A Unified Synthetic Approach to Polyketides Having Both Skeletal and Stereochemical Diversity

Shiying Shang,[†] Hayato Iwadare,[‡] Daniel E. Macks,[‡] Lisa M. Ambrosini,[‡] and Derek S. Tan^{*,†,‡,§}

[†]Pharmacology Program, Weill Medical College of Cornell University, [‡]Molecular Pharmacology & Chemistry Program, and [§]Tri-Institutional Research Program

> Memorial Sloan–Kettering Cancer Center 1275 York Ave., Box 422, New York, NY 10021 USA

Supporting Information

A.	Materials and methods	S 1
B.	Complete library synthesis route	S3
C.	Synthesis of propargylic alcohols (3)	
	and stereochemical assignments	S4
D.	Synthesis of allylic alcohols (10,11)	S10
E.	Synthesis of epoxyols (12,13)	S14
F.	Synthesis of α , β -enones (17,18)	S21
G.	Synthesis of α , β -epoxyketones (19,20)	S23
Н.	Synthesis of β -hydroxyketones (21)	S26
I.	Synthesis of 2-methyl-1,3-diols (14a,15a)	
	and stereochemical assignments	S28
J.	Synthesis of 1,3-diols (16)	
	and stereochemical assignments	S33
K.	¹ H-NMR and ¹³ C-NMR spectra	S41

A. MATERIALS AND METHODS

Reagents were obtained from Aldrich Chemical (www.sigma-aldrich.com) or Acros Organics (www.fishersci.com) and used without further purification. Optima grade solvents were obtained from Fisher Scientific (www.fishersci.com), degassed with Ar, and purified on a solvent drying system as described¹ unless otherwise indicated. Triethylamine (Et₃N) and pyridine (pyr) were distilled from CaH under N₂. Trimethylorthoformate (TMOF) was obtained from Aldrich in SureSeal bottles. Dess–Martin periodinane (solid) and (*R*)-(–)-Mosher acid chloride were purchased from Aldrich. Reactions were performed in flame-dried glassware under positive Ar pressure with magnetic stirring. Cold baths were generated as follows: 0 °C,

¹ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics **1996**, *15*, 1518–1520.

wet ice/water; -20 °C, Cryocool® monitored with a thermometer; -44 °C, dry ice/CH₃CN; -78 °C, dry ice/acetone; -100 °C, dry ice/liquid N₂/acetone monitored with a thermometer.

TLC was performed on 0.25 mm E. Merck silica gel 60 F254 plates and visualized under UV light (254 nm) and by staining with potassium permanganate (KMnO₄) or cerium ammonium molybdenate (CAM). Silica flash chromatography was performed on E. Merck 230–400 mesh silica gel 60.

Optical rotations were recorded on JASCO model DIP-370 or P-1020 digital polarimeters. IR spectra were recorded on Perkin–Elmer model 1600 or Bruker Optics Tensor 27 standard system FTIR spectrometers with peaks reported in cm⁻¹. NMR spectra were recorded on Bruker DRX500 or AMX400 instruments at 24 °C in CDCl₃ unless otherwise indicated. Chemical shifts are expressed in ppm relative to TMS (¹H, 0 ppm) or solvent signals: CDCl₃ (¹³C, 77.0 ppm), C₆D₆ (¹H, 7.16 ppm; ¹³C, 128.0 ppm), acetone-d₆ (¹³C, 206.2 ppm); coupling constants are expressed in Hz. Mass spectra were obtained at the MSKCC Analytical Core Facility on a PE Sciex API 100 mass spectrometer with electrospray (ESI) ionization. Diastereomeric and configurational ratios are reported for purified products based on ¹H-NMR analysis.

Atom numbers shown in chemical structures herein correspond to the numbering system used in the text of the article and Supporting Information and do not necessarily correspond to IUPAC nomenclature, which was used solely to name each compound below.

B. COMPLETE LIBRARY SYNTHESIS ROUTE

This figure provides complete details of the synthetic route to 74 polyketide fragments, which is summarized in Scheme 2 of the manuscript.

Figure S1. Complete library synthesis route. One enantiomeric series shown for $R^1 = H$ (above dashed line) and $R^1 = Me$ (above and below dashed line). Total library members in each structural class are indicated (red). This route provides comprehensive stereochemical diversification with the exceptions of epoxyols *syn,anti*-13b and *anti,syn*-13b and epoxyketone *anti,trans*-18b (gray). The unusual *syn*-selective epoxidation of *E*-allylic alcohol *syn*-11b with *m*-CPBA is highlighted (blue). The 1,3-diols *anti*-16a and *syn*-16a can also be obtained directly from epoxyols *syn*-12a and *anti*-12a respectively by treatment with Red-AI (not shown).

anti-3b

syn-3b

L-Selectride

LiAlH₄

Figure S2. Synthesis of propargylic alcohols 3. Propargylic alcohols **3a** and **3b** (Figure 2) were synthesized by coupling of Weinreb amides **S1** (cf. **1** in Figure 1) and alkyne **S3** (cf. **2** in Figure 1), followed by stereoselective reduction of the resulting α , β -alkynones **S4**. In the R¹ = H series, enantioselective reductions to **S-3a** or **R-3a** were achieved using Alpine-Borane, with absolute stereochemical assignments made by analogy to literature precedents for alkynone reductions with Alpine-Borane² and also with BINAL.³ In the R¹ = Me series, diastereoselective reductions to **anti-3b** or **syn-3b** were accomplished using L-Selectride and LiAlH₄, respectively. Relative stereochemical assignments were initially made by comparison to products obtained (in lower yields) by alternative asymmetric reduction with *R*- and *S*-BINAL and analogy to literature precedent.³ These relative stereochemical assignments were subsequently confirmed by NOESY analysis of cyclic carbonates derived from debenzylated **anti-3b** and **syn-3b** (see below).

S4b

2-(Benzyloxy)-N-methoxy-N-methylacetamide (S1a). Prepared from (benzyloxy)acetyl chloride and *N,O*-dimethylhydroxylamine hydrochloride essentially as previously described.⁴ Purification by silica flash chromatography (1:1 hexanes/EtOAc) yielded Weinreb amide **S1a** (2.72 g, 96%) as a colorless oil.

TLC: R_f 0.34 (2:1 hexanes/EtOAc). **IR** (NaCl, film) 3852, 3744, 2937, 1682 (C=O st), 1558, 1539, 1496, 1455, 1391, 1327, 1267, 1177, 1139, 1087, 1028, 992, 789, 739. ¹H-NMR (400 MHz) δ 7.40–7.27 (m, 5H), 4.67 (s, 2H), 4.28 (s, 2H), 3.63 (s, 3H), 3.19 (s, 3H). ¹³C-NMR (125 MHz): δ 171.0, 137.5, 128.4, 128.1, 127.8, 73.2, 67.1, 61.4, 32.3. **ESI-MS** *m/z* (rel int): (pos) 210.1 ([M+H]⁺, 15), 232.0 ([M+Na]⁺, 100).

² Midland, M. M.; McDowell, D. C.; Hatch, R. L.; Tramontano, A. J. Am. Chem. Soc. **1980**, 102, 867–869.

³ (a) Nishizawa, M.; Yamada, M.; Noyori, R. *Tetrahedron Lett.* **1981**, *22*, 247–250. (b) Noyori, R.; Tomino, I.; Yamada, M.; Nishizawa, M. J. Am. Chem. Soc. **1984**, *106*, 6717–6725.

⁴ Williams, R. M.; Ehrlich, P. P.; Zhai, W.; Hendrix, J. J. Org. Chem. **1987**, *52*, 2615–2617.

(-)-(S)-Methyl 2-(benzyloxy)propanoate (S2).⁵ In a 500 mL roundbottom flask, (S)-methyl 2-hydroxypropanoate ((S)-methyl lactate) (5.20 g, 50.0 mmol, 1.0 equiv) was dissolved in 75 mL 2:1 cyclohexane/anhyd CH₂Cl₂ and cooled to 0 °C. Benzyl 2,2,2-trichloroacetimidate (15.2 g, 60 mmol, 1.2 equiv) was added dropwise via addition funnel, followed by catalytic TfOH (600 mg, 4.0 mmol, 0.08 equiv). The mixture was stirred at 0 °C for 15 min then allowed to warm to rt with stirring for 8 h. Satd aq NaHCO₃ was added, the layers were separated, and the aq layer was extracted with EtOAc. The combined organic extracts were dried (MgSO₄), filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (20:1 \rightarrow 15:1 \rightarrow 12:1 \rightarrow 10:1 \rightarrow 8:1 hexanes/EtOAc) yielded benzyl ether S2 (6.51 g, 67%) as a light yellow oil.

The R-enantiomer was also prepared and used in the synthesis of the enantiomeric series of compounds (not shown below).

TLC: $R_f 0.60$ (2:1 hexanes/EtOAc). $[\alpha]_D^{21}$: -76.8° (*c* 1.0, CHCl₃). **IR** (ZnSe, film): 2931, 1750 (C=O st), 1455, 1206, 1118, 1066, 1026, 976. ¹H-NMR (400 MHz): δ 7.38–7.25 (m, 5H), 4.69 (d, 1H, J = 11.7), 4.46 (d, 1H, J = 11.7), 4.06 (q, 1H, J = 6.8), 3.76 (s, 3H), 1.44 (d, 3H, J = 6.8). ¹³C-NMR (100 MHz): δ 174.1, 137.9, 128.8, 128.3, 128.2, 74.4, 72.4, 52.3, 19.1. **ESI-MS** *m/z* (rel int): (pos) 217.0 ([M+Na]⁺, 100); (neg) 193.1 ([M-H]⁻, 100).

(-)-(S)-2-(Benzyloxy)-N-methoxy-N-methylpropanamide (S1b).⁶ In a 500 mL roundbottom flask, methyl ester S2 (1.94 g, 10.0 mmol, 1.0 equiv) was dissolved in anhyd THF (100 mL) and *N*,*O*-dimethylhydroxylamine hydrochloride (2.93 g, 30.1 mmol, 3.0 equiv) was added. The resulting suspension was cooled to -20 °C and *i*-PrMgCl (2.0 M in Et₂O, 30 mL, 60 mmol, 6.0 equiv) was added via syringe over 30 min with stirring. After 15 min, satd aq NH₄Cl was added and the layers were separated. The aq layer was extracted with EtOAc and the combined organic extracts were dried (MgSO₄), filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (4:1 \rightarrow 2:1 \rightarrow 1.5:1 hexanes/EtOAc) yielded Weinreb amide S1b (1.88 g, 84%) as a clear oil.

TLC: $R_f 0.30$ (1:1 hexanes/EtOAc). $[\alpha]_D^{20}$: -70.1° (*c* 1.0, CHCl₃). **IR** (ZnSe, film): 2937, 1668 (C=O st), 1454, 1387, 1313, 1156, 1106, 1061, 989, 910. ¹H-NMR (400 MHz): δ 7.39–7.22 (m, 5H), 4.67 (d, 1H, J = 11.9), 4.42 (d, 1H, J = 11.9), 4.39 (q, 1H, J = 6.6), 3.57 (s, 3H), 3.21 (s,

⁵ Auge, C.; Serge, D.; Gautheron, C.; Malleron, A.; Cavaye, B. New J. Chem. 1988, 12, 733-744.

⁶ Tomooka, K.; Kikuchi, M.; Igawa, K.; Suzuki, M.; Keong, P.; Nakai, T. Angew. Chem., Intl. Ed. 2000, 39, 4502–4505.

3H), 1.41 (d, 3H, J = 6.6). ¹³C-NMR (125 MHz): δ 173.2, 137.8, 128.4, 128.0, 127.7, 71.4, 71.2, 61.3, 32.4, 18.0. ESI-MS *m*/*z* (rel int): (pos) 224.3 ([M+H]⁺, 50), 246.0 ([M+Na]⁺, 100).

4,4-Dimethoxybut-1-yne (S3).⁷ To a stirred suspension of Al (6.2 g, 230 mmol, 2.3 equiv) in refluxing anhyd Et_2O (24 mL) was added HgCl₂ (352 mg, 1.3 mmol, 0.013 equiv) followed by a solution of propargyl bromide (18.0 g, 151 mmol, 1.5 equiv) in anhyd Et_2O (100 mL). The mixture was stirred at reflux for 1 h. The mixture was then cooled to -78 °C and a solution of trimethyl orthoformate (10.6 g, 100 mmol, 1.0 equiv) in anhyd Et_2O (10 mL) was added with stirring. After 4 h at -78 °C, H₂O (200 mL) and aq 1N NaOH (60 mL) were added and the mixture was warmed to rt and stirred for 15 min. Celite (20 g) was added to the mixture, followed by vacuum filtration over Celite, which was subsequently washed with Et_2O . The layers were separated and the aq layer was extracted with Et_2O . The combined organic extracts were washed with brine, dried (MgSO₄), filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (9:1 pentane/Et₂O) provided the volatile alkyne **S3** (7.85 g, 69%) as a clear oil.

TLC: $R_f 0.31$ (9:1 pentane/Et₂O). **IR** (NaCl, film): 3308 (α C–H st), 2936, 2835, 2252 (C α C st), 1465, 1422, 1362, 1193, 1122, 1067, 993, 908, 734. ¹**H-NMR** (400 MHz): δ 4.55 (t, 1H, J = 5.6), 3.39 (s, 6H), 2.53 (dd, 2H, J = 5.6, 2.7), 2.04 (t, 1H, J = 2.7). ¹³C-NMR (125 MHz): δ 102.3, 79.3, 70.1, 53.4, 23.7.

1-(Benzyloxy)-6,6-dimethoxyhex-3-yn-2-one (S4a). Ground CeCl₃ beads (15.3 g, 61.9 mmol, 2.25 equiv) was dried by heating to 130 °C *in vacuo* for 15 h with stirring. The resulting off-white solid was allowed to cool to rt, then cooled further to 0 °C. An Ar atmosphere was introduced followed by cool anhyd THF (40 mL) and the resulting chalky suspension was stirred at rt for 1 h. In a separate 500 mL roundbottom flask, a stirred solution of alkyne **S3** (4.72 g, 41.3 mmol, 1.5 equiv) in THF (200 mL) was cooled to -78 °C and a solution of *n*-BuLi (2.5 M in hexanes, 16.52 mL, 41.3 mmol, 1.5 equiv) was added dropwise with stirring. After 1 h, the CeCl₃ suspension above was added to the light yellow alkynyl lithium solution. The CeCl₃ flask was rinsed with additional THF (2 × 30 mL). After 2.5 h, a solution of azeotropically dried (PhH) Weinreb amide **S1a** (5.76 g, 27.5 mmol, 1.0 equiv) in THF (50 mL) was added to the alkynyl cerium solution at -78 °C. The Weinreb amide flask was rinsed with additional THF (2 × 25 mL). After 1.5 h, the reaction was warmed to -40 °C. After 30 min, the reaction was quenched with satd aq NH₄Cl, filtered through a plug of celite (rinsed with CH₂Cl₂) and

⁷ Jung, M. E.; Gardiner, J. M. Tetrahedron Lett. 1994, 35, 6755–6758.

concentrated by rotary evaporation. The crude oil was extracted with CH_2Cl_2 , which was then dried (MgSO₄), filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (4:1 hexanes/EtOAc) provided alkynone **S4a** (6.13 g, 85%) as a light yellow oil.

TLC: $R_f 0.50$ (1:1 hexanes/EtOAc). **IR** (NaCl, film): 2936, 2834, 2214 (C α C st), 1691 (C=O st), 1611, 1496, 1453, 1414, 1363, 1189, 1119, 1069, 983, 811, 740. ¹**H-NMR** (400 MHz): δ 7.38–7.30 (m, 5H), 4.63 (s, 2H), 4.57 (t, 1H, J = 5.6), 4.21 (s, 2H), 3.36 (s, 6H), 2.70 (d, 2H, J = 5.6). ¹³**C-NMR** (125 MHz): δ 184.8, 137.1, 128.5, 128.1, 101.5, 91.7, 79.7, 75.8, 73.4, 53.6, 24.6. **ESI-MS** m/z (rel int): (pos) 285.1 ([M+Na]⁺, 100); (neg) 261.0 ([M–H]⁻, 53), 297.0 ([M+Cl]⁻, 100).

(-)-(S)-2-(Benzyloxy)-7,7-dimethoxyhept-4-yn-3-one (S4b). Prepared from Weinreb amide S1b essentially as above, with stirring at -45 °C for 2 h after the addition of the Weinreb amide. Purification by silica flash chromatography (5:1 \rightarrow 4:1 \rightarrow 3:1 hexanes/EtOAc) provided alkynone S4b (2.05 g, 93%) as a clear oil.

TLC: $R_f 0.40$ (2:1 hexanes/EtOAc). $[\alpha]_D^{20}$: -43.1° (*c* 1.0, CHCl₃). **IR** (ZnSe, film): 2934, 1675 (C=O st), 1454, 1367, 1276, 1260, 1116, 1063, 976. ¹**H-NMR** (400 MHz): δ 7.40–7.24 (m, 5H), 4.73 (d, 1H, *J* = 11.7), 4.59 (t, 1H, *J* = 5.7), 4.46 (d, 1H, *J* = 11.7), 4.03 (q, 1H, *J* = 6.8), 3.37 (s, 6H), 2.73 (d, 2H. *J* = 5.7), 1.43 (d, 3H, *J* = 6.8). ¹³**C-NMR** (100 MHz): δ 189.5, 137.6, 128.5, 127.9, 127.8, 101.6, 92.2, 80.8, 80.0, 72.1, 53.7, 53.6, 24.7, 17.8. **ESI-MS** *m*/*z* (rel int): (pos) 277.0 ([M+H]⁺, 50), 299.1 ([M+Na]⁺, 100); (neg) 311.2 ([M+Cl]⁻, 90).

(+)-(*S*)-1-(Benzyloxy)-6,6-dimethoxyhex-3-yn-2-ol (*S*-3a). In a 250mL roundbottom flask, neat alkynone S4a (3.0 g, 11.4 mmol, 1.0 equiv) was treated with (*R*)-Alpine-Borane (0.5 M in THF, 100 mL, 50.0 mmol, 4.4 equiv) at rt. The solution was sealed and stirred for 2–4 d at rt until complete conversion had occurred as judged by TLC. The mixture was cooled to 0 °C, then a solution of acetaldehyde (1 mL) in THF (10 mL) was added and the mixture was warmed to rt and stirred for 30 min. The solvent was removed by rotary evaporation. The mixture was then dissolved in THF (70 mL) and treated with ethanolamine (3 mL) at 0 °C. A white precipitate formed and the mixture was stirred for 30 min at rt. Et₂O was added and the mixture was filtered under reduced pressure. The solid was rinsed with additional Et₂O. The combined filtrates were then washed with brine, dried (MgSO₄), filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (4:1 hexanes/EtOAc) yielded propargylic alcohol *S*-3a (2.93 g, 97%, 86% ee) as a light yellow oil.

TLC: $R_f 0.31$ (1:1 hexanes/EtOAc). $[\alpha]_D^{25}$: +4.1° (*c* 1.1, CHCl₃). **IR** (NaCl, film): 3433 (O–H st), 2913, 2240, 1451, 1365, 1192, 1118, 1063, 823, 738. ¹H-NMR (400 MHz): δ 7.37–7.28 (m, 5H), 4.64–4.54 (m, 3H), 4.50 (t, 1H, *J* = 5.7), 3.63 (dd, 1H, *J* = 9.8, 3.6), 3.55 (dd, 1H, *J* = 9.8, 7.5), 3.35 (s, 6H), 2.59 (d, 1H, *J* = 4.6), 2.55 (dd, 2H, *J* = 5.6, 1.9). ¹³C-NMR (125 MHz): δ 137.7, 128.5, 128.1, 128.0, 102.4, 81.1, 79.5, 73.8, 73.4, 61.8, 53.4, 24.0. **ESI-MS** *m/z* (rel int): (pos) 287.1 ([M+Na]⁺, 100); (neg) 299.0 ([M+Cl]⁻, 100).

Analysis (¹H-NMR and ¹⁹F-NMR) of the derived Mosher ester⁸ indicated that propargylic alcohol *S-3a* was formed in 86% *ee*: In a 5 mL roundbottom flask, 4 Å molecular sieves, propargylic alcohol *S-3a* (5 mg, 18.9 µmol, 1.0 equiv) in anhyd CH₂Cl₂ (0.75 mL), Et₃N (15.9 µL, 114 µmol, 6.0 equiv), and DMAP (2.3 mg, 18.9 µmol, 1.0 equiv) were added and cooled to 0 °C. (*R*)-(–)-Mosher acid chloride (Aldrich, 5.31 µL, 28.4 µmol, 1.5 equiv) was added dropwise via syringe. The mixture was stirred at 0 °C for 5 min then warmed to rt and stirred until complete conversion had occurred as judged by TLC (approx 30 min). Satd aq NH₄Cl was then added at 0 °C and the mixture was warmed to rt and stirred for 15 min. The layers were separated and the aq layer was extracted with CH₂Cl₂. The combined organic extracts were washed with satd aq NaHCO₃, and H₂O, dried (Na₂SO₄), filtered, and concentrated by rotary evaporation to afford the crude Mosher ester product, which was analyzed without further purification.

TLC: $R_f 0.60$ (1:1 hexanes/EtOAc). Ratio of diastereomers determined by analysis of crude product by ¹H-NMR and ¹⁹F-NMR. Observed diagnostic chemical shifts in the ¹H-NMR for the propargyl CH₂ are δ 2.51 (dd, 2H, J = 1.9, 5.6) (major diastereomer) and δ 2.53 (dd, 2H, J = 2.1, 5.7) (minor diastereomer). Observed diagnostic chemical shifts in the ¹⁹F-NMR are δ 89.9 (major diastereomer) and δ 89.8 (minor diastereomer).

(-)-(*R*)-1-(Benzyloxy)-6,6-dimethoxyhex-3-yn-2-ol (*R*-3a). Prepared from alkynone S4a using (*S*)-Alpine-Borane as above. Light yellow oil (2.96 g, 98%, 82% ee based on Mosher ester analysis with the same (*R*)-acid chloride as above). $[\alpha]_D^{26}$: -7.5° (*c* 1.0, CHCl₃).

(+)-(2*S*,3*S*)-2-(Benzyloxy)-7,7-dimethoxyhept-4-yn-3-ol (*anti*-3b). In a 200 mL roundbottom flask, alkynone S4b (1.00 g, 3.61 mmol, 1.0 equiv) was dissolved in anhyd THF (65 mL) and

⁸ Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543-2549.

cooled to -78 °C. L-selectride (1.0 M in THF, 5.4 mL, 5.4 mmol, 1.5 equiv) was added dropwise via syringe and the mixture was stirred at -78 °C for 2 h. Satd aq NH₄Cl was added and the mixture was warmed to rt. The layers were separated and the aq layer was extracted with Et₂O. The combined organic extracts were dried (MgSO₄), filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (6:1 \rightarrow 5:1 \rightarrow 4:1 benzene/Et₂O) yielded propargylic alcohol *anti*-3b (856 mg, 85%, 89:11 dr) as a clear oil.

TLC: $R_f 0.45$ (4:1 benzene/Et₂O, double elution). $[\alpha]_D^{21}$: 15.9° (*c* 1.0, CHCl₃). **IR** (ZnSe, film): 3440 (O–H st), 2920, 1453, 1373, 1192, 1118, 1062, 974, 916. ¹**H-NMR** (400 MHz): δ 7.41–7.24 (m, 5H), 4.70 (d, 1H, *J* = 11.6), 4.57 (d, 1H, *J* = 11.6), 4.53 (t, 1H, *J* = 6.2), 4.24 (m, 1H), 3.61 (m, 1H), 3.36 (s, 6H), 2.66 (d, 1H. *J* = 4.1), 2.56 (dd, 2H, *J* = 5.7, 1.9), 1.28 (d, 3H, *J* = 6.2). ¹³**C-NMR** (100 MHz): δ 138.5, 128.9, 128.2, 128.1, 102.8, 81.8, 80.5, 78.8, 72.0, 66.9, 53.8, 53.7, 24.4, 16.4. **ESI-MS** *m/z* (rel int): (pos) 301.0 ([M+Na]⁺, 100); (neg) 313.1 ([M+Cl]⁻, 90).

The relative stereochemistry at C1 and C2 of *anti*-3b was determined by NMR analysis of a cyclic carbonate derivative (1. H₂, Pd/C, MeOH/EtOAc (1:1), rt. 5 h, 91%; 2. triphosgene, pyridine, CH₂Cl₂, $-78 \degree C \rightarrow 0 \degree C$, 1.5 h, 68%). ¹H-NMR peaks were assigned by COSY analysis (C₆D₆). NOESY analysis indicated interactions between H¹ (3.55 ppm) and both H³ protons (1.27–1.12 ppm) and between Me¹ (0.73 ppm) and H² (3.41 ppm), but no interactions between Me¹ and either H³ proton, consistent with an *anti* relationship at C1 and C2 of *anti*-3b.

(+)-(2*S*,3*R*)-2-(Benzyloxy)-7,7-dimethoxyhept-4-yn-3-ol (*syn*-3b). In a 200 mL roundbottom flask, alkynone S4b (1.00 g, 3.61 mmol, 1.0 equiv) was dissolved in anhyd CH₂Cl₂ (65 mL) and cooled to -78 °C. LiAlH₄ (1.0 M in THF, 1.8 mL, 1.8 mmol, 0.5 equiv) was added dropwise via syringe and the mixture was stirred at -78 °C for 1 h. Satd aq NH₄Cl was added and the mixture was warmed to rt. The layers were separated and the aq layer was extracted with Et₂O. The combined organic extracts were dried (MgSO₄), filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (8:1 \rightarrow 6:1 \rightarrow 5:1 benzene/Et₂O) yielded propargylic alcohol *syn*-3b (887 mg, 88%, 90:10 dr) as a clear oil.

TLC: $R_f 0.40$ (4:1 benzene/Et₂O, double elution). $[\alpha]_D^{21}$: +2.4° (*c* 1.0, CHCl₃). **IR** (ZnSe, film): 3434 (O–H st), 2933, 2833, 1496, 1453, 1374, 1241, 1192, 1119, 1064, 976, 917, 813, 738. **¹H-NMR** (400 MHz): δ 7.38–7.23 (m, 5H), 4.65 (d, 1H, *J* = 11.9), 4.55 (d, 1H, *J* = 11.9), 4.53 (t, 1H, J = 5.7), 4.47 (m, 1H), 3.66 (ddd, 1H, J = 12.5, 6.2, 3.5), 3.36 (s, 6H), 2.56 (dd, 2H, J = 5.7, 2.0), 2.40 (d, 1H, J = 5.8), 1.28 (d, 3H, J = 6.2). ¹³C-NMR (125 MHz): δ 138.2, 128.4, 127.7, 102.4, 81.6, 79.7, 71.0, 65.1, 53.4, 24.1, 14.5. **ESI-MS** *m*/*z* (rel int): (pos) 279.1 ([M+H]⁺, 3), 301.0 ([M+Na]⁺, 100), 317.1 ([M+K]⁺, 17); (neg) 313.2 ([M+Cl]⁻, 100).

The relative stereochemistry at C1 and C2 of *syn-*3b was determined by NMR analysis of a cyclic carbonate derivative (1. H₂, Pd/C, MeOH-EtOAc (1:1), rt. 2 h, 88%; 2. triphosgene, pyridine, CH₂Cl₂, -78 °C to 0 °C, 1.5 h, 64%). ¹H-NMR peaks were assigned by COSY analysis (C₆D₆). NOESY analysis indicated interactions between Me¹ (0.67 ppm) and both H³ protons (1.54, 1.21 ppm) (and between the H¹ proton at 3.85 ppm and the H² proton at 3.70 ppm), but no interactions between H¹ and either H³ proton or between Me¹ and H² proton, consistent with a *syn* relationship at C1 and C2 of *syn-*3b.

D. SYNTHESIS OF ALLYLIC ALCOHOLS (10,11)

Figure S3. Synthesis of allylic alcohols 10 and 11. Allylic alcohols **10** and **11** were synthesized by stereoselective reduction of the propargylic alcohols **3** using Sato's titanocene-mediated hydromagnesiation⁹ and Red-Al¹⁰ respectively.

(+)-(*S*,*Z*)-1-(Benzyloxy)-6,6-dimethoxyhex-3-en-2-ol (*S*-10a). In a 50 mL roundbottom flask in the dark at 0 °C, Cp₂TiCl₂ (397 mg, 1.6 mmol, 1.0 equiv) was suspended in 4 mL anhyd Et₂O. *i*-BuMgBr (1.8 M in Et₂O, 10.6 mL, 19.1 mmol, 12 equiv) was added gradually, and the mixture was stirred for 30 min. A solution of propargylic alcohol *S*-3a (417.7 mg, 1.6 mmol, 1.0 equiv) in anhyd Et₂O (4 mL) was added dropwise via syringe. The reaction was stirred at 0 °C for 30 min, warmed to rt and stirred at rt for 8–48 h until complete conversion had occurred as

⁹ Sato, F.; Ishikawa, H.; Watanabe, H.; Miyake, T.; Sato, M. J. Chem. Soc., Chem. Commun. 1981, 718–720.

¹⁰ Marshall, J. A.; DeHoff, B. S. J. Org. Chem. **1986**, *51*, 863–872.

judged by TLC. The mixture was then recooled to 0 °C and quenched with satd aq NH₄Cl. The mixture was extracted with Et₂O, dried (MgSO₄), filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (2:1 hexanes/EtOAc) yielded the *Z*-allylic alcohol *S***-10a** (360.9 mg, 86%, 88:12 *Z/E*) as a light yellow oil.

TLC: $R_f 0.31$ (1:1 hexanes/EtOAc). $[\alpha]_D^{26}$: +23.3° (*c* 1.0, CHCl₃). **IR** (NaCl, film): 3447 (O–H st), 2904, 1495, 1453, 1362, 1314, 1191, 1121, 1072, 824, 738. ¹H-NMR (400 MHz): δ 7.38–7.28 (m, 5H), 5.60 (m, 2H), 4.63 (m, 1H), 4.58 (s, 2H), 4.36 (t, 1H, *J* = 5.6), 3.49 (dd, 1H, *J* = 9.5, 3.7), 3.44 (dd, 1H, *J* = 9.6, 7.9), 3.34 (s, 3H), 3.32 (s, 3H), 2.68 (d, 1H, *J* = 2.5), 2.52 (m, 1H), 2.38 (m, 1H). ¹³C-NMR (125 MHz): δ 137.9, 131.0, 128.5–127.5 (Ar), 103.8, 73.6, 73.4, 66.7, 53.5, 53.2, 31.8. **ESI-MS** *m*/*z* (rel int): (pos) 289.0 ([M+Na]⁺, 100); (neg) 301.0 ([M+Cl]⁻, 100).

(-)-(*R*,*Z*)-1-(Benzyloxy)-6,6-dimethoxyhex-3-en-2-ol (*R*-10a). Prepared from propargylic alcohol *R*-3a as above. Light yellow oil (1.17 g, 81%, 88:12 *Z/E*). $[\alpha]_D^{26}$: -21.0° (*c* 1.0, CHCl₃).

(+)-(2*S*,3*S*,*Z*)-2-(Benzyloxy)-7,7-dimethoxyhept-4-en-3-ol (*anti*-10b). Prepared from propargylic alcohol *anti*-3b as above. Clear oil (210.6 mg, 86%, \geq 98:2 *Z*/*E*).

TLC: $R_f 0.40$ (2:1 hexanes/EtOAc). $[\alpha]_D^{20}$: +17.8° (*c* 1.0, CHCl₃). **IR** (ZnSe, film): 3454 (O–H st), 2932, 1453, 1374, 1190, 1121, 1060, 826. ¹H-NMR (400 MHz): δ 7.36–7.27 (m, 5H), 5.60 (m, 1H), 5.52 (m, 1H), 4.69 (d, 1H, *J* = 11.5), 4.52 (d, 1H, *J* = 11.5), 4.38 (t, 1H, *J* = 6.2), 4.27 (t, 1H, *J* = 8.0), 3.46 (m, 1H), 3.34 (m, 1H), 2.85 (br s, 1H), 2.54 (m, 1H), 2.42 (m, 1H), 1.17 (d, 3H, *J* = 6.2). ¹³C-NMR (100 MHz): δ 138.3, 130.9, 128.6, 128.5, 127.8, 127.7, 103.8, 78.5, 71.2, 71.1, 53.2, 53.1, 31.9, 15.4. **ESI-MS** *m*/*z* (rel int): (pos) 303.1 ([M+Na]⁺, 100); (neg) 315.1 ([M+Cl]⁻, 90).

(+)-(2*S*,3*R*,*Z*)-2-(Benzyloxy)-7,7-dimethoxyhept-4-en-3-ol (*syn*-10b). Prepared from propargylic alcohol *syn*-3b as above. Clear oil (83.2 mg, 86%, \geq 98:2 *Z*/*E*).

TLC: $R_f 0.38$ (1:1 hexanes/EtOAc). $[\alpha]_D^{21}$: +6.8° (*c* 1.0, CHCl₃). **IR** (ZnSe, film): 3445 (O–H st), 2935, 2834, 1724, 1498, 1454, 1374, 1188, 1121, 1066, 1029, 915, 846, 739, 700. ¹H-NMR (400 MHz): δ 7.38–7.20 (m, 5H), 5.68–5.55 (m, 2H), 4.65 (d, 1H, J = 11.8), 4.55 (d, 1H, J = 11.8), 4.46 (m, 1H), 4.37 (t, 1H, J = 5.6), 3.60 (ddd, 1H, J = 12.6, 6.3, 3.9), 3.34 (s, 3H), 3.33 (s, 3H), 2.52 (m, 1H), 2.46 (d, 1H, J = 3.9), 2.37 (m, 1H), 1.17 (d, 3H, J = 6.0). ¹³C-NMR (125 MHz): δ 138.6, 131.4, 128.4, 127.6, 127.3, 103.8, 71.0, 69.7, 53.5, 53.2, 31.8, 14.6. **ESI-MS** *m*/*z* (rel int): (pos) 302.9 ([M+Na]⁺, 100), 319.1 ([M+K]⁺, 32); (neg) 279.2 ([M–H]⁻, 100).

(+)-(*S*,*E*)-1-(Benzyloxy)-6,6-dimethoxyhex-3-en-2-ol (*S*-11a). In a 50 mL roundbottom flask at 0 °C, Red-Al (3.33 M in toluene, 11.1 mL, 37.1 mmol, 14 equiv) was dissolved in 8 mL anhyd Et₂O. A solution of propargylic alcohol *S*-3a (700 mg, 2.6 mmol, 1.0 equiv) in anhyd Et₂O (7 mL) was added gradually via syringe down the side of the flask. The reaction was stirred at 0 °C for 5 min, warmed to rt and stirred for 3 h, then recooled to 0 °C and quenched with water followed by satd aq NH₄Cl. The mixture was extracted with Et₂O and the combined organic extracts were washed with satd aq NH₄Cl and water, dried (MgSO₄), filtered, and concentrated by rotary evaporation to afford the crude product, which was configurationally pure by ¹H-NMR analysis. Purification by silica flash chromatography (2:1→1:1 hexanes/EtOAc) yielded *E*-allylic alcohol *S*-11a (694.5 mg, 99%, ≥98:2 *E/Z*) as a light yellow oil.

TLC: $R_f 0.31$ (1:1 hexanes/EtOAc). $[\alpha]_D^{26}$: +7.5° (*c* 1.2, CHCl₃). **IR** (NaCl, film): 3436 (O–H st), 2901, 1452, 1361, 1191, 1120, 1058, 968, 737. ¹H-NMR (400 MHz): δ 7.38–7.28 (m, 5H), 5.74 (dt, 1H, J = 15.6, 7.0), 5.56 (dd, 1H, J = 15.6, 6.3), 4.57 (s, 2H), 4.39 (t, 1H, J = 5.7), 4.33 (m, 1H), 3.51 (dd, 1H, J = 9.6, 3.3), 3.37 (dd, 1H, J = 9.4, 8.2), 3.32 (s, 6H), 2.41 (d, 1H, J = 3.0), 2.35 (m, 2H). ¹³C-NMR (125 MHz): δ 137.9, 131.1, 128.5–127.7 (Ar), 103.8, 74.2, 73.4, 71.2, 53.0, 52.9, 35.9. **ESI-MS** *m*/*z* (rel int): (pos) 289.1 ([M+Na]⁺, 100); (neg) 301.0 ([M+C1]⁻, 100), 265.1 ([M–H]⁻, 24).

(-)-(*R*,*E*)-1-(Benzyloxy)-6,6-dimethoxyhex-3-en-2-ol (*R*-11a). Prepared from propargylic alcohol *R*-3a as above. Light yellow oil (1.14 g, 79% yield not optimized due to material losses, $\geq 98:2 E/Z$). $[\alpha]_D^{26}: -7.6^\circ$ (*c* 1.0, CHCl₃).

(+)-(2*S*,3*S*,*E*)-2-(Benzyloxy)-7,7-dimethoxyhept-4-en-3-ol (*anti*-11b). Prepared from propargylic alcohol *anti*-3b essentially as above with stirring at rt for 8 h after the propargylic alcohol was added. Clear oil (99.7 mg, 99%, \geq 98:2 *E*/*Z*).

TLC: $R_f 0.45$ (2:1 hexanes/EtOAc). $[\alpha]_D^{21}$: +42.5° (*c* 1.0, CHCl₃). **IR** (ZnSe, film): 3437 (O–H st), 2932, 1453, 1374, 1191, 1119, 1058, 969. ¹**H-NMR** (400 MHz): δ 7.38–7.25 (m, 5H), 5.74 (m, 1H), 5.53 (m, 1H), 4.67 (d, 1H, *J* = 11.5), 4.47 (d, 1H, *J* = 11.5), 4.39 (t, 1H, *J* = 5.8), 3.92 (m, 1H), 3.40 (m, 1H), 3.32 (s, 6H), 2.76 (br s, 1H), 2.39 (br t, 2H, *J* = 5.8), 1.15 (d, 3H, *J* = 6.6). ¹³**C-NMR** (100 MHz): δ 138.6, 132.0, 129.1, 128.9, 128.3, 128.2, 104.2, 78.8, 76.7, 71.6, 53.3, 53.2, 36.4, 15.9. **ESI-MS** *m*/*z* (rel int): (pos) 303.0 ([M+Na]⁺, 100); (neg) 315.1 ([M+Cl]⁻, 90), 279.0 ([M–H]⁻, 100).

(+)-(2*S*,3*R*,*E*)-2-(Benzyloxy)-7,7-dimethoxyhept-4-en-3-ol (*syn*-11b). Prepared from propargylic alcohol *syn*-3b essentially as above with stirring at rt for 8 h after the propargylic alcohol was added. Clear oil (50 mg, 99%, \geq 98:2 *E*/*Z*).

TLC: $R_f 0.56$ (1:1 hexanes/EtOAc). $[\alpha]_D^{21}$: +5.1° (*c* 1.0, CHCl₃). **IR** (ZnSe, film): 3423 (O–H st), 2934, 1721, 1496, 1452, 1374, 1272, 1205, 1072, 1026, 970, 750, 714. ¹H-NMR (400 MHz): δ 7.40–7.21 (m, 5H), 5.68 (m, 1H), 5.58 (dd, 1H, *J* = 15.5, 6.6), 4.64 (d, 1H, *J* = 11.8), 4.53 (1H, *J* = 11.8), 4.39 (t, 1H, *J* = 5.8), 4.21 (m, 1H), 3.60 (ddd, 1H, *J* = 12.7, 6.3, 3.4), 3.33 (s, 3H), 3.32 (s, 3H), 2.39 (dd, 2H, *J* = 6.6, 5.8), 1.14 (d, 3H, 6.3). ¹³C-NMR (125 MHz): δ 138.5, 131.3, 128.4, 127.7, 103.9, 77.6, 74.3, 70.9, 52.9, 52.8, 36.0, 14.2. **ESI-MS** *m/z* (rel int): (pos) 303.0 ([M+Na]⁺, 100), 319.1 ([M+K]⁺, 21); (neg) 315.2 ([M+Cl]⁻, 75), 279.2 ([M–H]⁻, 100).

E. SYNTHESIS OF EPOXYOLS (12,13)

Figure S4. Synthesis of epoxyols 12 and 13. *syn*-Epoxidation of *Z*-allylic alcohols **10** was achieved in all cases using *m*-CPBA to afford *syn,cis*-epoxyols *syn*-**12a** and *anti,syn*-**12b**.¹¹ Alcohol inversion was then accomplished via either Mitsunobu protocol¹² (R^1 = H series) or oxidation and re-reduction (R^1 = Me series) to afford the corresponding *anti,cis*-epoxyols *anti*-**12a** and *syn,anti*-**12b**. *anti*-Epoxidation of *E*-allylic alcohols **11a** and *anti*-**11b** was achieved using matched Sharpless conditions¹³ to afford *anti,trans*-epoxyols *anti*-**13** and *anti,anti*-**13b**. While *syn*-**11b** was unreactive under these conditions, it did undergo an unusual *syn*-epoxidation with *m*-CPBA to form *syn,syn*-**13b**. Alcohol inversion was again accomplished using a Mitsunobu protocol in the R^1 = H series to form *syn*-**13b** and was unnecessary in the R^1 = Me series since *syn,syn*-**13b** could be accessed directly. Stereochemical assignments were made by analogy to literature precedents^{11,14} and by NMR analysis of acetonides and cyclic carbonates derived from these compounds (see SECTIONS I and J below).

(+)-(*R*)-2-(Benzyloxy)-1-[(2*S*,3*R*)-3-(2,2-dimethoxyethyl)oxiran-2-yl]ethanol (2*R*-syn-12a). In a 25 mL roundbottom flask, Z-allylic alcohol *S*-10a (327.5 mg, 1.23 mmol, 1.0 equiv) was dissolved in anhyd CH_2Cl_2 (12 mL) and cooled to 0 °C. NaHCO₃ (258 mg, 3.08 mmol, 2.5 equiv) was added and stirred at 0 °C for 5 min. To this stirred mixture was added *m*-CPBA (318.4 mg, 1.85 mmol, 1.5 equiv). After 24 h at rt, Et₂O was added. This mixture was washed with water, satd aq NaHCO₃, and brine, then dried (MgSO₄), filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (2:1 hexanes/EtOAc) yielded epoxyol 2*R*-syn-12a (299.6 mg, 86%, 90:10 dr) as a light yellow oil.

¹¹ (a) Adam, W.; Wirth, T. Acc. Chem. Res. **1999**, *32*, 703–710. (b) Henbest, H. B.; Wilson, R. A. L. J. Chem. Soc. **1957**, 1958–1965.

¹² Martin, S. F.; Dodge, J. A. *Tetrahedron Lett.* **1991**, *32*, 3017–3020.

¹³ Gao, Y.; Klunder, J. M.; Hanson, R. M.; Masamune, H.; Ko, S. Y.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765–5780.

¹⁴ (a) Katsuki, T.; Martin, V. S. Org. React. 1996, 48, 1–299. (b) Pfenninger, A. Synthesis 1986, 89–116.

TLC: $R_f 0.33$ (1:2 hexanes/EtOAc). $[\alpha]_D^{26}$: +20.7° (*c* 1.1, CHCl₃). **IR** (NaCl, film): 3438 (O–H st), 2934, 1717, 1453, 1363, 1269, 1193, 1121, 1060, 837, 741. ¹H-NMR (400 MHz): δ 7.38–7.28 (m, 5H), 4.62 (s, 2H), 4.55 (m, 1H), 3.73 (m, 1H), 3.59 (m, 2H), 3.35 (s, 3H), 3.32 (s, 3H), 3.14 (m, 1H), 3.04 (dd, 1H, J = 7.0, 4.4), 2.38 (d, 1H, J = 4.3), 1.93 (m, 1H), 1.85 (m, 1H). ¹³C-NMR (125 MHz): δ 137.7, 128.5, 127.9, 127.8, 102.7, 73.6, 71.4, 68.9, 57.5, 54.0, 53.5, 53.0, 32.2. **ESI-MS** *m*/*z* (rel int): (pos) 305.1 ([M+Na]⁺, 100); (neg) 281.0 ([M–H]⁻, 17), 316.9 ([M+Cl]⁻, 100).

(-)-(S)-2-(Benzyloxy)-1-[(2R,3S)-3-(2,2-dimethoxyethyl)oxiran-2-yl]ethanol (2S-syn-12a). Prepared from Z-allylic alcohol R-10a as above. Light yellow oil (997 mg, 85%, 90:10 dr). $[\alpha]_{D}^{26}$: -14.4° (c 1.1, CHCl₃).

(+)-(1*R*,2*S*)-2-(Benzyloxy)-1-[(2*S*,3*R*)-3-(2,2-dimethoxyethyl)oxiran-2-yl]propan-1-ol (*anti,syn*-12b). Prepared from *Z*-allylic alcohol *anti*-10b essentially as above with standing in a refrigerator at -4 °C for 20 h after the addition of *m*-CPBA. Clear oil (37 mg, 86%, 92:8 dr).

TLC: $R_f 0.30$ (2:1 hexanes/EtOAc). $[\alpha]_D^{20}$: +50.9° (*c* 1.0, CHCl₃). **IR** (ZnSe, film): 3449 (O–H st), 2932, 1720, 1454, 1375, 1192, 1121, 1060, 841. ¹**H-NMR** (400 MHz): δ 7.38–7.24 (m, 5H), 4.69 (d, 1H, *J* = 11.8), 4.56 (dd, 1H, *J* = 7.0, 4.4), 4.50 (d, 1H, *J* = 11.8), 3.65 (m, 1H), 3.50 (dd, 1H, *J* = 11.0, 5.2), 3.37 (s, 3H), 3.33 (s, 3H), 3.12 (m, 1H), 3.08 (m, 1H), 2.48 (d, 1H, *J* = 5.2), 1.97 (ddd, 1H, *J* = 14.4, 7.0, 3.9), 1.79 (ddd, 1H, *J* = 14.4, 7.9, 4.4), 1.26 (d, 3H, *J* = 6.3). ¹³**C-NMR** (100 MHz): δ 138.1, 128.5, 127.8, 127.7, 102.8, 75.9, 72.0, 71.1, 57.0, 54.0, 53.5, 53.0, 32.3, 15.1. **ESI-MS** *m*/*z* (rel int): (pos) 319.1 ([M+Na]⁺, 100); (neg) 331.0 ([M+Cl]⁻, 90), 295.3 ([M–H]⁻, 100).

(-)-(1*S*,2*S*)-2-(Benzyloxy)-1-[(2*R*,3*S*)-3-(2,2-dimethoxyethyl)oxiran-2-yl]propan-1-ol (*syn*,*syn*-12b). Prepared from *Z*-allylic alcohol *anti*-10b essentially as above with standing in a refrigerator at -4 °C for 8 h after the addition of *m*-CPBA. Clear oil (55 mg, 93%, \geq 98:2 dr).

TLC: $R_f 0.30$ (1:1 hexanes/EtOAc). $[\alpha]_D^{22}$: -5.5° (*c* 1.0, CHCl₃). **IR** (ZnSe, film): 3446 (O–H st), 2975, 2934, 2832, 1496, 1453, 1372, 1265, 1239, 1192, 1120, 1061, 971, 934, 844, 742. **'H-NMR** (400 MHz): δ 7.39–7.24 (m, 5H), 4.65 (d, 1H, *J* = 11.8), 4.56 (dd, 1H, *J* = 6.8, 4.7), 4.50 (d, 1H, *J* = 11.8), 3.63 (m, 1H), 3.48 (m, 1H), 3.36 (s, 3H), 3.31 (s, 3H), 3.17 (m, 1H), 3.06 (dd, 1H, *J* = 7.0, 4.4), 2.35 (d, 1H, *J* = 4.4), 1.97 (ddd, 1H, *J* = 14.4, 6.8, 4.0), 1.76 (ddd, 1H, *J* = 14.4, 8.1, 4.7), 1.28 (d, 3H, *J* = 6.3). ¹³C-NMR (125 MHz): δ 138.2, 128.4, 127.7, 102.7, 76.0, 71.9, 71.0, 57.3, 54.1, 53.7, 53.0, 32.4, 15.4. **ESI-MS** *m*/*z* (rel int): (pos) 318.9 ([M+Na]⁺, 100), 335.2 ([M+K]⁺, 29); (neg) 331.2 ([M+Cl]⁻, 100), 295.5 ([M–H]⁻, 30).

(-)-(S)-2-(Benzyloxy)-1-[(2S,3R)-3-(2,2-dimethoxyethyl)oxiran-2-yl]ethanol (2S-anti-12a). In a 15 mL roundbottom flask, Ph₃P (423 mg, 1.6 mmol, 3.0 equiv) and *p*-nitrobenzoic acid (306 mg, 1.8 mmol, 3.4 equiv) were dissolved in anhyd toluene (1.5 mL). A solution of epoxyol **2R-syn-12a** (150 mg, 0.53 mmol, 1.0 equiv) in anhyd toluene (3.75 mL) was added and cooled to -78 °C. DIAD (325 µL, 1.7 mmol, 3.2 equiv) was added slowly and the mixture was allowed to warm to 0 °C for 20 min, then warmed rt and stirred for 45 min. Satd aq NaHCO₃ was added, the layers were separated, and the aq layer was extracted with EtOAc. The combined organic extracts were dried (Na₂SO₄), filtered, and concentrated by rotary evaporation. The resulting mixture was dissolved in MeOH (7.5 mL), followed by addition of K₂CO₃ (221 mg, 1.6 mmol, 3.0 equiv) at rt. After stirring for 30 min, the mixture was diluted with CH₂Cl₂, washed with H₂O, dried (Na₂SO₄), and concentrated by rotary evaporation. Purification by silica flash chromatography (9:1 hexanes/EtOAc) yielded epoxyol **2S-anti-12a** (145.3 mg, 97%, 92:8 dr) as a light yellow oil.

TLC: $R_f 0.33$ (1:2 hexanes/EtOAc). $[\alpha]_D^{24}$: -6.7° (*c* 1.1, CHCl₃). **IR** (NaCl, film): 3445 (O–H st), 2934, 1733, 1453, 1362, 1192, 1121, 1058, 831, 739. ¹H-NMR (400 MHz): δ 7.35–7.27 (m, 5H), 4.62 (s, 2H), 4.59 (m, 1H), 3.74 (dd, 1H, J = 9.7, 3.0), 3.65 (dd, 1H, J = 9.7, 6.2), 3.59 (m, 1H), 3.42 (s, 3H), 3.36 (s, 3H), 3.12 (m, 1H), 3.02 (dd, 1H, J = 8.5, 4.1), 2.14 (dt, 1H, J = 13.8, 3.8), 1.85 (dt, 1H, J = 14.0, 7.2). ¹³C-NMR (125 MHz): δ 138.3, 128.8, 128.2, 128.1, 102.9,

74.1, 72.5, 69.0, 56.1, 55.2, 53.2, 53.1, 32.1. **ESI-MS** *m*/*z* (rel int): (pos) 304.9 ([M+Na]⁺, 100); (neg) 316.9 ([M+Cl]⁻, 100).

(+)-(*R*)-2-(Benzyloxy)-1-[(2*R*,3*S*)-3-(2,2-dimethoxyethyl)oxiran-2-yl]ethanol (2*R*-anti-12a). Prepared from epoxyol 2*S*-syn-12a as above. Light yellow oil (134.2 mg, 90%, 91:9 dr). $[\alpha]_D^{24}$: +7.7° (*c* 1.2, CHCl₃).

(+)-(1*S*,2*S*)-2-(Benzyloxy)-1-[(2*S*,3*R*)-3-(2,2-dimethoxyethyl)oxiran-2-yl]propan-1-ol

(*syn,anti*-12b). In a 10 mL roundbottom flask, *anti,syn*-12b (48.3 mg, 163 µmol, 1.0 equiv) was dissolved in anhyd CH₂Cl₂ (4.0 mL) and cooled to 0 °C. Dess–Martin periodinane (Aldrich, 138.2 mg, 326 µmol, 2.0 equiv) was added in one portion. The mixture was stirred at 0 °C for 30 min, then rt for 8 h. Satd aq NaHCO₃ was added with Et₂O (5.0 mL) at 0 °C and the mixture was warmed to rt and stirred for 15 min. The layers were separated and the aq layer was extracted with Et₂O. The combined organic extracts were dried (MgSO₄), filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (4:1 hexanes/EtOAc) yielded epoxyketone *anti*-19b (47.2 mg, 98%) as a clear oil.

In a 25 mL roundbottom flask, epoxyketone *anti*-19b (15 mg, 50 µmol, 1.0 equiv) was dissolved in anhyd CH₂Cl₂ (3.0 mL) and cooled to -78 °C. LiAlH₄ (1.0 M in THF, 0.04 mL, 0.04 mmol, 0.8 equiv) was added dropwise via syringe and the mixture was stirred at -78 °C for 1 h. Satd aq NH₄Cl was added and the mixture was warmed to rt. The layers were separated and the aq layer was extracted with Et₂O. The combined organic extracts were dried (MgSO₄), filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (4:1 \rightarrow 3:1 \rightarrow 2:1 \rightarrow 1.5:1 hexanes/EtOAc) yielded epoxyol *syn,anti*-12b (14.3 mg, 97%, \geq 98:2 dr) as a clear oil.

TLC: $R_f 0.30$ (2:1 hexanes/EtOAc). $[\alpha]_D^{20}$: +9.2° (*c* 1.0, CHCl₃). **IR** (ZnSe, film): 3448 (O–H st), 2933, 1453, 1378, 1191, 1121, 1059, 844. ¹**H-NMR** (400 MHz): δ 7.42–7.21 (m, 5H), 4.69 (d, 1H, J = 11.9), 4.59 (m, 1H), 4.58 (d, 1H, J = 11.9), 3.77 (ddd, 1H, J = 12.7, 6.4, 3.9), 3.44 (m, 1H), 3.43 (s, 3H), 3.37 (s, 3H), 3.32 (d, 1H, J = 3.2), 3.13–3.04 (m, 2H), 2.13 (m, 1H), 1.85 (m, 1H), 1.31 (d, 3H, J = 6.4). ¹³**C-NMR** (125 MHz): δ 138.6, 128.4, 127.7, 127.6, 102.6, 76.5,

71.8, 71.2, 55.5, 54.8, 52.8, 51.9, 31.8, 14.9. **ESI-MS** *m*/*z* (rel int): (pos) 319.0 ([M+Na]⁺, 100); (neg) 331.2 ([M+Cl]⁻, 90).

(+)-(1R,2S)-2-(Benzyloxy)-1-[(2R,3S)-3-(2,2-dimethoxyethyl)oxiran-2-yl]propan-1-ol

(*anti,anti*-12b). In a 10 mL roundbottom flask, *syn,syn*-12b (50.8 mg, 171 μ mol, 1.0 equiv) was dissolved in anhyd CH₂Cl₂ (4.0 mL) and cooled to 0 °C. Dess–Martin periodinane (Aldrich, 145.4 mg, 340 μ mol, 2.0 equiv) was added in one portion. The mixture was stirred at 0 °C for 30 min, then rt for 8 h. Satd aq NaHCO₃ was added with Et₂O (5.0 mL) at 0 °C and the mixture was warmed to rt and stirred for 15 min. The layers were separated and the aq layer was extracted with Et₂O. The combined organic extracts were dried (MgSO₄), filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (4:1 hexanes/EtOAc) yielded epoxyketone *syn*-19b (46.7 mg, 92%) as a clear oil.

In a 10 mL roundbottom flask, epoxyketone **syn-19b** (30.0 mg, 0.102 mmol, 1.0 equiv) was dissolved in anhyd THF (5 mL) and cooled to -78 °C. L-selectride (1.0 M in THF, 0.204 mL, 0.204 mmol, 2.0 equiv) was added dropwise via syringe and the mixture was stirred at -78 °C for 1 h. Satd aq NH₄Cl was added and the mixture was warmed to rt. The layers were separated and the aq layer was extracted with Et₂O. The combined organic extracts were dried (MgSO₄), filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (4:1 \rightarrow 3:1 \rightarrow 2:1 hexanes/EtOAc) yielded epoxyol **anti,anti-12b** (30.8 mg, 100%, \geq 98:2 dr) as a clear oil.

TLC: $R_f 0.30$ (2:1 hexanes/EtOAc). $[\alpha]_D^{21}$: +8.4° (*c* 1.0, CHCl₃). **IR** (ZnSe, film): 3441 (O–H st), 2976, 2934, 2833, 1721, 1496, 1453, 1376, 1267, 1235, 1191, 1122, 1063, 917, 846, 748. ¹**H-NMR** (400 MHz): δ 7.41–7.22 (m, 5H), 4.72 (d, 1H, *J* = 11.6), 4.61 (dd, 1H, *J* = 6.6, 4.1), 4.56 (d, 1H, *J* = 11.6), 3.74 (qd, 1H, 6.4, 5.9), 3.41 (s, 3H), 3.36 (s, 3H), 3.26 (m, 1H), 3.21 (d, 1H, *J* = 3.2), 3.11 (m, 1H), 3.01 (dd, 1H, *J* = 8.4, 4.2), 2.05 (ddd, 1H, *J* = 14.3, 5.7, 4.1), 1.90 (ddd, 1H, *J* = 14.3, 7.5, 6.6), 1.31 (d, 3H, *J* = 6.4). ¹³**C-NMR** (125 MHz): δ 138.3, 128.4, 127.8, 127.7, 102.5, 72.9, 71.3, 55.8, 54.4, 52.8, 52.7, 31.7, 15.6. **ESI-MS** *m/z* (rel int): (pos) 318.9 ([M+Na]⁺, 100), 335.1 ([M+K]⁺, 10); (neg) 331.0 ([M+Cl]⁻, 100), 295.2 ([M–H]⁻, 70).

(+)-(R)-2-(Benzyloxy)-1-[(2R,3R)-3-(2,2-dimethoxyethyl)oxiran-2-yl]ethanol (2R-anti-13a). In a 100 mL roundbottom flask with 4 Å molecular sieves, CH₂Cl₂ (20 mL), D-diethyl tartrate (968 mg, 4.7 mmol, 1.0 equiv), and Ti(Oi-Pr)₄ (1.38 mL, 4.7 mmol, 1.0 equiv) were added and cooled to -20 °C. The resulting mixture was stirred for 15 min at -20 °C, then *tert*-butyl hydroperoxide (5.5 M in decane, 1.71 mL, 9.4 mmol, 2.0 equiv) was added dropwise. The mixture was stirred for 15 min, then a solution of *E*-allylic alcohol *S*-11a (1.27 g, 4.7 mmol) in CH₂Cl₂ (30 mL) was added slowly. The resulting mixture was stirred for 1 h at -20 °C, then stored in a -20 °C freezer for 2 d. After this period, a mixture of 3 N NaOH (15 mL) and brine (15 mL) was added and the resulting mixture was stirred at 0 °C for 1 h. The layers were separated and the aq layer was extracted with CH₂Cl₂. The combined organic extracts were washed with brine, dried (MgSO₄), and concentrated by rotary evaporation. Purification by silica flash chromatography (2:1 hexanes/EtOAc) yielded epoxyol **2***R***-anti-13a** as a light yellow oil (1.33 g, 99%, 94:6 dr).

TLC: $R_f 0.63$ (1:2 × 2 hexanes/EtOAc). $[\alpha]_D^{24}$: +14.8° (*c* 1.1, CHCl₃). **IR** (NaCl, film): 3447 (O–H st), 2933, 2832, 1496, 1453, 1364, 1243, 1193, 1122, 1059, 887, 819, 740. ¹H-NMR (400 MHz): δ 7.38–7.28 (m, 5H), 4.58 (s, 2H), 4.54 (m, 1H), 3.80 (m, 1H), 3.64 (dd, 1H, J = 9.7, 3.9), 3.58 (dd, 1H, J = 9.7, 6.0), 3.36 (s, 3H), 3.33 (s, 3H), 3.08 (m, 1H), 2.88 (dd, 1H, J = 4.8, 2.2), 2.29 (br s, 1H), 1.95 (m, 1H), 1.78 (m, 1H). ¹³C-NMR (125 MHz): δ 137.7, 128.5–127.8 (Ar), 102.3, 73.6, 71.3, 69.4, 57.8, 53.5, 53.0, 52.6, 35.4. **ESI-MS** *m*/*z* (rel int): (pos) 304.9 ([M+Na]⁺, 100); (neg) 281.1 ([M–H]⁻, 18), 317.0 ([M+Cl]⁻, 100).

(-)-(*S*)-2-(Benzyloxy)-1-[(2*S*,3*S*)-3-(2,2-dimethoxyethyl)oxiran-2-yl]ethanol (2*S*-anti-13a). Prepared from *E*-allylic alcohol *R*-11a using L-diethyl tartrate as above. Light yellow oil (1.07 g, 91%, 94:6 dr). $[\alpha]_D^{24}$: -13.4° (*c* 1.1, CHCl₃).

(+)-(1*R*,2*S*)-2-(Benzyloxy)-1-[(2*R*,3*R*)-3-(2,2-dimethoxyethyl)oxiran-2-yl]propan-1-ol (*anti*,*anti*-13b). Prepared from *E*-allylic alcohol *anti*-11b essentially as above with storage in a -4 °C refrigerator for 3 d. Clear oil (73 mg, 99%, 94:6 dr).

TLC: $R_f 0.40$ (2:1 hexanes/EtOAc twice). $[\alpha]_D^{21}$: +31.1° (*c* 1.0, CHCl₃). **IR** (ZnSe, film): 3437 (O–H st), 2934, 1745, 1453, 1376, 1193, 1122, 1064, 893. ¹H-NMR (400 MHz): δ 7.40–7.22 (m, 5H), 4.69 (d, 1H, J = 11.5), 4.55 (t, 1H, J = 6.3), 4.51 (d, 1H, J = 11.5), 3.68 (m, 1H), 3.39 (m, 1H), 3.37 (s, 3H), 3.34 (s, 3H), 3.08 (m, 1H), 2.83 (dd, 1H, J = 5.5, 2.2), 2.38 (d, 1H, J = 4.4), 2.01 (m, 1H), 1.74 (m, 1H), 1.28 (d, 3H, J = 6.3). ¹³C-NMR (100 MHz): δ 138.2, 128.5, 128.6, 127.8, 102.4, 72.3, 71.2, 57.9, 53.5, 53.1, 53.0, 35.5, 15.5. **ESI-MS** *m*/*z* (rel int): (pos) 319.2 ([M+Na]⁺, 100); (neg) 331.3 ([M+Cl]⁻, 90).

(+)-(*S*)-2-(Benzyloxy)-1-[(2*R*,3*R*)-3-(2,2-dimethoxyethyl)oxiran-2-yl]ethanol (2*S*-syn-13a). Prepared by Mitsunobu inversion of epoxyol 2*R*-anti-13a as described for epoxyol 2*S*-anti-12a above. Purification by silica flash chromatography (9:1 hexanes/EtOAc) yielded epoxyol 2*S*-syn-13a (153.5 mg, 100%, 92:8 dr) as a light yellow oil.

TLC: $R_f 0.63$ (1:2 hexanes/EtOAc, double elution). $[\alpha]_D^{26}$: +28.5° (*c* 1.2, CHCl₃). **IR** (NaCl, film): 3436 (O–H st), 2932, 1729, 1453, 1364, 1193, 1122, 1071, 889, 740. ¹H-NMR (400 MHz): δ 7.38–7.28 (m, 5H), 4.58 (s, 2H), 4.54 (m, 1H), 3.79 (m, 1H), 3.58 (m, 2H), 3.36 (s, 3H), 3.33 (s, 3H), 3.07 (m, 1H), 2.92 (m, 1H), 2.23 (d, 1H, J = 6.3), 1.92 (m, 1H), 1.79 (m, 1H). ¹³C-NMR (125 MHz): δ 138.2, 128.8, 128.2, 128.1, 102.7, 73.9, 72.0, 69.6, 58.9, 53.9, 53.4, 52.3, 35.7. **ESI-MS** *m*/*z* (rel int): (pos) 283.1 ([M+H]⁺, 6), 305.1 ([M+Na]⁺, 100), 321.1 ([M+K]⁺, 29); (neg) 280.9 ([M–H]⁻, 4), 316.8 ([M+Cl]⁻, 100).

(-)-(*R*)-2-(Benzyloxy)-1-[(2*S*,3*S*)-3-(2,2-dimethoxyethyl)oxiran-2-yl]ethanol (2*R*-syn-13a). Prepared by Mitsunobu inversion of epoxyol 2*S*-anti-13a as described for epoxyol 2*S*-anti-12a above. Light yellow oil (147.4 mg, 98%, 93:7 dr). $[\alpha]_D^{26}$: -27.4° (*c* 1.1, CHCl₃).

(+)-(1*S*,2*S*)-2-(Benzyloxy)-1-[(2*R*,3*R*)-3-(2,2-dimethoxyethyl)oxiran-2-yl]propan-1-ol (*syn,syn*-13b). Prepared by *m*-CPBA epoxidation of *syn*-11b as described for epoxyol 2*R*-*syn*-12a above. Clear oil (72.6 mg, 87%, 77:23 dr).

TLC: $R_f 0.30$ (1:1 hexanes/EtOAc). $[\alpha]_D^{21}$: +40.0° (*c* 1.0, CHCl₃). **IR** (ZnSe, film): 3435 (O–H st), 2933, 2832, 1718, 1496, 1453, 1373, 1244, 1192, 1121, 1070, 892, 819, 739. ¹H-NMR (400 MHz): δ 7.37–7.21 (m, 5H), 4.67 (d, 1H, *J* = 11.7), 4.55 (dd, 1H, *J* = 6.5, 4.9), 4.52 (d, 1H, *J* = 11.7), 3.63 (m, 1H), 3.52 (m, 1H), 3.36 (s, 3H), 3.33 (s, 3H), 3.07 (m, 1H), 3.03 (m 1H), 1.96 (ddd, 1H, *J* = 14.2, 6.5, 4.3), 1.78 (ddd, 1H, *J* = 14.2, 6.9, 4.9), 1.29 (d, 1H, *J* = 6.3). ¹³C-NMR (125 MHz): δ 138.3, 128.4, 127.7, 102.3, 76.5, 73.0, 71.1, 58.1, 53.5, 52.9, 52.5, 35.3, 15.6. **ESI-MS** *m*/*z* (rel int): (pos) 318.9 ([M+Na]⁺, 100), 335.2 ([M+K]⁺, 24); (neg) 331.3 ([M+Cl]⁻, 100), 295.3 ([M–H]⁻, 48).

F. SYNTHESIS OF α , β -enones (17,18)

Figure S5. Synthesis of enones 17 and 18. Enones **17** and **18** were prepared by oxidation of 2S-allylic alcohols **10a**, *anti***-10b**, **11a**, and *anti***-11b** using Dess–Martin periodinane.¹⁵

(Z)-1-(Benzyloxy)-6,6-dimethoxyhex-3-en-2-one (17a). In a 10 mL roundbottom flask, Dess-Martin periodinane (Aldrich, 39.7 mg, 93.5 μ mmol, 1.5 equiv) was dissolved in anhyd CH₂Cl₂ (0.6 mL) and cooled to 0 °C. A solution of Z-allylic alcohol S-10a (16.6 mg, 62.3 μ mol, 1.0 equiv) in anhyd CH₂Cl₂ (2 mL) was added dropwise via syringe. The mixture was stirred at 0 °C for 30 min, then rt for 1 h. Satd aq NaHCO₃ and 10% aq Na₂S₂O₃ were added at 0 °C and the mixture was warmed to rt and stirred for 15 min. The layers were separated and the aq layer was extracted with Et₂O. The combined organic extracts were dried (Na₂SO₄), filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (4:1 hexanes/EtOAc) yielded *cis*-enone 17a (15.3 mg, 93%) as a light yellow oil.

TLC: $R_f 0.59$ (1:2 hexanes/EtOAc). **IR** (NaCl, film): 2932, 2832, 1695 (C=O st), 1618, 1451, 1424, 1363, 1189, 1121, 1065, 967, 826, 742. ¹H-NMR (400 MHz): δ 7.37–7.27 (m, 5H), 6.41 (dt, 1H, J = 11.5, 1.5), 6.26 (dt, 1H, J = 11.5, 7.1), 4.60 (s, 2H), 4.47 (t, 1H, J = 5.5), 4.12 (s, 2H), 3.35 (s, 6H), 3.03 (ddd, 2H, J = 7.0, 5.5, 1.6). ¹³C-NMR (100 MHz): δ 198.8, 144.6, 137.7, 128.9, 128.4, 128.3, 124.4, 104.1, 76.1, 73.7, 53.7, 33.8. **ESI-MS** *m/z* (rel int): (pos) 287.0 ([M+Na]⁺, 100).

(-)-(*S*,*Z*)-2-(Benzyloxy)-7,7-dimethoxyhept-4-en-3-one (17b). Prepared from *Z*-allylic alcohol *anti*-10b as above. Clear oil (22 mg, 100%).

¹⁵ (a) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277–7287. (b) Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899.

= 5.6), 4.44 (d, 1H, J = 11.6), 3.95 (q, 1H, J = 6.9), 3.35 (s, 3H), 3.34 (s, 3H), 3.06–3.01 (m, 2H), 1.35 (d, 3H, J = 6.9). ¹³C-NMR (125 MHz): δ 203.0, 144.9, 137.6, 128.5, 127.9, 127.8, 123.4, 103.6, 81.0, 71.8, 53.3, 53.2, 33.3, 17.7. ESI-MS m/z (rel int): (pos) 301.0 ([M+Na]⁺, 100).

(*E*)-1-(Benzyloxy)-6,6-dimethoxyhex-3-en-2-one (18a). Prepared from *E*-allylic alcohol *S*-11a as above. Purification by silica flash chromatography (4:1 hexanes/EtOAc) yielded *trans*-enone 18a (32.0 mg, 100%) as a light yellow oil.

TLC: $R_f 0.61$ (1:2 hexanes/EtOAc). **IR** (NaCl, film): 3030, 2916, 2832, 1710, 1693 (C=O st), 1626, 1496, 1454, 1364, 1326, 1262, 1192, 1119, 1062, 972, 738. ¹H-NMR (400 MHz): δ 7.37–7.28 (m, 5H), 6.90 (dt, 1H, J = 16.0, 7.2), 6.37 (d, 1H, J = 16.0), 4.61 (s, 2H), 4.47 (t, 1H, J = 5.6), 4.23 (s, 2H), 3.34 (s, 6H), 2.54 (m, 2H). ¹³C-NMR (100 MHz): δ 197.0, 142.9, 137.7, 128.9, 128.8, 128.4, 103.2, 74.4, 73.7, 53.6, 36.7. **ESI-MS** *m*/*z* (rel int): (pos) 287.2 ([M+Na]⁺, 100); (neg) 263.1 ([M–H]⁻, 4), 299.2 ([M+Cl]⁻, 87).

(-)-(*S*,*E*)-2-(Benzyloxy)-7,7-dimethoxyhept-4-en-3-one (18b). Prepared from *E*-allylic alcohol *syn*-11b as above. Clear oil (24 mg, 96%).

TLC: $R_f 0.65$ (2:1 hexanes/EtOAc). $[\alpha]_D^{20}$: -29.8° (*c* 1.0, CHCl₃). **IR** (ZnSe, film): 2927, 1696 (C=O st), 1627, 1454, 1368, 1326, 1263, 1120, 1062, 972. ¹H-NMR (400 MHz): δ 7.41–7.24 (m, 5H), 6.99 (td, 1H, *J* = 15.7, 7.2), 6.60 (td, 1H, *J* = 15.7, 1.3), 4.57 (d, 1H, *J* = 11.6), 4.48 (t, 1H, *J* = 5.6), 4.43 (d, 1H, *J* = 11.6), 4.07 (q, 1H, *J* = 6.9), 3.34 (s, 6H), 2.59–2.53 (m, 2H), 1.37 (d, 3H, *J* = 6.9). ¹³C-NMR (100 MHz): δ 201.0, 143.2, 137.6, 128.5, 127.9, 127.8, 126.8, 102.9, 80.0, 71.8, 53.1, 53.1, 36.4, 17.9. **ESI-MS** *m*/*z* (rel int): (pos) 279.1 ([M+H]⁺, 50), 301.1 ([M+Na]⁺, 100).

G. SYNTHESIS OF α , β -epoxyketones (19,20)

Figure S6. Synthesis of enones 19 and 20. Enones **19** and **20** were synthesized by Dess–Martin oxidation¹⁵ of 2*R*-epoxyols **2***R***-syn-12a** and **2***R***-anti-13a** in the $R^1 = H$ series and **2***R***-epoxyols anti,syn-12b and anti,anti-13b and 2***S***-epoxyol syn,syn-12b in the R^1 = H series.**

(+)-2-(Benzyloxy)-1-[(2*R*,3*R*)-3-(2,2-dimethoxyethyl)oxiran-2-yl]ethanone (3*R*-19a). In a 10 mL roundbottom flask, 2*R*-syn-12a (20.0 mg, 70.8 µmol, 1.0 equiv) was dissolved in anhyd CH₂Cl₂ (2.5 mL) and cooled to 0 °C. Dess-Martin periodinane (Aldrich, 45.1 mg, 106 µmol, 1.5 equiv) was added in one portion. The mixture was stirred at 0 °C for 30 min, then rt for 8 h. Satd aq NaHCO₃ and 10% aq Na₂S₂O₃ were added with Et₂O (2.5 mL) at 0 °C and the mixture was warmed to rt and stirred for 15 min. The layers were separated and the aq layer was extracted with Et₂O. The combined organic extracts were dried (MgSO₄), filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (4:1 hexanes/EtOAc) yielded epoxyketone 3*R*-19a (16.8 mg, 85%, 90:10 *cis/trans*) as a light yellow oil.

TLC: $R_f 0.59$ (1:2 hexanes/EtOAc, triple elution). $[\alpha]_D^{25}$: +16.8° (*c* 1.0, CHCl₃). **IR** (NaCl, film): 3436, 2934, 2834, 2252, 1729 (C=O st), 1449, 1368, 1247, 1193, 1121, 1068, 911, 740. **¹H-NMR** (400 MHz): δ 7.41–7.30 (m, 5H), 4.63 (d, 2H, J = 2.4), 4.48 (dd, 1H, J = 6.4, 4.1), 4.27 (d, 1H, J = 17.2), 4.20 (d, 1H, J = 17.2), 3.87 (d, 1H, J = 4.8), 3.38 (m, 2H), 3.33 (s, 3H), 3.28 (s, 3H), 1.93 (m, 1H), 1.76 (m, 1H). ¹³C-NMR (100 MHz): δ 203.2, 137.3, 129.0, 128.6, 128.4, 102.8, 74.9, 74.0, 56.3, 55.7, 54.7, 53.6, 31.3. **ESI-MS** *m*/*z* (rel int): (pos) 303.2 ([M+Na]⁺, 100); (neg) 279.2 ([M–H]⁻, 100).

(-)-2-(Benzyloxy)-1-((2*S*,3*S*)-3-(2,2-dimethoxyethyl)oxiran-2-yl)ethanone (3*S*-19a). Prepared from epoxyol 2*S*-syn-12a as above. Light yellow oil (25.5 mg, 98%, 88:12 *cis/trans*). $[\alpha]_D^{25}$: - 16.6° (*c* 1.0, CHCl₃).

(+)-(*S*)-2-(Benzyloxy)-1-[(2*R*,3*R*)-3-(2,2-dimethoxyethyl)oxiran-2-yl]propan-1-one (*anti*-19b). Prepared from epoxyol *anti*,*syn*-12b as above. Clear oil (47 mg, 98%).

TLC: $R_f 0.50$ (2:1 hexanes/EtOAc). $[\alpha]_D^{21}$: +37.7° (*c* 1.0, CHCl₃). **IR** (ZnSe, film): 2936, 1725 (C=O st), 1453, 1370, 1191, 1119, 1067. ¹H-NMR (400 MHz): δ 7.39–7.24 (m, 5H), 4.62 (d, 1H, *J* = 11.7), 4.55 (d, 1H, *J* = 11.7), 4.51 (dd, 1H, *J* = 6.5, 4.3), 4.12 (q, 1H, *J* = 6.9), 4.07 (m, 1H), 3.42 (m, 1H), 3.35 (s, 3H), 3.30 (s, 3H), 1.85 (ddd, 1H, *J* = 14.4, 6.8, 4.3), 1.77 (ddd, 1H, *J* = 14.4, 6.5, 5.3), 1.45 (d, 3H, *J* = 6.9). ¹³C-NMR (125 MHz): δ 206.5, 137.4, 128.6, 128.1, 127.7, 102.5, 80.0, 71.9, 55.6, 55.2, 54.2, 53.2, 30.8, 17.1. **ESI-MS** *m/z* (rel int): (pos) 317.1 ([M+Na]⁺, 100); (neg) 329.2 ([M+Cl]⁻, 90), 293.2 ([M-H]⁻, 100).

(-)-(*S*)-2-(Benzyloxy)-1-[(2*S*,3*S*)-3-(2,2-dimethoxyethyl)oxiran-2-yl]propan-1-one (*syn*-19b). Prepared from epoxyol *syn*,*syn*-12b as above. Clear oil (46 mg, 92%).

TLC: $R_f 0.50$ (2:1 hexanes/EtOAc). $[\alpha]_D^{20}$: -22.6° (*c* 1.0, CHCl₃). **IR** (ZnSe, film): 2935, 2833, 1725 (C=O st), 1496, 1452, 1370, 1192, 1120, 1069, 975, 886, 749. ¹H-NMR (400 MHz): δ 7.40–7.24 (m, 5H), 4.64 (d, 1H, *J* = 11.8), 4.60 (d, 1H, *J* = 11.8), 4.52 (dd, 1H, 6.3, 5.1), 4.12 (q, 1H, *J* = 6.9), 4.06 (m, 1H), 3.41 (m, 1H), 3.35 (s, 3H), 3.31 (s, 3H), 1.87–1.72 (m, 2H), 1.37 (d, 3H, *J* = 6.9). ¹³C-NMR (125 MHz): δ 206.7, 137.1, 128.6, 128.1, 127.9, 102.0, 79.5, 72.1, 56.6, 55.4, 53.9, 53.0, 35.6, 16.8. **ESI-MS** *m*/*z* (rel int): (pos) 317.0 ([M+Na]⁺, 100); (neg) 329.0 ([M+Cl]⁻, 90).

(-)-2-(Benzyloxy)-1-[(2S,3R)-3-(2,2-dimethoxyethyl)oxiran-2-yl]ethanone(3S-20a).Prepared from epoxyol 2R-anti-13a as above. Light yellow oil (174.5 mg, 88%, $\geq 98:2$ *trans/cis*).

TLC: $R_f 0.59$ (1:2 hexanes/EtOAc, triple elution). $[\alpha]_D^{25}$: -4.2° (*c* 1.0, CHCl₃). **IR** (NaCl, film): 2930, 2838, 2252, 1728 (C=O st), 1447, 1369, 1193, 1121, 1069, 909, 733. ¹H-NMR (400 MHz): δ 7.40–7.30 (m, 5H), 4.60 (s, 2H), 4.54 (m, 1H), 4.24 (d, 1H, *J* = 17.9), 4.12 (d, 1H, *J* = 17.9), 3.45 (d, 1H, *J* = 2.0), 3.36 (s, 3H), 3.33 (s, 3H), 3.16 (m, 1H), 1.99 (m, 1H), 1.82 (m, 1H). ¹³C-NMR (100 MHz): δ 203.8, 137.3, 129.0, 128.6, 128.4, 102.3, 73.9, 72.6, 58.0, 56.1, 54.2, 53.5, 36.0. **ESI-MS** *m/z* (rel int): (pos) 303.2 ([M+Na]⁺, 100); (neg) 279.2 ([M-H]⁻, 100).

(+)-2-(Benzyloxy)-1-[(2*R*,3*S*)-3-(2,2-dimethoxyethyl)oxiran-2-yl]ethanone (3*R*-20a). Prepared from epoxyol 2*S*-anti-13a as above. Light yellow oil (219.3 mg, 89%, \geq 98:2 trans/cis). $[\alpha]_D^{24}$: +4.8° (c 1.0, CHCl₃).

(-)-(S)-2-(Benzyloxy)-1-[(2S,3R)-3-(2,2-dimethoxyethyl)oxiran-2-yl]propan-1-one (syn-20b). Prepared from epoxyol *anti,anti*-13b as above. Clear oil (24 mg, 95%).

TLC: $R_f 0.50$ (2:1 hexanes/EtOAc). $[\alpha]_D^{20}$: -31.7° (*c* 1.1, CHCl₃). **IR** (ZnSe, film): 2927, 1725 (C=O st), 1453, 1370, 1191, 1118, 1061, 885. ¹H-NMR (400 MHz): δ 7.42–7.27 (m, 5H), 4.61 (d, 1H, *J* = 11.6), 4.57 (d, 1H, *J* = 11.6), 4.54 (t, 1H, *J* = 5.8), 4.14 (q, 1H, *J* = 6.8), 3.77 (d, 1H, *J* = 1.9), 3.35 (s, 3H), 3.32 (s, 3H), 3.12 (dd, 1H, *J* = 5.7, 1.9), 1.96–1.89 (m, 2H), 1.39 (d, 3H, *J* = 6.8). ¹³C-NMR (100 MHz): δ 206.7, 137.1, 128.6, 128.2, 128.0, 102.0, 79.5, 72.1, 56.6, 55.4, 53.8, 53.0, 35.6, 16.8. **ESI-MS** *m*/*z* (rel int): (pos) 317.1 ([M+Na]⁺, 100); (neg) 329.2 ([M+C1]⁻, 90), 293.1 ([M-H]⁻, 100).

H. Synthesis of β-hydroxyketones (21)

Figure S7. Synthesis of β -hydroxyketones **21.** β -Hydroxyketones **21** were synthesized by Sml₂mediated reductive epoxide opening ¹⁶ of *trans*-epoxyketones **20a** in the R¹ = H series and *cis*-epoxyketones **anti-19b** and **syn-19b** in the R² = Me series. The other available epoxyketone starting materials provide degenerate products.

(-)-(*R*)-1-(Benzyloxy)-4-hydroxy-6,6-dimethoxyhexan-2-one (*R*-21a). In a 10 mL roundbottom flask, epoxyketone 3*S*-20a (30.0 mg, 107 µmol, 1.0 equiv) was dissolved in anhyd THF (2 mL) and cooled to -90 °C. Freshly prepared¹⁷ SmI₂ (0.1 M in THF, 4.0 mL, 400 µmol, 3.7 equiv) was added dropwise via syringe. The mixture was stirred at -90 °C for 20 min, and -78 °C for 1 h. Satd aq NH₄Cl₄ was added and the mixture was warmed to rt. The layers were separated and the aq layer was extracted with Et₂O. The combined organic extracts were dried (MgSO₄), filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (2:1 \rightarrow 1.5:1 \rightarrow 1:1 hexanes/EtOAc) yielded β-hydroxyketone *R*-21a (25.9 mg, 86%) as a light yellow oil.

TLC: $R_f 0.36$ (1:2 hexanes/EtOAc). $[\alpha]_D^{25}$: -13.2° (*c* 1.0, CHCl₃). **IR** (NaCl, film/KBr, pellet): 3479 (O–H st), 2932, 2834, 2249, 1722 (C=O st), 1495, 1452, 1387, 1327, 1260, 1192, 1122, 1059, 962, 911, 818, 736. ¹H-NMR (400 MHz): δ 7.40–7.29 (m, 5H), 4.60 (m, 3H), 4.26 (m, 1H), 4.09 (s, 2H), 3.36 (s, 3H), 3.35 (s, 3H), 3.27 (d, 1H, J = 2.8), 2.63 (m, 2H), 1.77 (m, 2H). ¹³C-NMR (100 MHz): δ 208.9, 137.5, 128.9, 128.5, 128.3, 103.5, 75.8, 73.8, 64.8, 54.1, 53.8, 46.3, 39.6. **ESI-MS** *m*/*z* (rel int): (pos) 305.2 ([M+Na]⁺, 100); (neg) 317.1 ([M+Cl]⁻, 21), 281.3 ([M-H]⁻, 100).

(+)-(S)-1-(Benzyloxy)-4-hydroxy-6,6-dimethoxyhexan-2-one (S-21a). Prepared from epoxyketone **3***R*-20a essentially as above. Light yellow oil (107.9 mg, 54% yield not optimized). $[\alpha]_D^{25}$: +13.0° (*c* 1.0, CHCl₃).

¹⁶ Molander, G. A.; Hahn, G. J. Org. Chem. **1986**, 51, 2596–2599.

¹⁷ Girard P.; Namy J. L.; Kagan H. B. J. Am. Chem. Soc. **1980**, 102, 2693–2698.

(-)-(2*S*,5*R*)-2-(Benzyloxy)-5-hydroxy-7,7-dimethoxyheptan-3-one (*syn*-21b). Prepared from epoxyketone *anti*-19b as above. Purification by silica flash chromatography (1:1 hexanes/EtOAc) yielded β -hydroxyketone *syn*-21b (29 mg, 65%; 25% of starting material was recovered) as a clear oil. (Alternatively, *syn*-21b could be prepared from epoxyketone *syn*-20b as above (11 mg, 54%).)

TLC: $R_f 0.40$ (1:1 hexanes/EtOAc). $[\alpha]_D^{20}$: -37.1° (*c* 1.0, CHCl₃). **IR** (ZnSe, film): 3431 (O–H st), 2938, 1717 (C=O st), 1455, 1373, 1315, 1193, 1124, 1053, 913. ¹H-NMR (400 MHz): δ 7.41–7.26 (m, 5H), 4.60 (m, 1H), 4.59 (d, 1H, *J* = 11.7), 4.51 (d, 1H, *J* = 11.7), 4.25 (m, 1H), 3.95 (q, 1H, *J* = 6.7), 3.36 (s, 6H), 3.25 (d, 1H, *J* = 4.2), 2.78–2.74 (m, 2H), 1.81 (ddd, 1H, *J* = 14.1, 8.8, 5.2), 1.77 (ddd, 1H, *J* = 14.1, 5.9, 3.6), 1.34 (d, 3H, *J* = 6.7). ¹³C-NMR (125 MHz): δ 213.0, 137.4, 128.5, 128.0, 127.8, 103.1, 80.6, 71.9, 64.4, 53.6, 53.5, 44.3, 39.2, 17.1. **ESI-MS** *m/z* (rel int): (pos) 319.1 ([M+Na]⁺, 100); (neg) 331.0 ([M+Cl]⁻, 90).

(-)-(2*S*,5*S*)-2-(Benzyloxy)-5-hydroxy-7,7-dimethoxyheptan-3-one (*anti*-21b). Prepared from epoxyketone *syn*-19b as above. Purification by silica flash chromatography (1:1 hexanes/EtOAc) yielded β -hydroxyketone *anti*-21b (67 mg, 93%) as a clear oil.

TLC: $R_f 0.40$ (1:1 hexanes/EtOAc). $[\alpha]_D^{20}$: -14.7° (*c* 1.0, CHCl₃). **IR** (ZnSe, film): 3478 (O–H st), 2934, 2832, 1716 (C=O st), 1469, 1453, 1371, 1309, 1192, 1124, 1058, 965, 910, 820, 750. ¹**H-NMR** (400 MHz): δ 7.38–7.22 (m, 5H), 4.59 (m, 1H), 4.55 (d, 1H, *J* = 11.7), 4.51 (d, 1H. *J* = 11.7), 4.23 (m, 1H), 3.95 (q, 1H, *J* = 6.9), 3.36 (s, 6H), 3.24 (d, 1H, *J* = 3.0), 2.79 (dd, 1H, *J* = 17.7, 8.4), 2.66 (dd, 1H, *J* = 17.7, 3.9), 1.81 (ddd, 1H, *J* = 14.1, 8.8, 5.2), 1.73 (ddd, 1H, *J* = 14.1, 5.8, 3.6), 1.34 (d, 3H, *J* = 6.9). ¹³**C-NMR** (125 MHz): δ 213.0, 137.5, 128.5, 128.0, 127.8, 103.1, 80.7, 71.9, 64.5, 64.4, 53.6, 53.5, 44.3, 39.2, 17.1. **ESI-MS** *m/z* (rel int): (pos) 318.9 ([M+Na]⁺, 100); (neg) 331.0 ([M+Cl]⁻, 90).

I. SYNTHESIS OF 2-METHYL 1,3-DIOLS (14a,15a) AND STEREOCHEMICAL ASSIGNMENTS

Figure S8. Synthesis of 2-methyl-1,3-diols 14a and 15a. In the R¹ = H series, 1,3-diols **14a** and **15a** could be obtained directly from epoxyols **12a** and **13a** in good yields using *n*-BuLi/Me₃Al¹⁸ or MeMgCl/CuCl¹⁹ respectively. Importantly, access to both enantiomeric series provided access to all eight stereoisomeric products **14a** and **15a**. Analogous epoxide openings in the R¹ = Me series afforded only 1,2-diol products. Stereochemical assignments were confirmed by conversion of the 1,3-diols to the corresponding acetonides, determination of *syn* and *anti* diol relationships using Rychnovsky's ¹³C-NMR method, ²⁰ and determination of *C3*-methyl stereochemistry via NOESY analysis. The resulting stereochemical assignments were consistent with the *syn* and *anti* epoxyol assignments made for **12a** and **13a** in SECTION E above by analogy to literature precedents.

(+)-(2S,3S,4R)-1-(Benzyloxy)-6,6-dimethoxy-3-methylhexane-2,4-diol (2*S*-anti.svn-14a). Note: For best results, new bottles of n-BuLi, Me₃Al, and 1,2-dichloroethane should be used. In the example below, the addition reaction was carried out in four smaller batches that were combined prior to oxidative cleavage and purification. However, we have not yet assessed whether or not this protocol is necessary for optimal yields compared to carrying out the addition reaction in a single larger batch. In 4×5 mL roundbottom flasks, cis-epoxyol **2R-syn-12a** (4×4 mg, 14.2 µmol, 1.0 equiv) was azeotropically dried twice with toluene then dissolved in anhyd 1,2-dichloroethane $(4 \times 0.5 \text{ mL})$ (Aldrich SureSeal bottle) and cooled to 0 °C. *n*-BuLi (1.6 M in hexanes, $4 \times 44.3 \mu$ L, 70.8 µmol, 5.0 equiv) was added dropwise via syringe. The mixture was stirred at 0 °C for 30 min, then Me₃Al (2 M in hexanes, $4 \times 56.7 \mu$ L, 113 µmol, 8.0 equiv) was added dropwise and the mixture was stirred at 0 °C for 30 min, then warmed to rt for 2 h. Satd aq NH₄Cl was added at 0 °C and the mixture was warmed to rt. The four reaction mixtures were combined, the layers were separated, and the aq layer was extracted with Et₂O. The combined organic extracts were dried (Na₂SO₄), filtered, and concentrated by rotary evaporation. The residue was dissolved in 60% ag MeCN (2 mL) followed by slow addition of NaIO₄ (20 mg, 93.5 µmol, 1.6 equiv) at 0 °C. After stirring for 1 h at rt, the MeCN was removed by rotary evaporation and the ag layer was extracted with CH₂Cl₂. The combined organic extracts were dried (Na₂SO₄) and concentrated by rotary evaporation. Purification by silica flash

¹⁸ Sasaki, M.; Tanino, K.; Miyashita, M. Org. Lett. 2001, 3, 1765–1767.

¹⁹ Tius, M. A.; Fauq, A. H. J. Org. Chem. **1983**, 48, 4131–4132.

 ²⁰ (a) Rychnovsky, S. D.; Skalitzky, D. J. *Tetrahedron Lett.* 1990, 31, 945–948. (b) Rychnovsky, S. D.; Rogers, B.; Yang, G. J. Org. Chem. 1993, 58, 3511–3515.

chromatography (3:1 \rightarrow 2.5:1 hexanes/EtOAc) yielded pure 1,3-diol **2S-anti,syn-14a** (12.3 mg, 73%, \geq 98:2 dr) as a light yellow oil.

TLC: $R_f 0.46$ (1:2 hexanes/EtOAc, double elution). $[\alpha]_D^{24}$: +1.7° (*c* 1.0, CHCl₃). **IR** (NaCl, film): 3440 (O–H st), 2929, 2246, 1454, 1383, 1192, 1116, 1053, 912, 818, 735. ¹H-NMR (400 MHz): δ 7.39–7.27 (m, 5H), 4.59 (t, 1H, J = 5.5), 4.57 (s, 2H), 4.07 (m, 1H), 3.81 (m, 1H), 3.60 (dd, 1H, J = 9.6, 3.8), 3.49 (dd, 1H, J = 9.6, 7.0), 3.38 (s, 3H), 3.36 (s, 3H), 3.24 (d, 1H, J = 3.9), 1.88 (m, 1H), 1.76 (m, 1H), 1.62 (m, 1H), 0.90 (d, 1H, J = 7.1). ¹³C-NMR (100 MHz): δ 138.4, 128.8, 128.2, 104.6, 73.9, 73.8, 73.2, 69.8, 54.4, 53.5, 39.9, 36.8, 11.6. **ESI-MS** *m*/*z* (rel int): (pos) 321.3 ([M+Na]⁺, 100); (neg) 297.4 ([M–H]⁻, 100).

The relative stereochemistry of the secondary alcohols at C2 and C4 of **2S-anti,syn-14a** was determined by ¹³C-NMR analysis of the corresponding acetonide (2,2-dimethoxypropane, PPTS, CH₂Cl₂, rt, 30 min; 68%). ¹³C-NMR resonances were observed at 23.8 and 24.8 ppm (and 100.8 ppm), indicative of an *anti*-diol-derived acetonide in a twist-boat conformation.²⁰ ¹H-NMR peaks were then assigned by COSY analysis. NOESY analysis indicated interactions between Me³ (0.84 ppm) and H² (3.51 ppm), but no interaction between Me³ and H⁴ (4.01 ppm), consistent with the assigned relative configurations at C2, C3, and C4 of **2S-anti,syn-14a**.

(-)-(2*R*,3*R*,4*S*)-1-(benzyloxy)-6,6-dimethoxy-3-methylhexane-2,4-diol (2*R-anti,syn*-14a). Prepared from *cis*-epoxyol 2*S*-syn-12a essentially as above. Light yellow oil (34.2 mg, 47% yield not optimized, \geq 98:2 dr). $[\alpha]_{D}^{24}$: -2.1° (*c* 1.0, CHCl₃).

TLC: $R_f 0.49$ (1:2 hexanes/EtOAc, double elution). $[\alpha]_D^{25}$: -8.8° (*c* 1.0, CHCl₃). **IR** (NaCl, film): 3444 (O–H st), 2921, 1454, 1375, 1312, 1237, 1191, 1117, 1054, 913, 820, 738. ¹H-NMR (400 MHz): δ 7.37–7.27 (m, 5H), 4.56 (m, 3H), 4.07 (m, 2H), 3.49 (m, 2H), 3.38 (s, 3H), 3.36 (s, 3H), 3.08 (d, 1H, J = 1.8), 1.90 (m, 1H), 1.64 (m, 2H), 0.93 (d, 3H, J = 7.1). ¹³C-NMR (100 MHz): δ 138.4, 128.9, 128.2, 104.7, 74.7, 73.8, 72.8, 72.4, 54.5, 53.6, 39.9, 37.9, 6.6. **ESI-MS** *m*/*z* (rel int): (pos) 321.4 ([M+Na]⁺, 100), 337.2 ([M+K]⁺, 5); (neg) 297.4 ([M–H]⁻, 100).

The relative stereochemistry of the secondary alcohols at C2 and C4 of **2***R*-syn,syn-14a was determined by ¹³C-NMR analysis of the corresponding acetonide (2,2-dimethoxypropane, PPTS, CH₂Cl₂, rt, 30 min; 65%). ¹³C-NMR resonances were observed at 19.7 and 29.9 ppm (and 99.0 ppm), indicative of a *syn*-diol-derived acetonide in a chair conformation.²⁰ ¹H-NMR peaks were then assigned by COSY analysis. This allowed assignment of a small 2.3 Hz H²–H³ coupling constant (4.19, 1.48 ppm), consistent with an axial methyl substituent at C3 (the H³–H⁴ coupling constant could not be determined due to overlap). NOESY analysis indicated interactions between H² (4.19 ppm) and H⁴ (4.06 ppm) (and also between H³ and both H² and H⁴) but no interactions between Me³ (0.83 ppm) and either H² or H⁴, consistent with the assigned relative configurations at C2, C3, and C4 of **2***R*-syn,syn-14a.

(+)-(2*S*,3*R*,4*S*)-1-(Benzyloxy)-6,6-dimethoxy-3-methylhexane-2,4-diol (2*S*-syn,syn-14a). Prepared from *cis*-epoxyol 2*R*-anti-12a essentially as above. Light yellow oil (16.3 mg, 58% yield not optimized, \geq 98:2 dr). $[\alpha]_D^{25}$: +7.8° (*c* 1.0, CHCl₃).

(-)-(2*S*,3*R*,4*R*)-1-(Benzyloxy)-6,6-dimethoxy-3-methylhexane-2,4-diol (2*S*-syn,anti-15a). In a 10 mL roundbottom flask, CuCl (157.8 mg, 1.59 mmol, 6.0 equiv) was suspended in anhyd 1:1 THF/Et₂O (4 mL) and cooled to -20 °C. MeMgCl (3 M in THF, 1.06 mL, 3.19 mmol, 12.0 equiv) was added dropwise via syringe. The mixture was stirred at -20 °C for 30 min, then cooled to -40 °C. A solution of *trans*-epoxyol 2*R*-anti-13a (75 mg, 0.266 mmol, 1.0 equiv) in

anhyd Et₂O (2 mL) was added dropwise via syringe. The mixture was stirred at -40 °C for 1.5 h, warmed to -20 °C for 1.5 h, 0 °C for 1 h, and rt for 20 min. A mixture of 2:1 satd aq NH₄Cl/30% aq NH₄OH was added at -40 °C and the mixture was warmed to rt. The layers were separated and the aq layer was extracted with Et₂O. The combined organic extracts were dried (Na₂SO₄), filtered, and concentrated by rotary evaporation. The residue was dissolved in 60% aq MeCN (7 mL) followed by slow addition of NaIO₄ (113.4 mg, 0.53 mmol, 2.0 equiv) at 0 °C. After stirring for 1 h at rt, the MeCN was removed by rotary evaporation and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried (Na₂SO₄) and concentrated by rotary evaporation field (Na₂SO₄) and concentrated by rotary evaporation and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried (Na₂SO₄) and concentrated by rotary evaporation. Purification by silica flash chromatography (2:1 \rightarrow 1:1 \rightarrow 1:2 hexanes/EtOAc) yielded 1,3-diol **2S-syn,anti-15a** (53.6 mg, 68%, \geq 98:2 dr) as a light yellow oil.

TLC: $R_f 0.44$ (1:2 hexanes/EtOAc, triple elution). $[\alpha]_D^{25}$: -2.1° (*c* 1.0, CHCl₃). **IR** (NaCl, film): 3444 (O–H st), 2927, 1495, 1454, 1385, 1247, 1192, 1112, 1055, 991, 912, 820, 738. ¹H-NMR (400 MHz): δ 7.37–7.27 (m, 5H), 4.56 (m, 3H), 4.18 (m, 1H), 3.82 (m, 1H), 3.59 (d, 1H, J = 2.9), 3.54 (dd, 1H, J = 9.4, 7.6), 3.48 (dd, 1H, J = 9.5, 4.6), 3.39 (s, 3H), 3.36 (s, 3H), 3.17 (d, 1H, J = 2.9), 1.88 (m, 1H), 1.80 (m, 1H), 1.68 (m, 1H). ¹³C-NMR (100 MHz): δ 138.5, 128.8, 128.1, 104.6, 73.8, 72.9, 72.6, 71.4, 54.4, 53.5, 40.3, 38.2, 11.7. **ESI-MS** *m/z* (rel int): (pos) 321.4 ([M+Na]⁺, 100); (neg) 297.2 ([M–H]⁻, 100), 333.2 ([M+Cl]⁻, 86).

The relative stereochemistry of the secondary alcohols at C2 and C4 of **2S**-syn,anti-15a was determined by ¹³C-NMR analysis of the corresponding acetonide (2,2-dimethoxypropane, PPTS, CH₂Cl₂, rt, 30 min; 85%). ¹³C-NMR resonances were observed at 23.7 and 24.8 ppm (and 100.8 ppm), indicative of an *anti*-diol-derived acetonide in a twist-boat conformation.²⁰ ¹H-NMR peaks were then assigned by COSY analysis. This allowed assignment of a small 5.6 Hz H²–H³ coupling constant and a large 9.2 Hz H³–H⁴ coupling constant (1.72, 3.40 ppm), consistent with a *syn*-H²,H³ relationship and an *anti*-H³,H⁴ relationship. NOESY analysis indicated interactions between Me³ (0.82 ppm) and H⁴ (3.40 ppm) (and between H² at 4.12 ppm and H³), but no interactions between Me³ and H² (or between H³ and H⁴), consistent with the assigned relative configurations at C2, C3, and C4 of **2S**-syn,anti-15a.

(+)-(2*R*,3*S*,4*S*)-1-(Benzyloxy)-6,6-dimethoxy-3-methylhexane-2,4-diol (2*R*-syn,anti-15a). Prepared from *trans*-epoxyol 2*S*-anti-13a as above. Light yellow oil (54.2 mg, 69%, 98:2 dr). $[\alpha]_D^{25}$: +1.2° (*c* 1.0, CHCl₃).

(-)-(2*R*,3*R*,4*R*)-1-(Benzyloxy)-6,6-dimethoxy-3-methylhexane-2,4-diol (2*R*-anti,anti-15a). Prepared from *trans*-epoxyol 2*S*-syn-13a as above. Light yellow oil (54.2 mg, 69%, 94:6 dr).

TLC: $R_f 0.38$ (1:2 hexanes/EtOAc, triple elution). $[\alpha]_D^{25}$: -5.8° (*c* 1.0, CHCl₃). **IR** (NaCl, film): 3436 (O–H st), 2929, 1495, 1453, 1365, 1314, 1245, 1192, 1120, 1052, 967, 913, 814, 738. **¹H-NMR** (400 MHz): δ 7.37–7.28 (m, 5H), 4.57 (m, 3H), 3.86 (t, 1H, *J* = 8.3), 3.79 (m, 1H), 3.75 (s, 1H), 3.63 (dd, 1H, *J* = 9.6, 2.9), 3.47 (dd, 1H, *J* = 9.6, 7.0), 3.39 (s, 3H), 3.37 (s, 3H), 3.30 (s, 1H), 1.87 (m, 1H), 1.74 (m, 2H), 0.83 (d, 3H, *J* = 6.9). ¹³C-NMR (100 MHz): δ 138.4, 128.9, 128.2, 104.5, 74.5, 73.8, 73.2, 72.1, 54.4, 53.5, 41.6, 37.1, 12.8. **ESI-MS** *m*/*z* (rel int): (pos) 321.2 ([M+Na]⁺, 100), 337.3 ([M+K]⁺, 34); (neg) 297.4 ([M–H]⁻, 100), 333.2 ([M+Cl]⁻, 84).

The relative stereochemistry of the secondary alcohols at C2 and C4 of **2***R*-anti,anti-15a was determined by ¹³C-NMR analysis of the corresponding acetonide (2,2-dimethoxypropane, PPTS, CH₂Cl₂, rt, 30 min; 82%). ¹³C-NMR resonances were observed at 19.5 and 30.1 ppm (and 98.0 ppm), indicative of a *syn*-diol-derived acetonide in a chair conformation.²⁰ ¹H-NMR peaks were then assigned by COSY analysis. This allowed assignment of a large 10.4 Hz H³–H⁴ coupling constant (1.47, 3.59 ppm), consistent with a *trans*-diaxial relationship and an equatorial methyl substituent at C3 (the H²–H³ coupling constant could not be determined due to overlap). NOESY analysis indicated interactions between Me³ (0.77 ppm) and H² (3.66 ppm), between Me³ and H⁴, and between H² and H⁴ (but no interactions between H³ and either H² or H⁴), consistent with the assigned relative configurations at C2, C3, and C4 of **2***R*-anti,anti-15a.

(+)-(2*S*,3*S*,4*S*)-1-(Benzyloxy)-6,6-dimethoxy-3-methylhexane-2,4-diol (2*S*-anti,anti-15a). Prepared from *trans*-epoxyol 2*R*-syn-13a as above. Light yellow oil (41.1 mg, 52% yield not optimized due to material losses, 91:9 dr). $[\alpha]_{D}^{25}$: +3.3° (*c* 1.0, CHCl₃).

Figure S9. Synthesis of 1,3-diols 16. Stereoselective reductions of β -hydroxyketones **21** provided both *anti-* and *syn*-1,3-diol products in both the R¹ = H and R¹ = Me series.²¹ In the R¹ = H series, these 1,3-diols can also be obtained in high yields by direct epoxide opening of epoxyols *syn*-12a and *anti-*12a using Red-AI (not shown).²² Relative stereochemical assignments at C2 and C4 were made by conversion of the 1,3-diols to the corresponding acetonides and ¹³C-NMR analysis using Rychnovsky's method.²⁰ The resulting stereochemical assignments were consistent with the *syn* and *anti* epoxyol assignments made for **12** and **13** in SECTION E above by analogy to literature precedents. Furthermore, conversion of relative stereochemical assignments at C1 and C2 (and hence C4), also consistent with relative stereochemical assignments at C1 and **13b** in SECTION E above.

(-)-(2*S*,4*S*)-1-(Benzyloxy)-6,6-dimethoxyhexane-2,4-diol (2*S*-anti-16a).

<u>**B-Hydroxyketone Method:</u>** In a 15 mL roundbottom flask, NaBH(OAc)₃ (112.5 mg, 531 µmol, 5.7 equiv) was dissolved in anhyd CH₃CN (2.6 mL) and cooled to -20 °C. AcOH (0.4 mL) was added and the mixture was stirred at -20 °C for 20 min. The above solution was added dropwise via syringe to a solution of β -hydroxyketone *R***-21a** (26.4 mg, 93.5 µmol, 1.0 equiv) in anhyd CH₃CN (4.5 mL). The mixture was stirred at -20 °C for 1 h, then satd aq NaHCO₃ was added and the mixture was warmed to rt. The layers were separated and the aq layer was extracted with Et₂O. The combined organic extracts were dried (Na₂SO₄), filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (1:1 hexanes/EtOAc) yielded 1,3-diol **2S-anti-16a** (25.3 mg, 95%, 98:2 dr) as a light yellow oil.</u>

Epoxyol Method: To a stirred -40 °C solution of *syn,cis*-epoxyol **2***R*-*anti*-**13***a* (75 mg, 266 µmol, 1.0 equiv) in THF (7.5 mL) was added Red-Al (3.3 M in toluene, 1.49 mL, 4.92 mmol, 18.5 equiv) in THF (3.5 mL) dropwise. The mixture was stirred at -40 °C for 3 h, then warmed slowly to rt and stirred for 2 d. The reaction was recooled to -40 °C, then H₂O and satd aq NH₄Cl were added and the mixture was warmed to rt. The layers were separated and the aq layer was extracted with Et₂O. The combined organic extracts were washed with satd aq NH₄Cl and H₂O, dried (Na₂SO₄), filtered, and concentrated by rotary evaporation. The residue was dissolved in 60% aq MeCN (7 mL) followed by slow addition of NaIO₄ (113.4 mg, 0.53 mmol, 2.0 equiv) at 0 °C. After stirring for 1 h at rt, the MeCN was removed by rotary evaporation and the aq layer was extracted with CH₂Cl₂. The combined organic layers were

²¹ (a) Evans, D. A.; Clark, J. S.; Metternich, R.; Novack, V. J.; Sheppard, G. S. J. Am. Chem. Soc. **1990**, 112, 866–868. (b) Kiyooka, S.; Kuroda, H.; Shimasaki, Y. Tetrahedron Lett. **1986**, 27, 3009–3012.

²² Finan, J. M.; Kishi, Y. Tetrahedron Lett. 1982, 23, 2719–2722.

dried (Na₂SO₄) and concentrated by rotary evaporation. Purification by silica flash chromatography $(2:1\rightarrow1:1\rightarrow1:2$ hexanes/EtOAc) yielded 1,3-diol **2S-anti-16a** (62.8 mg, 83%, 94:6 dr) as a light yellow oil.

TLC: $R_f 0.34$ (1:2 hexanes/EtOAc, double elution). $[\alpha]_D^{25}$: -14.0° (*c* 1.0, CHCl₃). **IR** (NaCl, film): 3431 (O–H st), 2933, 1495, 1452, 1388, 1364, 1310, 1248, 1192, 1121, 1073, 1052, 960, 908, 839, 814, 738. ¹H-NMR (400 MHz): δ 7.37–7.27 (m, 5H), 4.58 (t, 1H, *J* = 5.5), 4.53 (s, 2H), 4.12 (m, 2H), 3.50 (dd, 1H, *J* = 9.5, 4.0), 3.41 (m, 2H), 3.37 (s, 3H), 3.34 (s, 3H), 3.02 (d, 1H, *J* = 3.2), 1.84 (m, 1H), 1.73 (m, 1H), 1.60 (m, 2H). ¹³C-NMR (100 MHz): δ 138.4, 128.8, 128.2, 128.1, 104.3, 74.8, 73.7, 68.1, 66.1, 54.2, 53.4, 39.9. **ESI-MS** *m/z* (rel int): (pos) 307.3 ([M+Na]⁺, 100), 323.3 ([M+K]⁺, 5); (neg) 283.1 ([M-H]⁻, 100), 319.2 ([M+Cl]⁻, 22).

The relative stereochemistry of the secondary alcohols at *C*2 and *C*4 of **2***S***-anti-16a** was determined by ¹³C-NMR analysis of the corresponding acetonide (2,2-dimethoxypropane, PPTS, CH₂Cl₂, rt, 30 min; 80%). ¹³C-NMR resonances were observed at 24.7 and 24.7 ppm (peak overlap confirmed by HMQC analysis) (and 100.5 ppm), indicative of an *anti*-diol-derived acetonide in a twist-boat conformation.²⁰

(+)-(2*R*,4*R*)-1-(Benzyloxy)-6,6-dimethoxyhexane-2,4-diol (2*R*-anti-16a). Epoxyol Method: Prepared directly from *syn,cis*-epoxyol 2*S*-anti-13a using Red-Al as described above. Light yellow oil (65.2 mg, 87%, 96:4 dr). $[\alpha]_D^{25}$: +11.2° (*c* 1.0, CHCl₃).

(-)-(3*S*,5*S*,6*S*)-6-(Benzyloxy)-1,1-dimethoxyheptane-3,5-diol (*anti*,*anti*-16b). <u> β -Hydroxy-ketone Method</u>: Prepared from β -hydroxyketone *syn*-21b as above. Clear oil (14 mg, 93%, 93:7 dr).

TLC: $R_f 0.15$ (1:1 hexanes/EtOAc). $[\alpha]_D^{20}$: +17.1° (*c* 1.0, CHCl₃). **IR** (ZnSe, film): 3435 (O–H st), 2925, 1453, 1375, 1192, 1068, 893, 814. ¹**H-NMR** (400 MHz): δ 7.41–7.22 (m, 5H), 4.68 (d, 1H, J = 11.5), 4.59 (dd, 1H, J = 5.8, 5.3), 4.45 (d, 1H, J = 11.5), 4.10 (m, 1H), 3.78 (m, 1H), 3.45 (m, 1H), 3.37 (s, 3H), 3.35 (s, 3H), 3.34 (d, 1H, J = 3.2), 2.88 (d, 1H, J = 3.2), 1.85 (ddd, 1H, J = 14.1, 9.3, 5.8), 1.75 (ddd, 1H, J = 14.1, 5.3, 3.9), 1.64 (m, 1H), 1.58 (m, 1H), 1.19 (d,

3H, J = 6.2). ¹³C-NMR (125 MHz): δ 138.3, 128.5, 127.8, 127.7, 103.8, 78.4, 72.1, 71.1, 65.7, 53.7, 53.1, 39.7, 39.2, 15.4. ESI-MS *m*/*z* (rel int): (pos) 321.1 ([M+Na]⁺, 100); (neg) 333.5 ([M+C1]⁻, 90), 297.4 ([M-H]⁻, 100).

The relative stereochemistry of the secondary alcohols at *C*2 and *C*4 of *anti,anti-*16b was determined by ¹³C-NMR analysis of the corresponding acetonide (2,2-dimethoxypropane, TsOH, acetone, rt, 2 h; 79%). ¹³C-NMR resonances were observed at 24.4 and 24.7 ppm (and 101.9 ppm), indicative of an *anti*-diol-derived acetonide in a twist-boat conformation.²⁰

(+)-(3R,5R,6S)-6-(Benzyloxy)-1,1-dimethoxyheptane-3,5-diol (*syn,anti*-16b). <u> β -Hydroxy-ketone Method:</u> Prepared from β -hydroxyketone *anti*-21b as above. Purification by silica flash chromatography (1:1 \rightarrow 2:3 hexanes/EtOAc) yielded *anti*-1,3-diol *syn,anti*-16b (26.6 mg, 88%, 95:5 dr) as a light yellow oil.

TLC: $R_f 0.20$ (1:1 hexanes/EtOAc). $[\alpha]_D^{20}$: +32.9° (*c* 1.0, CHCl₃). **IR** (ZnSe, film): 3441 (O–H st), 3063, 3030, 2932, 2832, 2356, 1604, 1496, 1453, 1385, 1329, 1252, 1192, 1125, 1068, 966, 909, 817, 739. ¹H-NMR (400 MHz): δ 7.40–7.21 (m, 5H), 4.63 (d, 1H, *J* = 11.8), 4.57 (dd, 1H, *J* = 6.3, 4.5), 4.51 (d, 1H, *J* = 11.8), 4.11 (m, 1H), 3.99 (ddd, 1H, *J* = 12.0, 7.6, 4.4), 3.54 (ddd, 1H, *J* = 12.5, 9.5, 4.6), 3.39 (s, 3H), 3.35 (s, 3H), 3.31 (d, 1H, *J* = 2.6), 2.72 (d, 1H, *J* = 4.3), 1.86 (ddd, 1H, *J* = 14.3, 9.5, 6.3), 1.75 (ddd, 1H, *J* = 14.3, 4.6, 4.5), 1.66 (m, 1H), 1.61 (m, 1H), 1.19 (d, 1H, *J* = 6.4). ¹³C-NMR (125 MHz): δ 138.6, 128.4, 127.7, 127.6, 104.2, 77.7, 70.7, 70.5, 66.0, 54.0, 52.9, 39.4, 38.4, 14.3. **ESI-MS** *m*/*z* (rel int): 321.0 ([M+Na]⁺, 100); (neg) 333.4 ([M+Cl]⁻, 90), 297.4 ([M–H]⁻, 100).

The relative stereochemistry of the secondary alcohols at *C*2 and *C*4 of *syn,anti*-16b was determined by ¹³C-NMR analysis of the corresponding acetonide (2,2-dimethoxypropane, TsOH,

acetone, rt, 8 h; 57%). ¹³C-NMR resonances were observed at 24.5 and 24.7 ppm (and 101.9 ppm), indicative of an *anti*-diol-derived acetonide in a twist-boat conformation.²⁰

(-)-(2*R*,4*S*)-1-(Benzyloxy)-6,6-dimethoxyhexane-2,4-diol (2*R*-syn-16a).

<u>B-Hydroxyketone Method:</u> In a 15 mL roundbottom flask, β -hydroxyketone *R*-21a (26.4 mg, 93.5 µmol, 1.0 equiv) was dissolved in anhyd THF (7.5 mL) and cooled to -78 °C. DIBAL (1 M in toluene, 319 µL, 319 µmol, 3.4 equiv) was added dropwise via syringe. The mixture was stirred at -78 °C for 1 h, then satd aq sodium potassium tartrate was added and the mixture was warmed to rt. The layers were separated and the aq layer was extracted with Et₂O. The combined organic extracts were dried (Na₂SO₄), filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (1:1 hexanes/EtOAc) yielded *syn*-1,3-diol **2***R***-syn-16a** (24.0 mg, 90%, 98:2 dr) as a clear oil.

Epoxyol Method: Prepared directly from *anti,cis*-epoxyol **2S-syn-13a** using Red-Al as described above. Light yellow oil (45.4 mg, 61%, 98:2 dr).

TLC: $R_f 0.42$ (1:2 hexanes/EtOAc, double elution). $[\alpha]_D^{25}$: -0.4° (*c* 1.0, CHCl₃). **IR** (NaCl, film): 3422 (O–H st), 2929, 1748, 1495, 1452, 1387, 1364, 1312, 1239, 1193, 1121, 1073, 1052, 959, 910, 847, 814, 738. ¹H-NMR (400 MHz): δ 7.39–7.27 (m, 5H), 4.58 (t, 1H, *J* = 5.5), 4.55 (s, 2H), 4.07 (m, 2H), 3.71 (s, 1H), 3.43 (m, 3H), 3.37 (s, 3H), 3.36 (s, 3H), 1.81 (m, 1H), 1.73 (m, 1H), 1.60 (m, 2H). ¹³C-NMR (100 MHz): δ 138.4, 128.8, 128.2, 103.9, 74.7, 73.8, 71.2, 69.0, 54.1, 53.7, 40.3, 40.2. **ESI-MS** *m/z* (rel int): (pos) 307.3 ([M+Na]⁺, 100), 323.3 ([M+K]⁺, 15); (neg) 283.2 ([M–H]⁻, 15), 319.1 ([M+Cl]⁻, 100).

The relative stereochemistry of the secondary alcohols at C2 and C4 of **2***R***-syn-16a** was determined by ¹³C-NMR analysis of the corresponding acetonide (2,2-dimethoxypropane, PPTS, CH₂Cl₂, rt, 30 min; 59%). ¹³C-NMR resonances were observed at 19.8 and 30.1 ppm (and 98.6 ppm), indicative of a *syn*-diol-derived acetonide in a chair conformation.²⁰

(+)-(2*S*,4*R*)-1-(Benzyloxy)-6,6-dimethoxyhexane-2,4-diol (2*S*-syn-16a). Epoxyol Method: Prepared directly from *anti,cis*-epoxyol 2*R*-syn-13a using Red-Al as described above. Light yellow oil (46.7 mg, 62%, 98:2 dr). $[\alpha]_p^{25}$: +4.8° (*c* 1.0, CHCl₃).

(+)-(3*S*,5*R*,6*S*)-6-(Benzyloxy)-1,1-dimethoxyheptane-3,5-diol (*syn,syn*-16b). <u>β-Hydroxy-ketone Method:</u> In a 20 mL roundbottom flask, β-hydroxyketone *syn*-21b (15 mg, 0.05 mmol, 1.0 equiv) was dissolved in anhyd CH₂Cl₂ (3.0 mL) and cooled to -45 °C. Zn(BH₄)₂ (1.0 M in DME, 0.15 mL, 0.15 mmol, 3.0 equiv) prepared as previously described²³ was added dropwise via syringe and the mixture was stirred at -45 °C for 3 h. Satd aq NH₄Cl was added and the mixture was warmed to rt. The layers were separated and the aq layer was extracted with Et₂O. The combined organic extracts were dried (MgSO₄), filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (1:1 hexanes/EtOAc) yielded *syn*-1,3-diol *syn,syn*-16b (10.7 mg, 72%, 88:12 dr) as a clear oil.

TLC: $R_f 0.20$ (1:1 hexanes/EtOAc). $[\alpha]_D^{21}$: +11.5° (*c* 1.0, CHCl₃). **IR** (ZnSe, film): 3426 (O–H st), 2929, 1453, 1192, 1068, 853, 817. ¹H-NMR (400 MHz): δ 7.41–7.24 (m, 5H), 4.63 (d, 1H, *J* = 11.7), 4.58 (t, 1H, *J* = 5.5), 4.52 (d, 1H, *J* = 11.7), 4.05 (m, 1H), 3.90 (m, 1H), 3.73 (br s, 1H), 3.47 (m, 1H), 3.38 (s, 3H), 3.37 (s, 3H), 3.24 (d, 1H, *J* = 2.3), 1.82 (ddd, 1H, *J* = 14.2, 8.8, 5.5), 1.74 (ddd, 1H, *J* = 14.2, 5.5, 3.0), 1.67 (m, 1H), 1.58 (m, 1H), 1.20 (d, 3H, *J* = 6.4). ¹³C-NMR (125 MHz): δ 138.5, 128.4, 127.7, 127.6, 103.6, 77.7, 74.5, 70.9, 69.1, 53.8, 53.4, 40.1, 38.6, 14.6. **ESI-MS** *m*/*z* (rel int): (pos) 321.0 ([M+Na]⁺, 100); (neg) 333.4 ([M+Cl]⁻, 90), 297.4 ([M–H]⁻, 100).

The relative stereochemistry of the secondary alcohols at C2 and C4 of *syn,syn*-16b was determined by ¹³C-NMR analysis of the corresponding acetonide (2,2-dimethoxypropane, TsOH, acetone, rt, 8 h; 81%). ¹³C-NMR resonances were observed at 19.7 and 30.2 ppm (and 98.5 ppm), indicative of a *syn*-diol-derived acetonide in a chair conformation.²⁰

²³ Crabbe, P.; Garcia, G. A.; Rius, C. J. Chem. Soc., Perkin Trans. I, 1973, 810–816.

(+)-(3*R*,5*S*,6*S*)-6-(Benzyloxy)-1,1-dimethoxyheptane-3,5-diol (*anti,syn*-16b). <u>β-Hydroxy-ketone Method:</u> In a 10 mL roundbottom flask, β-hydroxyketone anti-21b (30.0 mg, 0.101 mmol, 1.0 equiv) was dissolved in anhyd THF (5 mL) and cooled to -78 °C. L-selectride (1.0 M in THF, 0.202 mL, 0.202 mmol, 2.0 equiv) was added dropwise via syringe and the mixture was stirred at -78 °C for 2 h. Satd aq NH₄Cl was added and the mixture was warmed to rt. The layers were separated and the aq layer was extracted with Et₂O. The combined organic extracts were washed with 3 N aq NaOH, dried (MgSO₄), filtered, and concentrated by rotary evaporation. Purification by silica flash chromatography (1:1→2:3 hexanes/EtOAc) yielded *syn*-1,3-diol *anti,syn*-16b (28.7 mg, 95%, ≥98:2 dr) as a clear oil.

TLC: $R_f 0.20$ (1:1 hexanes/EtOAc). $[\alpha]_D^{25}$: +16.0° (*c* 1.0, CHCl₃). **IR** (ZnSe, film): 3441 (O–H st), 2932, 2832, 1717, 1496, 1453, 1375, 1309, 1192, 1123, 1069, 960, 912, 851, 817, 748. ¹**H-NMR** (400 MHz): δ 7.39–7.22 (m, 5H), 4.66 (d, 1H, *J* = 11.6), 4.59 (t, 1H, *J* = 5.5), 4.45 (d, 1H, *J* = 11.6), 4.04 (m, 1H), 3.78 (d, 1H, *J* = 1.3), 3.75 (m, 1H), 3.45 (m, 1H), 3.38 (s, 3H), 3.37 (s, 3H), 3.29 (d, 1H, *J* = 2.4), 1.79 (m, 1H), 1.72 (m, 1H), 1.58 (m, 1H), 1.55 (m, 1H), 1.18 (d, 3H, *J* = 6.2). ¹³**C-NMR** (125 MHz): δ 138.3, 128.5, 127.8, 127.7, 103.4, 78.0, 75.0, 71.1, 68.6, 53.6, 53.5, 40.1, 38.8, 15.0. **ESI-MS** *m*/*z* (rel int): (pos) 320.9 ([M+Na]⁺, 100); (neg) 333.4 ([M+Cl]⁻, 90), 297.4 ([M–H]⁻, 100).

The relative stereochemistry of the secondary alcohols at *C*2 and *C*4 of *anti,syn*-16b was determined by ¹³C-NMR analysis of the corresponding acetonide (2,2-dimethoxypropane, TsOH, acetone, rt, 5 h; 89%). ¹³C-NMR resonances were observed at 19.9 and 30.2 ppm (and 98.5 ppm), indicative of a *syn*-diol-derived acetonide in a chair conformation.²⁰

ASSIGNMENT OF RELATIVE STEREOCHEMISTRY AT C1 AND C2 (C4) IN THE R^1 = Me series

Relative stereochemical assignments at the C1 and C2 (and hence C4) positions of 1,3-diols *anti,anti*-16b and *syn,syn*-16b in the R^1 = Me series could not be determined unambiguously by NOESY analysis of the derived acetonides above. This information was required to confirm the relative configurations at C1 and C4 of β -hydroxyketones 21b, at C1 and C3/C4 of epoxyketones 19b and 20b, and at C1 and C3/C4 of epoxyols 12b and 13b (Figure S10).

Figure S10. Relative stereochemical relationships in 1,3-diols, β -hydroxyketones, epoxyketones, and epoxyols in the R¹ = Me series.

Thus, the required relative stereochemical relationships were determined as outlined below (Figure S11). Briefly, β -hydroxyketone *syn*-21b was silylated at the *C*4 hydroxyl to form S5, then reduced in *anti*- and *syn*-stereoselective fashions to S6 and S7. (Relative configurations at *C*2 and *C*4 were confirmed by desilylation of a portion of the material and comparison to authentic samples of 1,3-diols *anti,anti*-16b and *syn,syn*-16b synthesized above.) Debenzylation then provided 1,2-diols S8 and S9, which were then converted to cyclic carbonates S10 and S11. Assignment of ¹H-NMR peaks by COSY analysis and subsequent NOESY analysis allowed unambiguous assignment of relative stereochemistry at *C*1 and *C*2, and by extension at *C*1 and *C*4. These relative stereochemical assignments were then traced back through *syn*-21b, *anti*-19b, and *anti,syn*-12b. By process of elimination, relative stereochemical assignments could also be made for β -hydroxyketone *anti*-21b and its precursors.

Figure S11. Conversion of β -hydroxyketone *syn*-21b to cyclic carbonate derivatives and assignment of relative stereochemistries at C1, C2, and C4. Relative stereochemistry at C2 and C4 of hydroxy-silyl ethers S6 and S7 were determined by desilylation and comparison to authentic samples of 1,3-diols *anti,anti*-16b and *syn,syn*-16b synthesized directly from the β -hydroxyketone *syn*-21b. Relative stereochemical assignments at C1 and C2 of cyclic carbonates S10 and S11 were made by NOESY analysis. Observed NOE interactions are shown as green bold lines, absent NOE interactions are shown as red dashed lines.

SELECTED SPECTRAL DATA FOR CYCLIC CARBONATES S10 AND S11

(4*S*,5*S*)-4-((*S*)-2-(*tert*-butyldimethylsilyloxy)-4,4-dimethoxybutyl)-5-methyl-1,3-dioxolan-2-one (S10).

TLC: $R_f 0.50$ (2:1 hexanes/EtOAc). ¹**H-NMR** (400 MHz, C₆D₆): δ 3.95 (m, 1H), 3.92 (m, 1H), 3.48 (m, 1H), 3.07 (s, 3H), 3.05 (s, 3H), 1.76 (ddd, 1H, J = 14.1, 10.9, 5.5), 1.67 (ddd, 1H, J = 14.1, 6.0, 5.9), 1.39 (ddd, 1H, J = 14.5, 10.2, 3.1), 1.19 (ddd, 1H, J = 14.5, 9.2, 2.5), 0.87 (s, 9H), 0.66 (d, 3H, J = 6.2), 0.01 (s, 3H), 0.00 (s, 3H). **ESI-MS** m/z (rel int): (pos) 370.9 ([M+Na]⁺, 100); (neg) 383.2 ([M+Cl]⁻, 90).

¹H-NMR peaks were assigned by COSY analysis. NOESY analysis indicated interactions between Me¹ (0.66 ppm) and H² (3.95 ppm) and between H¹ (3.48 ppm) and one of H³ protons (1.39 ppm), but no interactions between Me¹ and either of the H³ protons, consistent with an *anti* relationship at C1 and C2 and, hence, a *syn* relationship at C1 and C4.

(4*R*,5*S*)-4-((*S*)-2-(*tert*-butyldimethylsilyloxy)-4,4-dimethoxybutyl)-5-methyl-1,3-dioxolan-2-one (S11).

TLC: $R_f 0.40$ (2:1 hexanes/EtOAc). ¹**H-NMR** (400 MHz, C₆D₆): δ 4.53 (dd, 1H, J = 6.3, 4.9), 4.12 (ddd, 1H, J = 10.3, 7.2, 3.0), 3.93 (m, 1H), 3.77 (td, 1H, J = 7.2, 6.6), 3.12 (s, 3H), 3.05 (s, 3H), 1.78 (ddd, 1H, J = 14.1, 6.3, 4.9), 1.73 (ddd, 1H, J = 14.1, 7.4, 4.9), 1.53 (ddd, 1H, J = 14.4, 10.3, 3.9), 1.20 (ddd, 1H, 14.4, 7.4, 3.0), 0.87 (s, 9H), 0.58 (d, 3H, J = 6.6), 0.01 (s, 3H), -0.08 (s, 3H). **ESI-MS** m/z (rel int): (pos) 370.9 ([M+Na]⁺, 100); (neg) 383.3 ([M+Cl]⁻, 90).

¹H-NMR peaks were assigned by COSY analysis. NOESY analysis indicated interactions between Me¹ (0.58 ppm) and both H³ protons (1.53, 1.20 ppm) but no interactions between Me¹ and H² (4.12 ppm) or between H¹ (3.77 ppm) and either H³ proton, consistent with a *syn* relationship at C1 and C2 and, hence, a *syn* relationship at C1 and C4.

K. ¹H-NMR AND ¹³C-NMR SPECTRA

1.	Synthesis of propargylic alcohols (3)	S42
2.	Synthesis of allylic alcohols (10,11)	S51
3.	Synthesis of epoxyols (12,13)	S57
4.	Synthesis of α , β -enones (17,18)	S67
5.	Synthesis of α , β -epoxyketones (19,20)	S71
6.	Synthesis of β -hydroxyketones (21)	S76
7.	Synthesis of 2-methyl-1,3-diols (14a,15a)	S79
8.	Synthesis of 1,3-diols (16)	S83

Shang et al.

Shang et al.

Shang et al.

Supporting Information

Carbon .* iwadareh IHB-055-1_C (1 1) CDC13 25.0C December_13,2005_16:20 AMX 400MHz zgpg30 13C; 1H 02=7020.000 *.

ppm

à

Supporting Information

Supporting Information

