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Supplementary Figure 1.  Simplified diagram of the cAMP signaling pathway showing a potential scenario for the activa-
tion of PKA signaling pathway caused by the nonsense mutation in MTH1 present in the M1 adaptive strain.  Mth1 normally 
represses HXT transcription via Rgt1.  The log base 2 gene expression data for the components of the signaling pathway are 
shown below or next to each gene.  The tables labeled “induced” or “repressed” are significantly perturbed genes (see 
Methods) in our dataset that are either induced or repressed in the activated Gpa2 and Ras experiments in Wang et al.  The 
genes whose expression was significantly induced in M1 are highlighted in red, while significantly repressed genes are 
highlighted in green.  Only one gene in the “induced” and two genes in the “repressed” set differ between our data and 
Wang et al data.  The consistency between the datasets suggests that the PKA signaling pathway is increased in M1 relative 
to the original parent.
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Supplementary Figure 2.  FACS measurement of approximately equal numbers of 
parental strains expressing GFP, YFP, and DsRED.  The average and standard deviation 
are based on triplicate measurements of 3 separate mixtures.
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Supplementary Figure 3.  FACS measurements of changes in frequency of the different 
fluorescently expressing cells during A) a serial batch transfer experiment, and B) a short-term 
chemostat experiment.  Each experiment was repeated in triplicate.  The three parental strains 
expressing GFP, YFP, and DsRED were mixed in at equal proportions at the start of the 
experiment.  The green, yellow and red bars represent the proportion of the population 

Generations

Pr
op

or
tio

n 
in

 p
op

ul
ati

on

20

40

60

80

100

20

40

60

80

5 10 15 20 25 30
0

20

40

60

80

A B



0.2

0.4

0.6

0.8

GPB2 #1
GPB2 #2

SLY41 #1
SLY41 #2

MUK1 #1
MUK1 #2

MTH1 #1
MTH1 #2

IRA1 #1
IRA1 #2
IRA1 #3

TAF5 #1
TAF5 #2

RIM15 #1
RIM15 #2

COX18 #1
COX18 #2

MNN4 #1
MNN4 #2

0.2 0.4 0.6 0.8 0.2 0.4 0.6

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.0
0.0 0.2 0.4 0.6 0.8 0.8 1.0

Actual wild-type frequency

0.2 0.4 0.6 0.8 1.0

M
ea

su
re

d 
w

ild
-t

yp
e 

fr
eq

ue
nc

y

chr16 intergenic #1
chr16 intergenic #2
chr16 intergenic #3

0.2 0.4 0.6 0.8

M1

M3

M4

M5

Supplementary Figure 4.  Allelic frequency test results for a) the different allelic specific primers and b) the HXT6/7 amplification.
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Supplementary tables 
 

Strain Generation Subpopulation 
M1 56 Green 
M2 91 Red 
M3 196 Yellow 
M4 256 Red 
M5 385 Yellow 

 

Supplementary Table 1.  Description of the adaptive clones analyzed. 

The adaptive clones were isolated at the generations and from the subpopulations 

specified.  See Figure 1A in paper for population structure and details of isolation. 



Strain Genotype Source 
FY2 Matα, ura3-52, gal+ in S288c background  
GSY1135 FY2 YBR209W::Act1p-DsRED.T1.N1-Act1t-URA3 this work 
GSY1136 FY2 YBR209W::Act1p-GFP-Act1t-URA3 this work 
GSY1137 FY2 YBR209W::Act1p-YFP-Act1t-URA3 this work 
 

Supplementary Table 2.  List of strains used. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Sequencing Primers used for verification of genotypes 
Primer Sequence 
Chr1_39603_for GATTGTGATTCATTGGCAGG 
Chr1_39603_rev TCCTTCCTTAGCTTTGGTAC 
Chr2_616436_for GAACGACGCTACTAAATCGC 
Chr2_616436_rev GTTTCTCCCCGCTAGGCC 
Chr4_1014688_for CCTTGGGAATTTGGAGCTC 
Chr4_1014688_rev GAATTCAAACTAACCAGCGC 
Chr6_73424_for CTAGTCCAGGATCCTGATC 
Chr6_73424_rev CTTGGAAGCACGTGGTATC 
Chr7_617106_for TTCTGCCTCTTTCTTGTCTC 
Chr7_617106_rev TGAGGTTGTGGAGCTGTTG 
Chr11_64696_for AGGGTCCTTATCAAACATTTG 
Chr11_64696_rev TTTAGATTTTGGTTCGACTATG 
Chr15_893328_for AGGGCTACTGTTTCTAGCG 
Chr15_893328_rev TGTTGGATTTGCTTCCATCG 
Chr16_422264_for TGAAACTACATGAAATCATGAC 
Chr16_422264_rev AGATGCTGAAGATCGTGAAG 
Chr16_912519_for TTCTTCCCCATGATAGATAAG 
Chr16_912519_rev CATCATACGAAAGTATGTCTG 

Primers for Allele Frequency Determination 
Gene / 
location Primer Sequence Comment 

chr1_yellow_wt_for GGGCATGCGTTGAAGAATCC common forward primer 
chr1_yellow_mut_rev AATGGAATCCCAACAATTATCTC mutant allele-specific reverse primer 

GPB2 

chr1_yellow_rev GACCGCACAGTACGATTCAG  wild-type allele-specific reverse primer 
chr15_yellow_wt_for TCTTACTGCCATGTGTTGACC  wild-type allele-specific forward primer 
chr15_yellow_mut_for CTCTTACTGCCATGTGTTGACA  mutant allele-specific forward primer 

SLY41 

chr15_yellow_rev TCGAACATCGTTATTACAATTCC  common reverse primer 
chr16_yellow_wt_for CAGTAGAGTCTCATTGCCATC  wild-type allele-specific forward primer 
chr16_yellow_mut_for CAGTAGAGTCTCATTGCCATA  mutant allele-specific forward primer 

MUK1 

chr16_yellow_rev CTTTGGATAGTAGGAGTCACG  common reverse primer 
chr2_yellow_wt_for_new GCCAAATGATACTGTAGAAGATC  wild-type allele-specific forward primer 
chr2_yellow_mut_for GCCAAATGATACTGTAGAAGATT  mutant allele-specific forward primer 

IRA1 

chr2_yellow_rev TTGAATCTGCAAAAGCATTGGC  common reverse primer 
chr4_green_wt_for GTCTTTTTAAGTTGGACTGTTG  wild-type allele-specific forward primer 
chr4_green_mut_for GGTCTTTTTAAGTTGGACTGTTA  mutant allele-specific forward primer 

MTH1 

chr4_green_rev TTAAATATAGCAGTAGAGGCAC  common reverse primer 
chr2_red_wt_for TAAGGAATAAATGGCATTCTTAC  wild-type allele-specific forward primer 
chr2_red_mut_for ATAAGGAATAAATGGCATTCTTAA  mutant allele-specific forward primer 

TAF5 

chr2_red_rev TAGCGAAGATGGTATTATTAATG  common reverse primer 
chr6_red_wt_for GAAATGGTTCCTGATCTTTACC  wild-type allele-specific forward primer 
chr6_red_mut_for TGAAATGGTTCCTGATCTTTACA  mutant allele-specific forward primer 

RIM15 

chr6_red_rev GGAATTGATCTAACAAAGCATTG  common reverse primer 
chr7_red_wt_for CACATATACCATGGATAGTGCT  wild-type allele-specific forward primer 
chr7_red_mut_for CACATATACCATGGATAGTGCA  mutant allele-specific forward primer 

COX18 

chr7_red_rev AGTTCTTGTTGTTTCAAAATTCTC  common reverse primer 
chr11_red_wt_for GACTACATTAGATCAAGTTACCA  wild-type allele-specific forward primer 
chr11_red_mut_for ACTACATTAGATCAAGTTACCG  mutant allele-specific forward primer 

MNN4 

chr11_red_rev ATGTTGAAAAGTGAAAAATTCCTG  common reverse primer 
chr16_red_wt_for ACGATTCGAAATTACTCTTTTCTT  wild-type allele-specific forward primer 
chr16_red_mut_for CGATTCGAAATTACTCTTTTCTG  mutant allele-specific forward primer 

chr16 
intergenic 

chr16_red_rev_new TTCTTTTCTGTGTTCTTAGTGTC  common reverse primer 
hxt6_for AATGGCTTATCATCGTGAGCC   HXT6/7 
hxt6_rev CCTCATGGGTTCCACCATCT   

 
Supplementary Table 3.  Primers used. 



Supplementary Methods 

 

Construction of Fluorescently Marked Strains 

Fluorescently tagged strains were constructed by integrating plasmids pGS62, pGS63, 

and pGS64 into FY2.  These plasmids were constructed from YIplac211 (Gietz and 

Sugino, 1988) in the following fashion: YIplac211 was digested with HindIII, blunt-

ended with Klenow polymerase, and then digested with SphI, making it compatible with 

EcoRV and SphI cutting sites.  A 157 bp region from the dubious ORF, YBR209W, was 

amplified by PCR, digested with EcoRV and SphI, then cloned into this vector.  The 

resulting plasmid was digested with EcoRI, blunt-ended with Klenow, then digested with 

KpnI; into this was then inserted a DNA fragment containing a 161 bp region from the 5’ 

region of YBR209W digested with EcoRV and KpnI.  EcoRI and SphI were then used to 

cut this plasmid in the middle of the YBR209W region and into this was then inserted a 

fragment of DNA containing the ACT1 promoter amplified from pRB2138 (Doyle and 

Botstein, 1996), coupled with either Green Fluorescent Protein (GFP) amplified from 

pFA6a-GFPS65T-HisMX6 (Wach et al., 1997), Yellow Fluorescent Protein (YFP) 

amplified from pDH5 (http://depts.washington.edu/yeastrc/), or a red fluorescing protein 

(DsRED1.T1) amplified from pTY24 (http://depts.washington.edu/yeastrc/); each was 

followed by the ACT1 terminator amplified from pRB2132 (Doyle and Botstein, 1996).  

These inserts were generated using fusion PCR followed by digestion with EcoRI and 

SphI.  The resulting plasmids were linearized with HindIII and transformed into FY2 to 

integrate at the 5’ region of YBR209W using a lithium acetate protocol (Gietz et al., 

1995).  Integration was confirmed by PCR.  The resulting strains were GSY1136 



(YBR209W::YIplac211-ACT1p-GFP-ACT1t), GSY31137 (YBR209W::YIplac211-

ACT1p-YFP-ACT1t), and GSY1135 (YBR209W::YIplac211-ACT1p-DsRED.T1.N1-

ACT1t). 

 

FACS error estimation 

The error of FACS measurements were determined by mixing approximately equal 

numbers of parental strains expression GFP, YFP, or DsRED, followed by FACS 

analysis.  Three different mixtures were generated, and each mixture was measured 3 

times by the FACS.  The results are shown in Supplementary Figure 1.  The error of 

FACS measurement is less than 1%.   

 

Fluor bias 

The potential biases in the different fluorescent proteins were tested by serial batch 

transfer experiments with equal numbers of parental strains expressing GFP, YFP, or 

DsRED in the starting population.  Approximately 10,000 cells were serially transferred 

every 24 hours in 200 µl of 0.25% glucose minimum medium aerating on a roller drum at 

30 °C.  The cells undergo approximately 10 generations per 24 hour period.  The results 

for three replicate experiments are shown in Supplementary Figure 2.  No significant bias 

in fitness was observed between the three fluors from the serial batch transfer 

experiments.   

 

Allelic frequency test 



The primers used for the population allelic frequencies were tested for their ability to 

estimate the proportion of each allele in a mixture.  The wild-type genomic DNA was 

mixed in with the genomic DNA of M1, M3, M4, or M5 (M2 was not used since it 

contains an identical mutation as in M4) to generate mixtures with the following 

percentages of wild-type genomic DNA:  100, 95, 90, 80, 20, 10, 5, 0.  Each series was 

tested at least twice.  The allele frequency is calculated using the following equations:  

 frequency of wild-type allele = 1/(2(Ct wild-type – Ct mutant) + 1) 

 frequency of mutant allele = 1 – frequency of wild-type allele 

The results are shown in Supplementary Figure 3A.  For the estimation of the HXT6/7 

frequency in the population, M4 genomic DNA was mixed in with a parental genomic 

DNA to generate mixtures with the following percentages of wild-type genomic DNA:  

100, 95, 90, 80, 70, 60, 50, 40, 30, 20, 10, 5, and 0.  Each series was repeated 3 times.  

The calculation of allelic frequency in the mixture was estimated by using a copy number 

of 8 for the HXT6/7 allele in M4.  The following formula was used to estimate the 

frequency of the HXT6/7 allele: 

 frequency of wild-type HXT6/7 allele = -(2(Ct wildtype – Ct mutant) – 8)/7 

 frequency of mutant HXT6/7 allele = 1 – frequency of wild-type HXT6/7 allele 

The results are shown in Supplementary Figure 3B.  Note, the measurement of the 

HXT6/7 mutant frequency was not as accurate as for the other mutations, and thus the 

estimation of the HXT6/7 amplification frequency in the population is only a rough 

estimate. 

 

Gene Expression Data 



SAM analysis (Tusher et al., 2001) found a total of 393 genes to be significantly induced 

or repressed in at least one of the adaptive clones assayed.  As expected, the nonsense 

mutation in MTH1 in adaptive mutant M1 resulted in an increased expression of HXT1 

and HXT4, while the genes whose expression was induced in M3 were also enriched for 

those involved in hexose transport.  Even though these genes are known to be affected by 

the PKA signaling pathway, it is unclear whether the mutation in IRA1, which results in a 

conservative substitution, was the direct cause of their differential expression.  Disruption 

of RIM15 has previously been shown to affect genes involved in stress response (HSP12, 

HSP26, SSA1, CTT1Reinders et al., 1998).  Indeed, these genes were repressed in M4, 

indicative of a nonfunctional RIM15.  In addition, the amplification in HXT6/7 in M4 also 

resulted in an increase in gene expression of HXT6, but not HXT7.  Surprisingly, even 

though an amplification was also observed in the region of HXT6/7 in M5, the increase in 

HXT6 gene expression was not as significant.  The mutation in GPB2 in M5 may result in 

an increase in PKA activity.  Comparison of our gene expression data to a published list 

of genes whose transcript abundances change in response to activation of RAS or GPA2 

(Wang et al., 2004), showed that several genes previously found to be induced or 

repressed by PKA activation were also similarly induced or repressed in M5. 
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