. The feedforward input v is a
vector that has only one nonzero entry that is 1 in the component corresponding to the single
neuron in the first layer. Then Wkv is a vector whose Nk nonzero entries all take the value∏k

p=1 gp in the components corresponding to the Nk neurons in layer k. Thus the squared

norm of this network state is Ak = Nk+1

∏k
p=1 g2

p for 0 ≤ k ≤ L − 1. One can choose
√

γl

so that gl = 1 for each l. In this regime, single neuron activities neither grow nor decay, but
network signal amplification is still achieved by spreading the activity out across neurons as
the signal propagates down the layers.

Such signal amplification can lead to significant Fisher memory for this network. Indeed
the FMC for this network saturates the dynamical upper bound (24), because it is equivalent
under a unitary change of basis to a delay line of length L. Under this equivalence, the activity
of the l’th neuron in the effective delay line corresponds to a projection of the activity at
the l’th layer of the tree. More precisely, consider a set of L orthonormal basis vectors el,
l = 1, . . . , L of network space for the divergent fan out network. el is defined to have precisely
Nl nonzero entries which all take the value 1√

Nl
in the components corresponding to the Nl

neurons in layer l. Now if W is the connectivity matrix of the divergent fanout architecture,

then the matrix elements of W between these basis vectors are eT
l Wem = δm,l+1gl

√
Nl+1
Nl

.
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Although these basis vectors do not of course span the full network space, they do span
the space that is reachable by the signal, i.e. the span of {Wlv} for l = 0, . . . , L − 1.
Furthermore, W has no nonzero matrix elements between any vector in this space, and
any vector orthogonal to this space. In essence the rest of the network degrees of freedom
in the divergent fanout network do not interact with the signal as it propagates down the
layers. Thus to compute the memory properties of the network, we can simply restrict to
the subspace reachable by the signal. We have seen that in this subspace, the connectivity is

simply a delay line of length L with an effective gain gl

√
Nl+1
Nl

from “effective” neuron l to
l + 1.

Because of the equivalence to the delay line, we then know immediately the FMC of the
divergent architecture, namely the right hand side of (24) with ||Wkv||2 = Nk+1 (where
as above, we have chosen γl so that the local gain gl = 1). The FMC Jkk is nonzero for
k = 0, . . . , L− 1 (the signal arrives at layer L at time L− 1 and can propagate no further).
As long as the network amplification is superlinear, then the FMC will asymptote to a finite
quantity in this range. Thus if we choose the number of neurons in the divergent architecture
to grow as a power law Nl = O(ls), with s ≥ 1, we achieve superlinear amplification and the
area under the FMC will be extensive in the depth L of the network. However the number
neurons N in the network will grow as O(Ls+1). Thus in terms of the number of neurons
N , the area under the FMC will scale as O(N

1
s+1 ). The optimal scaling is achieved with

s = 1, in which case the area under the FMC is O(
√

N). Thus a divergent fan out network
with the number of neurons in layer l growing linearly in l is an example of a network that
achieves the limit of O(

√
N) memory capacity for networks whose neurons operate within a

finite dynamic range.

10. Details of the Nonlinear Dynamics in the Divergent Chain

The dynamical system from which the signal reconstruction was obtained in Fig. 5D of the
main paper is described by Equation (1) in the main paper where the sigmoidal nonlinearity
f(x) was specifically taken to be f(x) = R tanh( x

R ). Thus the input-output relation of these
neurons is approximately linear for inputs x in the dynamic range −R < x < R. We used a
value of R = 5, or 5 times the signal strength.

11. Fisher Information in Continuous Time.

It is straightforward to generalize the above theory to contiuous time. Here we give the
basics. We consider the time evolution

τ
dx
dt

= Wx + vs(t) + z(t), (38)

where z(t) is now a continous time white gaussian process with covariance 〈zi(t1)zj(t2)〉 =
εδijδ(t1 − t1). The solution is

x(t) =
∫ t

−∞
dt′ eW

(t−t′)
τ vs(t′) +

∫ t

−∞
dt′ eW

(t−t′)
τ z(t′). (39)

The FMM is
J(t1, t2) = vT eW

T t1
τ C−1

t eW
t2
τ v, (40)

where the noise covariance Ct is

Ct = ε

∫ t

−∞
dt′ eW

t′
τ eW

T t′
τ . (41)
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The spatial Fisher information Js is

Js =
∫ ∞

0

dt eW
T t

τ C−1
t eW

t
τ , (42)

and for normal W, Js remains the 1
ε times the identity, and hence the area under the FMC

for any normalized v is 1
ε . TrJs for any matrix remains N

ε , and so for nonnormal matrices,
this remains a fundamental limit on the area under the FMC in continuous time as well.

12. Numerical Computation of Fisher Memory Matrices.

The spatial and temporal Fisher memory matrices can be computed through the method
of lyapunov equations, which were used to obtain many of the results in Fig. 3 through 6 in
the main paper. First, the noise covariance Cn =

∑∞
k=0 WkWkT (here we work in units of

1
ε ) obeys the discrete lyapunov equation

WCnWT + I = Cn. (43)

Similarly, the spatial FMM obeys the equation

WT JsW + C−1
n = Js. (44)

We used the MATLAB command dlyap to solve these equations.
Analogous results hold in continuous time. Both Ct in (41) and Js in (42) obey continuous

time lyapunov equations:
WCt + CtWT + I = 0, (45)

and
WT Js + JsW + C−1

t = 0. (46)

We used the MATLAB command lyap to solve these equations to obtain the results in Fig.
6 of the main paper. The optimal input profile in Fig. 6A is simply the principal eigenvector
of Js where W is a simple finite difference approximation to the differential operator on the
right hand side of Eq. 11 in the main paper.
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