The two-sample Kolmogorov-Smirnov Test

We used a two-sample Kolmogorov-Smirnov test to quantitatively compare the virtual test
data set X; with simulated probe data-sets Y;j. The principle of the test can be found in text
books on statistics (e.g. (1, 2)), and shall be briefly sketched here.

Let us assume two samples X; and Y; with size n and m drawn from continuous distributions.
The two samples can be characterized by their empirical cumulative density functions

#i: X, £X #iY, <x

cdf, (x) = and cdf, (x) =

which are defined as the proportion of observed values that are less than or equal to x. The
test is based on finding the maximum distance D = max(cdf , (x)—cdf, (x)). Suppose that

both X and Y; are drawn from the same distribution, and their values are such that D=d. Since
a large value of D would appear to be inconsistent with the null hypothesis that both samples
are drawn from the same distribution, it follows that the P-value for this data-set is given by

P —value = prob(D > d)

Note that prob specifies the probability for D >d under the assumption that Hy is correct.
The key argument for the versatility of the Kolmogorov-Smirnov test is the proposition that
prob(D > d) is the same for any continuous distribution. The distribution of D as function of

n and m can be found in tables (2) and is implemented for calculation of the P-value in the
Matlab function kstest2 (The MathWorks, Natrick, MA).
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Supplemental Figure 1
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Supplemental Figure 1. Escape-probability n as a function of 7. Data were obtained from
Monte Carlo simulations of hop diffusion, by determining 7 for various .
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Supplemental Figure 2: Correction of the P-value distribution. We simulated free diffusion
according to Fig. 3 and calculated the minimum Pp, of the P-values obtained for n=1, n=2
and n=3. The distribution is clearly non-uniform (A). Using the transformation
Peorr =1— (0= Ppin )™, a uniform distribution of P is generated, which allows for

interpretation of P as P-value (B).
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Supplemental Figure 3: P-values as function of K and 1 for various ratios Da/Dag. Tests
were performed on the data-sets described in Fig. 12C. The panels show results for Da/Dag=2
(A), 3(B), 4 (C) and 10 (D). Interestingly, already a ratio of three is sufficient to significantly
restrict the parameter range for 1. Data obtained for a ratio of 2, however, contain hardly
any information on the interaction lifetime.



