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Cell geometry analysis algorithm

We extracted the geometry of cell networks from fluorescence microscopy images of the fly

wing by using a computer algorithm for detecting distinct cells and cell edges in images

of the distribution of a protein that localizes to the cell membrane (Figure S1a). In the

first step of the algorithm, the image was blurred to reduce the sensitivity of the algorithm

to noise in the image, and then pixels were assigned to the interior or edges of cells based

on their intensity relative to the average pixel intensity in a local region around the pixel

(Figure S1b). The radius of this region was an input to the algorithm and allowed us to

compensate for global variations in image intensity from one region of the image to another.

This may occur if part of the tissue in the image was not exactly located in the focal plane

of the microscope, or if the tissue in the image was not perfectly flat.

The algorithm seeded the cell interior region of the images with circles every few pixels

with some radius corresponding to the minimum interior radius that would be accepted as

a cell. Then the radii of these circles were increased until they encountered an edge pixel.

The center of the circle would then move to permit further expansion of the circle. The

process stopped when the circle had been expanded to its maximum radius, and when it

could not be expanded further by moving its center. This resulted in the largest possible

circles that could fit into the interior regions of the image. Overlapping circles were reduced

to a single circle, although some small amount of overlap was permitted to allow for the

case where a boundary between two neighboring cells was not completely marked. These
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circles ideally represented the location of individual cells in the image (Figure S1c).

The connectivity of the cells, as expressed by the cell nodes and edges, was determined

by assigning pixels in the image to the circles that contained them. The remaining interior

pixels were then assigned to the circles by expanding the circles into the remaining interior

region without allowing them to expand into the edge pixels. After the interior region was

assigned this way, the pixels assigned to each cell approximated the shape of the cell that

they were meant to represent (Figure S1d). Allowing these cell regions to expand further

into the edge pixel regions established the connectivity of the cells (Figure S1e). Nodes were

assigned to the cells based on the location of interfaces of three or more cell regions in the

image, with edges connecting the nodes to complete the geometry description (Figure S1f).

We developed a graphical interface to the algorithm to permit us to manually correct

errors in detecting the cell geometry. Specifically, we could add or delete the circles corre-

sponding to individual cells. The interface also permitted the addition and removal of cell

edges to change the connectivity of neighboring cells, and allowed us to manually reposition

nodes to more closely approximate the geometry represented in the image. The resulting

geometry descriptions were then used to compare the irregularity of cell geometry between

various fat clones. These extracted cell geometries also served as the computational grid

for the mathematical model described below.

Mathematical model description and extensions

The mathematical model used for the simulated results was derived from a modified and ex-

tended version of a reaction-diffusion, partial differential equation (PDE) model presented

in [Amonlirdviman et al., 2005], used to demonstrate the plausibility of the Fz feedback

loop model. The primary goal of these modifications was to allow for simulations on ir-

regular cell geometries, rather than the regular hexagonal cells represented in the original

model. Analysis of the sensitivity of the model results to changes in the previously identi-

fied parameter set suggested that the diffusion terms in the equations could be replaced by

their quasi-steady-state solutions. That is, for most of the proteins and complexes, treating

the diffusion rate as infinite would lead to uniform distributions over the domain where the
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protein or complex was free to diffuse. Therefore, a single variable could be used in each

cell to represent the concentration of proteins that were free to diffuse, either throughout

the interior of the cell for Dsh and Pk, or throughout the cell membrane for Fz, Vang and

complexes unbound to a specific cell edge. For complexes restricted to the shared edge

between two cells, a single variable could be used to represent the uniform concentration

for each shared edge of each cell.

One exception was the behavior of the Dsh·Fz complex, which had a nearly zero diffusion

rate in the previously identified parameter set. We restricted the Dsh·Fz complex to each

cell edge, as was done in the original model [Amonlirdviman et al., 2005]. The Dsh·Fz

complex may be restricted to the shared cell edge because of another molecule not included

in the model. For example, Fmi is required for Fz signaling, and accumulates on both

the proximal and distal membranes of the cells [Chae et al., 1999, Usui et al., 1999]: the

inability of the Dsh·Fz complex to diffuse away from a particular cell edge may reflect an

interaction to a signaling component such as Fmi.

These assumptions permitted us to eliminate the diffusion terms from the original PDEs,

reducing them to a system of ordinary differential equations (ODEs). This is advantageous,

because ODEs are computationally easier to solve. This simplification also removed the

need to create a computational grid on which to solve the PDEs within each cell, facilitat-

ing the implementation of the simulation for arbitrary cell geometries.

Model equation development

The development of the modified model involved the same reaction equations among the

same proteins and complexes as in the original model in [Amonlirdviman et al., 2005].

Rather than representing the reactions as a function of infinite mathematical space, the

equations instead represented the reactions over specified regions of the cell. Three differ-

ent types of regions were defined, creating three classes of proteins and complexes. A single

variable in each cell represented each of the uniform concentration of Dsh and Pk in the

interior of the cell, and the uniform concentrations of Fz, Vang and Vang·Pk on a given

edge of the cell. The remaining complexes were represented by a separate variable for each
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edge of the cell.

The model is represented by the following ten reactions occurring at the cell edges. For

brevity in the following and in the remainder of this Supplementary Text, we will drop the

· in the complex definition; thus DshFz is used to represent Dsh·Fz.

Dsh + Fz
R1

�

SBλ1

DshFz (1)

Fz† + Vang
R2

�

λ2

FzVang (2)

Vang + Pk
R3

�

λ3

VangPk (3)

DshFz† + Vang
R4

�

λ4

DshFzVang (4)

Dsh† + FzVang
R5

�

S†B†λ5

DshFzVang (5)

Fz† + VangPk
R6

�

λ6

FzVangPk (6)

FzVang + Pk
R7

�

λ7

FzVangPk (7)

Dsh† + FzVangPk
R8

�

S†B†λ8

DshFzVangPk (8)

DshFz† + VangPk
R9

�

λ9

DshFzVangPk (9)

DshFzVang + Pk
R10

�

λ10

DshFzVangPk (10)

Pk and Vang inhibition is introduced through

B = 1 + Kb(KPk[Pk] + [VangPk] + [FzVangPk] + [DshFzVangPk] +

KVang([Vang] + [FzVang] + [DshFzVang]))Kp

R1 through R10 are forward reaction rate constants. λ1 through λ10 are reverse reaction rate

constants. The effect of Pk and Vang inhibiting the recruitment of Dsh to the membrane

is represented in Equations 1, 5 and 8 as a promotion in the backward reaction rates in

4



proportion to the local concentration of Pk and Vang raised to the exponent Kp, with

constant of proportionality Kb. KPk is a constant that multiplies only the concentration

of unbound Pk, and likewise KVang is a constant that multiplies only the concentration of

Vang not bound to Pk. KPk and KVang were set to 0.5, so that Vang and Pk had equal and

additive inhibitory effects. S represents the asymmetry signal input, and will be discussed in

greater detail below. The daggered (†) variables indicate that the reaction occurs with the

protein across the cell membrane in a neighboring cell. For convenience, we have arbitrarily

chosen in our notation to associate the complexes spanning multiple cells with the source

cell for Vang. The backward reaction of Equations 2, 4-6, 8 and 9 locate the products in

their original cells so that the total amount of each protein in a cell is always conserved.

The net local forward reaction rates implied by Equations 1-10 are denoted by P1

through P10. They represent the difference of the forward and backward reactions, given

by

P1 = R1[Dsh][Fz] − SBλ1[DshFz] (11)

P2 = R2[Fz]†[Vang] − λ2[FzVang] (12)

P3 = R3[Vang][Pk] − λ3[VangPk] (13)

P4 = R4[DshFz]†[Vang] − λ4[DshFzVang] (14)

P5 = R5[Dsh]†[FzVang] − S†B†λ5[DshFzVang] (15)

P6 = R6[Fz]†[VangPk] − λ6[FzVangPk] (16)

P7 = R7[FzVang][Pk] − λ7[FzVangPk] (17)

P8 = R8[Dsh]†[FzVangPk] − S†B†λ8[DshFzVangPk] (18)

P9 = R9[DshFz]†[VangPk] − λ9[DshFzVangPk] (19)

P10 = R10[DshFzVang][Pk] − λ10[DshFzVangPk] (20)

The complete set of ODEs that serve as the governing equations for the modified math-

ematical model is then

d[Dsh]i
dt

=

Ni∑
j=1

lj

Ci

A∗Ci

AiC∗

(
−P1,j − P

†
5,j − P

†
8,j

)
(21)
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d[Pk]i
dt

=

Ni∑
j=1

lj

Ci

A∗Ci

AiC∗
(−P3,j − P7,j − P10,j) (22)

d[Fz]i
dt

=

Ni∑
j=1

lj

Ci

(
−P1,j − P

†
2,j − P

†
6,j

)
(23)

d[Vang]i
dt

=

Ni∑
j=1

lj

Ci

(−P2,j − P3,j − P4,j) (24)

d[DshFz]j
dt

= P1,j − P
†
4,j − P

†
9,j (25)

d[VangPk]i
dt

=

Ni∑
j=1

lj

Ci

(P3,j − P6,j − P9,j) (26)

d[FzVang]j
dt

= P2,j − P5,j − P7,j (27)

d[DshFzVang]j
dt

= P4,j + P5,j − P10,j (28)

d[FzVangPk]j
dt

= P6,j + P7,j − P8,j (29)

d[DshFzVangPk]j
dt

= P8,j + P9,j + P10,j (30)

where the subscript i indexes each cell, and j indexes each of the Ni sides of a cell. A∗ and

C∗ are the area and total edge length respectively of a reference size hexagonally shaped

cell of unit edge lengths.

A∗ =
3
√

3

2
, C∗ = 6

Ai is the area of the ith cell, and Cj is the length of the jth edge. The coefficients of

the terms involving Pi,j in equations 21 to 30 were chosen so that, for a reference size

hexagonally shaped cell, an initial Dsh concentration of 1 could react completely with a

concentration of 1 for Fz to produce a uniform DshFz concentration of 1 on the membrane.

The same scaling terms were applied to Pk and Vang. This scaling is identical to that used

for the original model. These equations describe the time rate of change of the protein or

complex concentration in each of the regions represented in the cell. These equations were

implemented and solved using the stiff ODE solver, cvode [Cohen & Hindmarsh, 1994,

Cohen & Hindmarsh, 1996, Hindmarsh & Serban, 2004].
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Initial conditions

As for the original model, initial conditions for the modified model represented uniform

concentrations of the proteins, where the initial concentration was specified as an input

parameter. Given the irregular geometry, however, it was not apparent how this initial

concentration should depend on variations in the measured areas of the cell. For example,

cells with identical three-dimensional volumes and identical quantity of protein may pack

such that the areas of their two-dimensional geometries near the apical surface differ. How-

ever, larger areas may also indicate cells with larger volumes, which may in turn produce a

greater quantity of protein to maintain the same overall concentration of protein. Therefore,

we introduced an additional parameter, MIC , to determine the scaling of the initial protein

concentrations with cell size.

[Dsh]0,i = [Dsh]∗0

[
1 − MIC

(
1 − A∗

Ai

)]
, [Pk]0,i = [Pk]∗0

[
1 − MIC

(
1 − A∗

Ai

)]

[Vang]0,j = [Vang]∗0

[
1 − MIC

(
1 − C∗

Cj

)]
, [Fz]0,j = [Fz]∗0

[
1 − MIC

(
1 − C∗

Cj

)]

Cell array boundary conditions

A consequence of permitting arbitrary geometries for the modified model was that we could

no longer use the standard periodic boundary conditions for the edges of the cell network,

meaning that cells on one side of the cell array would not necessarily align with cells on

the opposite side of the array. Therefore, a set of free boundary conditions was defined

that extrapolated data for edge cells, defined as cells with at least one edge not shared by

a neighboring cell, from a neighboring interior cell. When a cell had multiple neighbors,

the data were extrapolated from the neighboring interior cell whose centroid was closest

to the centroid of the edge cell along the x, or proximal-distal axis. This ensured that we

could continue to simulate effectively infinite lines of clones for parameter selection, as de-

scribed [Amonlirdviman et al., 2005]. The values from this neighboring interior cell for the

concentrations of proteins and complexes that were free to diffuse throughout the cell were
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copied to the edge cell. For the complexes restricted to a side of the edge cell, the ODEs

for these values were solved in the same way as for other interior edges, possibly taking as

input the extrapolated values for the edge cells. For unshared edges, no boundary condition

was necessary, as these values were not used elsewhere in the computation.

Asymmetry signal

The asymmetry signal was slightly modified from the original model to accommodate ir-

regular geometries. While several possible forms of this asymmetry are possible, the form

used for the simulation results presented here was obtained by varying S such that the

ratio between the maximum and minimum value in each cell was identical for every cell,

regardless of its shape or size. At each edge of each wildtype cell a value is assigned for the

strength of the asymmetry signal. Within each cell, the asymmetry signal strength is an

affine function of the location of the cell edge along the proximal – distal axis and takes the

value 1 + (M − 1) x−xmin

xmax−xmin
, in which x is the location of the cell edge along the proximal

– distal axis, xmin and xmax are respectively the minimum and maximum locations of the

cell along the proximal – distal axis, and M is the asymmetry parameter. The maximum

values for S are similar to the value of the comparable parameter identified in the original,

regular hexagonal array model [Amonlirdviman et al., 2005].

Irregular computational grid description

The cell geometry descriptions that were obtained from the geometry analysis algorithm

were used as the computation grids for simulations using the modified mathematical model.

For dimensional consistency with parameters from the original mathematical model, the

cell geometries were scaled such that the average cell area was equal to A∗. The grids were

also rotated such that the positive x direction corresponded with the distal direction.

Parameter selection

Parameters for the modified mathematical model were first selected using the procedure

described in [Amonlirdviman et al., 2005]. In addition to satisfying the original set of phe-
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notypic feature constraints which formed the basis of [Amonlirdviman et al., 2005], new

feature constraints consisting of polarity phenotypes of some of the observed fat clones were

included. These constraints affected the objective function, which mathematically encodes

all of the feature constraints into a single mathematical function which could be optimized

with respect to the model parameters. We used two different methods to perform this opti-

mization: the first was the simplex method described in [Amonlirdviman et al., 2005], the

second is the adjoint method presented in [Raffard et al., 2008].

Since the simulations were performed using cell geometries extracted from wing images,

the hair angles predicted from the simulation could be directly compared with those observed

in the actual wing. We identified parameters that would reproduce the phenotypes of fat

clones that do and do not disrupt polarity by simulating on the corresponding geometries

and attempting to minimize the difference between the simulated polarity of a subset of

the cells in the clone and the observed hair angles from the corresponding cells in the wing.

Two types of objective function terms were used to measure the distance between a vector

representing the predicted polarity of a cell, vp, and a target polarity direction, represented

by the unit vector, vT . vp represents the vector sum of the Dsh concentration in each cell

relative to the cell centroid. Letting vj be the unit vector from the centroid of a cell to the

center of side j, vp is given by

vp =
1

Cj

Ni∑
j=1

lj [Dsh]jvj

Then when comparing the predicted polarity of a cell with the target polarity direction, one

penalty function term measured the degree of polarity, which would give the optimization

algorithm a direction for improvement even when the predicted hair angle was not changing.

Shair,mag = vp · vT

Jhair,mag =

⎧⎨
⎩

0, Shair,mag ≥ Thair,mag

Kmag(Thair,mag − Shair,mag)
2, Shair,mag < Thair,mag

where Thair,mag is a threshold target value. A second penalty function term measured the

error in predicted angle, so that the parameter identification would not necessarily favor
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strong polarization in a direction not perfectly aligned with the desired hair direction over

weaker polarization with the correct angle.

Jhair,ang = Kang

(
cos−1 vp · vT

‖vp‖‖vT ‖
)2

Kmag and Kang are the weights applied when summing the terms of the objective function.

Simulations performed using the identified parameter set exhibited the same qualitative

behaviors of the original set of characteristic PCP phenotypes (not shown), while also

reproducing the polarity phenotypes of the fat clone data used to train the parameters.

The parameters are as defined above, with an additional parameter Mbcl representing the

strength of the asymmetry signal at the boundary of the fat clones (see below). The final

parameter set is shown in Table S1.

Assumptions and limitations

The modified mathematical model is subject to the same assumptions and limitations as

the original model described in [Amonlirdviman et al., 2005], except as noted below.

The cell network geometry is modeled by arbitrary two-dimensional grids which remain fixed

throughout the simulation

We added the ability to describe the cell network geometry using arbitrary two-dimensional

grids that may be derived from experimental images of actual cell geometries. As described

in the main text, the cell geometry in the wing epithelium changes over time during PCP

signaling. The time dependence of the cell geometry has not been included in the mathe-

matical model. We assumed that the time scale of geometry changes, at least near the end

of the polarization period, is slower than the time scale of protein rearrangement. Indeed,

our live imaging of cell shapes shows that after a period of more rapid cell shape changes,

cell shapes stabilize, changing only slowly in the period before prehairs emerge (data not

shown). Since good simulation results were obtained using just the final cell grid, this in-

dicates that there cannot be a strong dependence on substantially different cell geometries

that existed prior to the ones we have captured and used. However, it is possible that some
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of the inaccuracies in our results depend on the dynamic nature of the cell shapes prior to

prehair emergence. Furthermore, the accuracy of the extracted cell geometries was limited

by the resolution of the fluorescence microscopy techniques used to capture the geometry of

the cells and the performance of the cell geometry analysis algorithm. These cell geometry

errors may lead to inconsistencies in the ability of the simulation to reproduce polarity

features that are sensitive to such variations in geometry.

The boundary conditions on the cell network extrapolate from internal cells

Rather than simulating effectively infinite arrays of cells as in the original mathematical

model, the boundary conditions for the modified model represent extrapolation from cells

inside the simulated region. The effect of having a larger array of cells outside of the simu-

lated region is therefore lost, and may influence the results inside of the simulated region.

Proteins and complexes distribute uniformly over specified regions of the cell

Based on observations of the resulting diffusion coefficients for the original mathematical

model, we determined that the ability of the model to reproduce characteristic PCP phe-

notypes did not depend on these coefficients, and that diffusion to nearly uniform concen-

trations occurred very quickly compared to the duration of PCP signaling. In the modified

model, proteins and complexes immediately adopt uniform concentration distributions ei-

ther within a shared edge of a cell or throughout the cell for proteins and complexes that

are not bound to a shared cell edge. This may represent diffusion or any other transport

mechanism that results in the uniform distribution of these proteins within the regions

described, as long as the movement occurs quickly compared to the time scale of PCP sig-

naling. This seems quite reasonable, given the small size of epithelial cells and the relatively

long duration of PCP signaling in the Drosophila wing.

We have restricted DshFz to remain on a shared edge between two cells, based on the

very small diffusion rate for this complex that was identified using the original model. This

may reflect either that DshFz, once formed into a complex, does not diffuse, or the influ-

ence of another factor not included in the model that forms a complex between neighboring
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cells, but that does not necessarily require Vang to restrict the DshFz complex to the

shared edge. One candidate for this factor is Fmi, a core PCP protein which localizes on

both proximal and distal sides of each cell, coupling the interactions between neighboring

cells [Chae et al., 1999, Usui et al., 1999].

Simulation results on real cell geometry

Figure S4 shows results of simulating the mathematical model with cell geometry extracted

from an image of a 32 hour APF wild-type pupal wing. In all panels, the same field of cells

is used.

Sensitivity of simulation results to boundary conditions

Figure S5 shows the Dsh distributions corresponding to the fat clone simulation cases used

in this study. Also shown are simulations on the same computational grids without fat

clones present. These results show that the fat clones are usually sufficiently far away from

the boundary of the simulated domain that the boundary effects would not be expected to

significantly alter the predicted phenotypes inside of the simulated fat clones. That is, the

polarity signaling input from the wild-type cells surrounding the clone sufficiently resemble

simulated cell polarity in the absence of mutant clones that the polarity phenotype of the

fat clone would not be strongly influenced by the interaction between the clone and the

extrapolated boundary conditions.

Positive influence of including Fat-Dachsous non-autonomy in

the simulations of hair orientation

The orientation of hairs on the cells in and surrounding two fat clones, one with disrupted

polarity and one with normal polarity (as observed in confocal images; Figure 3a,b for

disrupted-polarity clone, Figure 3c,d for normal-polarity clone), has been compared to the

corresponding outputs obtained by the model simulations for the same clones (Figure 3e,g

for the disrupted-polarity clone, Figure 3f,h for the normal-polarity clone). We tested the

hypothesis that including the non-autonomous effects of Fat-Dachsous (Ft-Ds) (Figure S6)
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improves the match between the outputs of the simulations and the values measured from

the confocal images, when compared to the case in which no Ft-Ds non-autonomy is included

(compare Figure 3g,h to Figure 3e,f).

To assess the overall change in fit between the two sets of simulations, the hair orientation

was determined from both the confocal images and from the simulations, including each

cell of the mutant clone and the first two rows of cells adjacent to the mutant cells. The

hair orientation for each cell was expressed as a positive angle (expressed in degrees) in

the interval [0,360], considered counter-clockwise and with the horizontal (distal) direction

arbitrarily set as the zero degree reference. The data were organized in ordered vectors of

like sizes for each clone.

Two approaches were used to compare the data from the confocal images and the simu-

lated outputs: the first looks at a global measure of the angle differences, while the second

looks at the pairwise correlation between each measured and simulated hair angle compris-

ing the data sets for that clone.

In the first method, the difference in angle between the measured and simulated hair

orientation was computed, taking a value between 0 and 180 degrees, first for the simulation

without Ft-Ds non-autonomy (Figure 3e,f), and then for the simulation with Ft-Ds non-

autonomy (Figure 3g,h). The average of this difference over all cells was then taken. This

calculation shows that the addition of Ft-Ds non-autonomy drives the average angle between

measured and simulated down from 42.6 to 34.1 degrees. Figure S7 plots two histograms

depicting the distribution of the normalized difference in hair direction for both clones,

without Ft-Ds non-autonomy (left) and and with Ft-Ds non-autonomy (right). The width

of the bars in the histograms is 10 degrees. The corresponding global averages are also

shown. By this measure, the overall accuracy of the simulation is improved by incorporation

of the Ft-Ds non-autonomy effect.

The second approach considers the statistical correlation between the vector of hair

directions measured from the confocal image and that for the simulation outputs (first for

the two clones combined, and then for each clone separately). The Pearson product-moment

correlation coefficient was selected as the comparison metric [Rodgers & Nicewander, 1988].
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The Pearson coefficient for the comparison of the measured and simulated angle vectors,

considering both clones in aggregate, without including Ft-Ds non-autonomy, is 0.933, and

increases to a value of 0.965 when the effect of Ft-Ds non-autonomy is included. Thus, by

this second measure, the overall accuracy of the simulation is improved by incorporating

the Ft-Ds non-autonomy effect.

By both measures, the effect of including Ft-Ds non-autonomy was greater on the po-

larity disrupted clone (Figure 3e, compared to g), than on the polarity non-disrupted clone

(Figure 3f, compared to h). For the polarity disrupted clone, the addition of Ft-Ds non-

autonomy decreases the average angle difference from 52.9 degrees to 37.8 degrees. Corre-

spondingly, the Pearson correlation coefficient increases from 0.905 to 0.957.

For the polarity normal clone, the average angle difference is instead increased (by

the addition of Ft-Ds non-autonomy) from 14.2 degrees to 23.7. Most of this increase is

accounted for by the tendency of cells surrounding the clone to point away from the clone

(Figure 3c-d,f,h), and indeed, if we consider only the cells within the clone, the value is

decreased by the addition of Ft-Ds from 22.6 to 17.2 degrees. This effect is visually evident.

Similarly, the Pearson coefficient for the mutant and surrounding cells is slightly decreased

from 0.997 to 0.989, though for the mutant cells only, it is increased from 0.988 to 0.992.

Therefore, inclusion of the Ft-Ds non-autonomy effect produced an overall improvement

in accuracy of the simulations. It also increased local correlation of hair orientation between

neighboring cells, as is evident in the confocal images. However, in the case of this polarity

normal fat clone, a modest decrease in accuracy was produced by effects on the surrounding

cells.
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