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Figure 1: Relative phasing amongst the different polarizations (colors) is in good agreement between a simplified

simulation (A) and the data from Fig. 2 in the text reproduced in (B). The simulation assumes a uniformly twirling

probe undergoing -3.5 rotations (i.e., ∆α = −1260◦) with β = 45◦, δ = 45◦, and φactin = −135◦. The simulated

trace does not display the decrease in intensity found in the actual data (see Fig. 2 for details and complete maximum

likelihood solution).
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Figure 2: Total intensity for each 80 ms cycle of the 16 raw, uncorrected fluorescent intensities for (A) the molecule

shown in Fig. 2 of the main text, (B) a typical molecule with constant intensity prior to bleaching (indicated by H), and

(C) the molecule shown in supplemental Fig 3. Twirling motion is accompanied by strong undulations in individual

polarization intensities (see Fig. 2) that when summed together during a complete polarization cycle are relatively flat,

apart from photon noise fluctuations, prior to bleaching. Bleaching to background in a single step is indicative of a

single fluorophore recording. Occasionally, molecules decrease in intensity during the recording despite clear twirling

motions (e.g., A). Two possible mechanisms for this decrease in signal include the molecules being translocated away

from the small spot detected by the APDs, or the filament moving away from the surface (and thus out of the evanescent

field).
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Figure 3: Measured fluorescence polarization intensities (A) for a rejected filament. The agreement between the

filtered data (B, solid) and the maximum likelihood intensity (B, dashed) is good despite its rejection. The initial

rejection of 2817 molecules was due to missed recording of the molecule (e.g., recording the background), recording

of contamination (unreasonably high intensity or irregular intensity), double molecules, etc. . . These molecules were

never analyzed. Of the remaining 711 after the first cut, 567 were rejected because the total rotation was less than

180◦ or the bleach duration was less than 1.6 s or the magnitude of the correlation coefficient, r, was less than 0.9. Of

the remaining 144 molecules after the second cut, 47 were rejected due to abrupt change in β, θ, or φ. Abrupt changes

did not occur in α (i.e., they didnt twirl one way and then the other nor did they simply stop twirling), but rather there

was a large change in some other angle that was inconsistent with a continuously translocating/ twirling filament (see

SI Fig. 4).



Supplemental material to Beausang 2008 5




180º

90º

0º

90º

180º

  
N

u
m

. 
R

o
ta

ti
o

n
s

A B

C D

E
F

L
a

b
. 
fr

a
m

e
 a

n
g

le
s

A
c
ti
n

 f
ra

m
e

 a
n

g
le

, 
β

W
o

b
b

le
 c

o
n

e
, 
δ

  
A

c
ti
n

 F
ra

m
e

 a
n

g
le

, 
α


180º

 90º

0º

90º

180º



ω= 0.51 rev/s

r =  - 0.958



1.0 2.0 3.0
2

1

0

0

Time (s)






0º

45º

90º


1.0 2.0 3.0

0º

45º

90º

0

Time (s)

300º 200º 100º 0º

0º

45º

90º

135º

180º

q 

f

Figure 4: Maximum likelihood results for the recording shown in supplemental Fig 3. Refer to Fig. 3 in the main

text for detailed descriptions of the parameters in A-F. This molecule had a high quality bleach to background (sup-

plemental Fig.2) and |r| > 0.9, but was rejected because of the abrupt change in θ and φ at ∼ 3 s.
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Figure 5: Average filament velocities and standard deviations at 5, 10, 15, and 20 µm MgATP concentrations for the

four myosin loading concentrations 0.03 (magenta), 0.1 (green), 1.0 (red), 3.2 mg/ml (blue). As discussed in the text,

the average in (A) is from 5-7 filaments each recorded for 30 frames, and in (B) the average is of all the two-point

velocities obtained for each molecule from the two CCD images just before the polTIRF recording. The two trends are

similar, but the standard deviation of the average in (B) is greater than in (A) since each two-point velocity estimate

was more variable than the velocity obtained from a longer recording.

15

47

25

16

15

7

6
7

6

7

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

A
v
g

. 
V

e
lo

c
it
y

, 
µ

m
/s

 

Filament Length, µm

Figure 6: Average filament velocity (including twirling and non-twirling filaments) at myosin loading concentrations

of 0.03 and 0.1 mg/µml is independent of filament lengths between 1-100 µm.
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Figure 7: Polarized fluorescence intensities (A) from a rhodamine molecule attached to a twirling actin filament that

is being translocated by myosin V. The myosin V twirling data was obtained from 4 incident polarizations: L1 (green),

R1 (cyan), p2 (blue), and s2 (red), with background intensity for each removed. The simultaneous bleaching of the

individual polarized intensities and the total intensity (black) at ∼ 5 s indicates that all counts were derived from a

single molecule. The range of discernible orientation angles was one quarter of a sphere due to reflection symmetries

about the y-z plane and the intrinsic dipole symmetry of the probe. Nevertheless, twirling could be determined for

filaments restricted to translocating along the x-axis. A maximum likelihood analysis determines the orientation (B)

of the probe from the intensities in (A). The linearly decreasing polar angle α (green) and relatively constant azimuthal

angle β (red) indicate a filament twirling with ∼ −0.09 rev/s. The direction of filament motion along the + x-axis

(i.e., φactin = 10◦) and the direction of probe rotation indicate left-handed twirling.
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B ±45◦ degree polarization terms

In order to determine the 3D orientation and rotational (’wobble’) motions of a single fluorescent molecule,

measured polarized fluorescence intensities are compared to intensities that are calculated from a theoretical

model of the molecule. This model approximates the probe as an electromagnetic dipole µ̂ (see main text and

Forkey 2005) that absorbs and emits photons polarized preferentially along its dipole axis. This appendix

derives the equation for calculating the intensity I of a probe oriented with respect to both the polarization

direction of the detector and the linearly polarized electric field of the incident illumination:

ε̂Iα̂ = κ · Pa(µ̂a, ε̂) · Pe(µ̂e, α̂) (1)

Where I is the number of photons collected from a static dipole µ̂ with probability P of absorbing (a) or

emitting (e) photons relative to the incident electric field polarization (ε̂) or analyzer (α̂). κ is an overall

normalization factor. The complex quantity (ε̂) describes the polarization of the electric field E, but not its

magnitude E0 :

E = E0 ε̂e−z/de−iωt (2)

ε̂ can be decomposed into its Cartesian components:

ε̂ = [x̂εxe−iδx + ŷεye−iδy + ẑεz e−iδz ] (3)

This appendix is concerned with the new features of the model required for the off-axis incident polar-

izations (L1, R1, L2, R2); thus only the terms describing the absorption probability, Pa, need to be modi-

fied:

Pa(µ̂a, ε̂) ≡ |µ̂a · ε̂|2 (4)

∝ (ε2
xµ2

x + ε2
yµ

2
y + ε2

zµ
2
z + 2εxεyµxµy sin(δs − δp) (5)

2εyεzµyµz cos(δs − δp))

Note that for beam 2, εx should be replaced with εy and vice versa in Eq. (5). Similarly for µx and µy.

Calculations are performed in the reference frame of the microscope; where z points into the objective

and the x-y plane is parallel to the stage with the x and y axes along the direction of propagation of beam

1 and 2, respectively, see Fig 3 in the main text. The orientation (θ, φ) of the dipole in this frame is given

by µ̂ = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)). The Cartesian components of ε̂ in the microscope frame are

determined from the magnitude of the s and p polarizations. The s component of ε is entirely in the y(x)
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direction for beam 1(2). Due to the shallow glancing angle (θi) of the incident beams, the p component

of ε is predominantly normal to the reflection plane (εp,n ∼ ẑ); however the small tangential component

(εp,t ∼ x̂ and ŷ) in beam 1 and 2, respectively, is also included in the analytical expressions. The cross

terms (4th and 5th terms of Eq. (5)) arise when the polarization of the electric field, given by angle ζ, is

intermediate between p and s. The components of the evanescent field are given by:

εp,t = −2 cos(ζ) cos(θi) sin(δp)

εp,n = 2 cos(ζ) sin(θi) cos(δp)/ξ2

εs = 2 sin(ζ) cos(δs) (6)

Where ξ is the ratio of the indices of refraction in the aqueous solution to the higher index slide material

at the reflecting surface, and ζ = +45◦ and −45◦ for εL and εR, respectively.

cos2(δp) =
ξ4 cos2(θi)

ξ4 cos2(θi) + sin2(θi)− ξ2

sin2(δp) =
sin2(θi)− ξ2

ξ4 cos2(θi) + sin2(θi)− ξ2

cos2(δs) =
cos2(θi)
1− ξ2

(7)

The previous equations describe a static dipole. As described in more detail in (Forkey 2005), rotational

motions of the dipole are separated into a fast and slow time scale. Rapid motions that re-orient the dipole

on a time scale faster than the ∼ 4 ns fluorescent lifetime are assumed to occur within a wobble cone

of half-angle δf . Rotational motion of the probe on time scales slower than ∼ 4 ns, yet faster than the

10 ms illumination time are assumed to occur within a wobble cone of half-angle δ. See Appendix E for a

complete derivation of these terms, which are used in a Levenberg-Marquardt C code to find the parameters

(θ, φ, δ, δf , κ) that maximize the likelihood of the measured intensities.

C Calibration factors

Calibration factors are defined for the additional L and R excitation polarizations:

p1Iy = p1I
r
y

p1Ix = p1I
r
x/Cd

s1Iy = s1I
r
y/X1
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s1Ix = s1I
r
x/(X1 · Cd)

p2Iy = p2I
r
y/X12

p2Ix = p2I
r
x/(X12 · Cd)

s2Iy = s2I
r
y/(X2 ·X12)

s2Ix = s2I
r
x/(X2 · Cd ·X12)

L1Iy = L1I
r
y/XL1

L1Ix = L1I
r
x/(XL1 · Cd)

R1Iy = R1I
r
y/XR1

R1Ix = R1I
r
x/(XR1 · Cd)

L2Iy = L2I
r
y/(XL2 ·X12)

L2Ix = L2I
r
x/(XL2 · Cd ·X12)

R2Iy = R2I
r
y/(XR2 ·X12)

R2Ix = R2I
r
x/(XR2 · Cd ·X12) (8)

Where Cd and the various X’s represent the 8 calibration factors, and the r superscript indicates a raw

polarized fluorescence intensity. Calibration data is obtained by recording three background measurements

followed by three recordings of a 15 nM solution of Rhodamine B in dimethylformamide that is flowed into

the sample chamber (see Forkey 2005 for details). The calibration factors are obtained from a model similar

to the one described in Appendix B, but modified to accommodate multiple molecules free in solution by

increasing the wobble cone to δ = 90◦.

D Twirling Analysis

The path traced out by a probe bound to an actin filament that is twirling about its longitudinal axis is evident

in two different representations of the angular motion. First a plot of θ vs. φ for one rotation of the probe

traces out a circle that is centered at (90◦, φactin) where φactin is the direction in the x-y plane of the actin

filament translocation. The reason that θ = 90◦ is because a probe that is attached to a filament, which is

uniformly twirling about its axis in the x-y plane, maps out a locus of points that lie along the surface of

a cone. Alternatively, the probe orientation can be represented in the (β, α) reference frame of the actin

filament (Rosenberg 2005, Beausang 2008), where β is the polar angle with respect to the forward moving

end of the actin filament and α is the azimuthal angle around the filament; for details, see Fig. 3 in the main
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text. In the actin frame a uniformly left-hand twirling filament has a constant β and a decreasing α with a

constant rate equal to the angular velocity (ω) of the twirling motion.

The inherent dipole symmetry implies two equally valid solutions to Eq. (1): (θ, φ) and (θ′, φ′) =

(180◦ − θ, φ + 180◦), either of which the numerical solver can obtain. Consequently, we need to deter-

mine one set of solutions that describes the trajectory of one end of the dipole. This is relatively straight-

forward for a uniformly twirling filament because subsequent orientations of the dipole should be nearby

previous orientations. Prior to quantifying any twirling motions, we determine the minimum trajectory

by choosing the orientation at time t (either (θ, φ)t or (θ′, φ′)t) that is closesr to the orientation at t − 1

and then repeat for the entire trace. Mathematically, we accomplish this by choosing µ̂t that minimizes:

ψt = arccos (µ̂t · µ̂t−1). We arbitrarily choose the initial probe orientation as the one that points closest to

the direction of positive translocation.

In order to reduce the impact of a single spurious point on the entire trajectory, the process is repeated

omitting the point with the largest ψ to make sure the path of the minimum trajectory does not change. If φt′

crosses the hemisphere from +180◦ to−180◦ then 360◦ is added to φ values with t > t′ in order to generate

a continuous trajectory (similarly, 360◦ is subtracted for crossings in the opposite direction). Sometimes this

automated detection fails and we manually shift the data onto a more confined trajectory in order to undo

unrealistically large and sudden angle changes.

In order to transform angles into the actin frame, we rotate the twirling axis of the filament to align

with the x-axis (i.e., φ′ = φ− φactin) and apply the transformation:

α = arctan2 (µy, µz)

β = arccos(µx) (9)

Where α = arctan2 (µy, µz) is similar to α = arctan (µy/µz) but with a larger range of unique angles:

−180◦ < α < 180◦. After this transformation, a uniformly rotating probe will exhibit a constant β and a saw

tooth pattern for α, which repeats after every rotation. In order to determine the angular velocity, ω, we fit

a line to α after first shifting all α’s after each complete right (left) handed rotation by +(−)360◦. Because

φactin is determined from only two CCD frames, we sometimes manually adjust φactin to minimize the

error of the fit, usually only within ±30◦ and never by more than 90◦, which would change the handedness

of rotation. Due to the probe’s dipole symmetry, orientations that are aligned with α = 0◦and180◦ have

identical intensities in all 16 polarizations. These points are manually adjusted by ±180◦ prior to fitting the

line to α.
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E MathCad supplement

See separate file: “Beausang AppE (mathcad supplement)”.
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polTIRF worksheet for determining (θ, φ, δ, κ) from 16 polarization intensities 

John F. Beausang & Yale E. Goldman

Pennsylvania Muscle Institue

University of Pennsylvania

last modified: 1/4/2008

Purpose

This MathCAD v. 2001 worksheet calculates the intensities measured from a dipole with 3D orientation (θ,φ) that absorbs incident light of specified polarization and then 

emits fluorescence that is collected by a high NA lens and directed onto two orthogonally polarized photodiodes. Relatively fast (t << 4 ns) and slow (4 ns<<t<<10 ms) 

rotational motions of the dipole are modelled as wobble cones with 1/2 angle δf and δ, respectively.  The intensities are determined to within an overall scale factor κ.

References:

Joseph N. Forkey, Margot E. Quinlan, and Yale E. Goldman. Measurement of Single Macromolecule Orientation by Total Internal Reflection Fluorescence Polarization 

Microscopy, Biophysical Journal, v. 89 August 2005 1261–1271.

Conventions:

1. Coordinate system: Beam 1(2) is predominately in the direction of the x(y) axis, and the microscope objective is in the +z direction

2. Polarizaiton naming convention: eBd where e is the excitation polarization (p,s,L or R), B is the beam (1 or 2), and d is the detector (x,y).

3. For beam 1, L indicates ζ =+45 degrees where positive ζ is defined w.r.t. the z axis (down) toward postive y (direction of propagation of beam 2). R indicates ζ = -45 

degrees.  For beam 2, the convention is the same except positive ζ is defined from the z axis towards -x.  See figure in main text.

4. High index is quartz, low index is water.

Requirements:

1. MathCAD v2001 (or higher)

2. input file of polarized fluorescent intentsities (named 0001d_ib.txt).  See below for details.
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θ0 asin
NA

1.33









=

θ0 64deg:=

s and p phase shifts

δp atan
sin θi( )2

ξ
2

−

ξ
2

cos θi( )⋅











:= δs atan
sin θi( )2

ξ
2

−

cos θi( )







:=

δp 31.868063 deg= δs 27.290961 deg=

Useful relationships

sin δp( )
2 sin θi( )2

ξ
2

−

ξ
4

cos θi( )2
⋅ sin θi( )2

+ ξ
2

−

=
cos δp( )

2 ξ
4

cos θi( )2
⋅

ξ
4

cos θi( )2
⋅ sin θi( )2

+ ξ
2

−

=

sin δp( ) 0.527965= cos δp( ) 0.849266=

sin δs( ) 0.458509= cos δs( ) 0.888690=
sin δs( )

2 sin θi( )2
ξ

2
−

1 ξ
2

−

= cos δs( )
2 cos θi( )2

1 ξ
2

−

=

Variables

peak electric field (in quartz) 

Ao 1:=

angle of linear polarization w.r.t. z axis 

ζ 47deg:= 47deg in air results in ~ 45 in the evanescent field.

Index of refraction

n1 1.46:= (Quartz )

n2 1.33:= (Water )

Index ratio n2/n1

ξ .911:=

Angle of incidence of beam 1 and 2 on reflecting surface (w.r.t. -z axis)

θi 68.5deg:=

Numerical aperture of lens (here, NA=1.2)
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εz2 ζ( ) εpn ζ( ):=εz1 ζ( ) εpn ζ( ):=

εy1 ζ( ) εs ζ( ):=
εy2 ζ( ) εpt ζ( ):=
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⋅
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→
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exp
z−

d









⋅ exp i− ω t⋅ n1 k0⋅ x⋅ sin θi( )⋅−( )⋅ ⋅=
E1 x
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εs ζ( )⋅ exp i− δs( )⋅ ⋅
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⋅
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d









⋅ exp i− ω t⋅ n1 k0⋅ x⋅ sin θi( )⋅−( )⋅ ⋅=

beam 2beam 1

s polarziedεs ζ( ) 2 Ao⋅ sin ζ( )⋅ cos θi( )⋅
1

1 ξ
2

−

⋅:=

p polarized, normal to reflecting surfaceεpn ζ( ) 2 Ao⋅ cos ζ( )⋅
cos θi( ) sin θi( )⋅

ξ
4

cos θi( )2
⋅ sin θi( )2

+ ξ
2

−

⋅:=

 p polarized, tangential to reflecting surface
εpt ζ( ) 2− Ao⋅ cos ζ( )⋅ cos θi( )⋅

sin θi( )2
ξ

2
−

ξ
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cos θi( )2
⋅ sin θi( )2
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2

−

⋅:=

Evenescent electric field 

Excitation
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The photons absorbed by a dipole, µ, in the evenescent field is proportional to |µ .Ε|2 where µ and E are vectors and E is complex.  These details have 

been suppressed.  In what follows, the photons absorbed and emitted by the dipole has been expanded first in the fast wobble cone for absorption (Econst 

terms) and fast wobble cone for emission (Fconst terms) and then into the slow wobble cones (term1, term2...).  Again, the details are suppressed.  

Instead of expanding in terms of the vector components (EconstX, EconstY, EconstZ) as was done in Forkey et al. 2005 the power is expanded in order 

parameters: Ecosnt1=sin2(θ)cos2(φ), Econst2=cos2(θ) and Econst3=a constant.  Similarly for the absorption (Fconst) terms.  L and R polarizations are 

composed of both s and p and have different exanpsions (Econst4 and Econst5). 

ζR2 ζ:=ζR1 ζ−:=

ζL2 ζ−:=ζL1 ζ:=

ζs2 90deg:=ζs1 90deg:=

ζp2 0deg:=p2 |

s2 _

L1 \

R1 /

ζp1 0deg:=p1 |

s1 _

L1 \

R1 /

Physically, the direction of the E field (looking along the direction of propagation) is:

ζ 47deg:=

For beam2:

p is polarized in the yz plane

s is polarized in the xy plane

L is polarized (mostly) in the xz plane,  -ζ degrees from the z axis

R is polarized (mostly) in the xz plane, +ζ degrees from the z axis

For beam1:

p is polarized in the xz plane

s is polarized in the xy plane

L is polarized (mostly) in the yz plane, +ζ degrees from the z axis

R is polarized (mostly) in the yz plane, -ζ degrees from the z axis

polarization

1

p1x

2

s1x

3

p1y

4

s1y

5

p2x

6

s2x

7

p2y

8

s2y

9

L1x

10

R1x

11

L1y

12

R1y

13

L2x

14

R2x

15

L2y

16

R2y









trace #

16 Polarization angles
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Econst5 ζ( ) εs ζ( ) εpn ζ( )⋅ cos δs δp−( )⋅ cos δa( )2
cos δa( )+( )⋅:=

cos δs δp−( ) 0.996811=

sin δs δp−( ) 0.079801−=Econst4 ζ( ) εpt ζ( ) εs ζ( )⋅ sin δs δp−( )⋅ cos δa( )2
cos δa( )+( )⋅:=

Econst3bm2 ζ( ) 1−

6
cos δa( ) cos δa( )2

+( )⋅ εx2 ζ( )2
εz2 ζ( )2

+ 2 εy2 ζ( )2
⋅−



⋅








1

3
εx2 ζ( )2

εy2 ζ( )2
+ εz2 ζ( )2

+



⋅+








:=

Econst3 ζ( ) 1−

6
cos δa( ) cos δa( )2

+( )⋅ εx1 ζ( )2
εz1 ζ( )2

+ 2 εy1 ζ( )2
⋅−



⋅








1

3
εx1 ζ( )2

εy1 ζ( )2
+ εz1 ζ( )2

+



⋅+








:=

Econst2bm2 ζ( ) 1

2
εz2 ζ( )2

εy2 ζ( )2
−



⋅ cos δa( ) cos δa( )2

+( )⋅:=

Econst2 ζ( ) 1

2
εz1 ζ( )2

εy1 ζ( )2
−



⋅ cos δa( ) cos δa( )2

+( )⋅:=

Econst1bm2 ζ( ) 1

2
εx2 ζ( )2

εy2 ζ( )2
−



⋅ cos δa( ) cos δa( )2

+( )⋅:=

δe 24deg:=
Econst1 ζ( ) 1

2
εx1 ζ( )2

εy1 ζ( )2
−



⋅ cos δa( ) cos δa( )2

+( )⋅:=
fast wobble cone emission

δa 24deg:=
terms after fast wobble cone integration

fast wobble cone absorption

Fast Wobble- absorption

5 of 32



R2y 

L2y 

R2x 

L2x 

R1y 

L1y 

R1x

L1x
Econst3

Econst3 ζp1( )
Econst3 ζs1( )
Econst3 ζp1( )
Econst3 ζs1( )

Econst3bm2 ζp2( )
Econst3bm2 ζs2( )
Econst3bm2 ζp2( )
Econst3bm2 ζs2( )

Econst3 ζL1( )
Econst3 ζR1( )
Econst3 ζL1( )
Econst3 ζR1( )

Econst3bm2 ζL2( )
Econst3bm2 ζR2( )
Econst3bm2 ζL2( )
Econst3bm2 ζR2( )



























































:=
Econst2

1

2
εz1 ζp1( )

2
εy1 ζp1( )

2
−



⋅

1

2
εz1 ζs1( )

2
εy1 ζs1( )

2
−



⋅

1

2
εz1 ζp1( )

2
εy1 ζp1( )

2
−



⋅

1

2
εz1 ζs1( )

2
εy1 ζs1( )

2
−



⋅

1

2
εz2 ζp2( )

2
εy2 ζp2( )

2
−



⋅

1

2
εz2 ζs2( )

2
εy2 ζs2( )

2
−



⋅

1

2
εz2 ζp2( )

2
εy2 ζp2( )

2
−



⋅

1

2
εz2 ζs2( )

2
εy2 ζs2( )

2
−



⋅

1

2
εz1 ζL1( )

2
εy1 ζL1( )

2
−



⋅

1

2
εz1 ζR1( )

2
εy1 ζR1( )

2
−



⋅

1

2
εz1 ζL1( )

2
εy1 ζL1( )

2
−



⋅

1

2
εz1 ζR1( )

2
εy1 ζR1( )

2
−



⋅

1

2
εz2 ζL2( )

2
εy2 ζL2( )

2
−



⋅

1

2
εz2 ζR2( )

2
εy2 ζR2( )

2
−



⋅

1

2
εz2 ζL2( )

2
εy2 ζL2( )

2
−



⋅

1

2
εz2 ζR2( )

2
εy2 ζR2( )

2
−



⋅























































































cos δa( ) cos δa( )2
+( )⋅:=Econst1

1

2
εx1 ζp1( )

2
εy1 ζp1( )

2
−



⋅

1

2
εx1 ζs1( )

2
εy1 ζs1( )

2
−



⋅

1

2
εx1 ζp1( )

2
εy1 ζp1( )

2
−



⋅

1

2
εx1 ζs1( )

2
εy1 ζs1( )

2
−



⋅

1

2
εx2 ζp2( )

2
εy2 ζp2( )

2
−



⋅

1

2
εx2 ζs2( )

2
εy2 ζs2( )

2
−



⋅

1

2
εx2 ζp2( )

2
εy2 ζp2( )

2
−



⋅

1

2
εx2 ζs2( )

2
εy2 ζs2( )

2
−



⋅

1

2
εx1 ζL1( )

2
εy1 ζL1( )

2
−



⋅

1

2
εx1 ζR1( )

2
εy1 ζR1( )

2
−



⋅

1

2
εx1 ζL1( )

2
εy1 ζL1( )

2
−



⋅

1

2
εx1 ζR1( )

2
εy1 ζR1( )

2
−



⋅

1

2
εx2 ζL2( )

2
εy2 ζL2( )

2
−



⋅

1

2
εx2 ζR2( )

2
εy2 ζR2( )

2
−



⋅

1

2
εx2 ζL2( )

2
εy2 ζL2( )

2
−



⋅

1

2
εx2 ζR2( )

2
εy2 ζR2( )

2
−



⋅























































































cos δa( ) cos δa( )2
+( )⋅:=

s2y 

p2y 

s2x 

p2x 

s1y 

p1y 

s1x 

p1x 

Generate Econst matrix (index order indicates which polarization).
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Econst

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

1

2

3

4

5

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0

0.000000 0.130906 -2.761208 0.130906 -2.761208 -0.130906 2.761208 -0.130906 2.761208 -1.416023 -1.416023 -1.416023 -1.416023 1.416023 1

0.000000 3.169340 -2.761208 3.169340 -2.761208 3.038434 0.000000 3.038434 0.000000 -0.002781 -0.002781 -0.002781 -0.002781 1.413242 1

0.000000 0.158513 2.893831 0.158513 2.893831 0.289419 0.132623 0.289419 0.132623 1.621575 1.621575 1.621575 1.621575 0.205552 0

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.047860 -0.047860 0.047860 -0.047860 -0.047860 0

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 2.941626 -2.941626 2.941626 -2.941626 -2.941626 2

=

IL2xIR1yIL1yIR1xIL1xIs2yIp2yIs2xIp2xIs1yIp1yIs1xIp1x

Econst

M
1 j,

Econst1
j 1−

←

M
2 j,

Econst2
j 1−

←

M
3 j,

Econst3
j 1−

←

M
4 j,

Econst4
j 1−

←

M
5 j,

Econst5
j 1−

←

j 1 16..∈for

M

:=combine into matrix
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Cc
6

Cc
1

:=Cc
5

Cc
1

:=Cc
2

Cc
1

:=
Cc

8
Cc

3
:=Cc

7
Cc

3
:=Cc

4
Cc

3
:=

Cc
1

1

12
π⋅

1

4
π⋅ cos θ0( )

2
⋅+

1

12
π⋅ cos θ0( )

3
⋅−

1

4
π⋅ cos θ0( )⋅−








1 cos θ0( )−( )
1−

⋅:=
Cc

3

5

4
π⋅

1

4
π⋅ cos θ0( )

2
⋅−

3

4
π⋅ cos θ0( )⋅−

1

4
π⋅ cos θ0( )

3
⋅−








1 cos θ0( )−( )
1−

⋅:=

Cb
8

Cb
3

:=Cb
7

Cb
3

:=Cb
4

Cb
3

:=Cb
6

Cb
1

:=Cb
5

Cb
1

:=Cb
2

Cb
1

:=

Cb
3

1

2
π⋅ cos θ0( )

2
⋅

1

2
π⋅ cos θ0( )⋅+

1

6
π⋅ cos θ0( )

3
⋅+

7

6
π⋅−








1 cos θ0( )−( )
1−

⋅:=Cb
1

7

6
π⋅

1

2
π⋅ cos θ0( )⋅−

1

6
π⋅ cos θ0( )

3
⋅−

1

2
π⋅ cos θ0( )

2
⋅−








1 cos θ0( )−( )
1−

⋅:=

Ca
8

Ca
3

:=Ca
7

Ca
3

:=Ca
4

Ca
3

:=Ca
6

Ca
1

:=Ca
5

Ca
1

:=Ca
2

Ca
1

:=

Ca
3

7−

12
π⋅

7

12
π⋅ cos θ0( )

3
⋅+

1

4
π⋅ cos θ0( )⋅−

1

4
π⋅ cos θ0( )

2
⋅+








1 cos θ0( )−( )
1−

⋅:=
Ca

1

3−

4
π⋅ cos θ0( )⋅

7

12
π⋅+

1

4
π⋅ cos θ0( )

2
⋅−

5

12
π⋅ cos θ0( )

3
⋅+








1 cos θ0( )−( )
1−

⋅:=

Cc 0 0 0 0 0 0 0 0( )
T

:=

Cb 0 0 0 0 0 0 0 0( )
T

:=

Ca 0 0 0 0 0 0 0 0( )
T

:=

Mixing of otherwise orthogonal polarizations by the high NA objective:

see Axelrod, D. 1989. Methods in Cell Biol. 30: 245-270. for details.

FAST Wobble - emission 
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For convenience combine terms in a matrix 

Fconst

M
1 j,

1

2
Cb

j
⋅ cos δe( )

2
cos δe( )+



⋅←

M
2 j,

1

2
Ca

j
⋅ cos δe( )

2
cos δe( )+



⋅←

M
3 j,

1

6
− Ca

j
Cb

j
+( )⋅ cos δe( )

2
cos δe( )+



⋅

1

3
Ca

j
Cb

j
+( )⋅+ Cc

j
+←

j 9<if

M
1 j,

1

2
Cb

j 8−
⋅ cos δe( )

2
cos δe( )+



⋅←

M
2 j,

1

2
Ca

j 8−
⋅ cos δe( )

2
cos δe( )+



⋅←

M
3 j,

1

6
− Ca

j 8−
Cb

j 8−
+( )⋅ cos δe( )

2
cos δe( )+



⋅

1

3
Ca

j 8−
Cb

j 8−
+( )⋅+ Cc

j 8−
+←

j 8>if

j 1 16..∈for

M

:=

Cb

0.000000

4.683933

4.683933

4.683933−

4.683933−

4.683933

4.683933

4.683933−

4.683933−

























= Cc

0.000000

0.082579

0.082579

4.766512

4.766512

0.082579

0.082579

4.766512

4.766512

























=
Ca

0.000000

1.351516

1.351516

3.332417−

3.332417−

1.351516

1.351516

3.332417−

3.332417−

























=

Fconst

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0

1

2

3

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 4.094017 4.094017 -4.094017 -4.094017 4.094017 4.094017 -4.094017 -4.094017 4.094017 4.094017 -4.094017 -4.094017 4.094017

0.000000 1.181300 1.181300 -2.912717 -2.912717 1.181300 1.181300 -2.912717 -2.912717 1.181300 1.181300 -2.912717 -2.912717 1.181300

0.000000 0.335956 0.335956 4.429973 4.429973 0.335956 0.335956 4.429973 4.429973 0.335956 0.335956 4.429973 4.429973 0.335956

=
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term9 θ φ, δ, i,( ) Econst
3 i,

Fconst
3 i,

⋅:=

Term 9

term8 θ φ, δ, i,( ) 1

6
Econst

3 i,
Fconst

2 i,
⋅( )⋅ 3 cos θ( )2

⋅ 1−( ) cos δ( )2
cos δ( )+( )⋅ 2+ ⋅:=

Term 8

term7 θ φ, δ, i,( ) 1

6
− Econst

3 i,
Fconst

1 i,
⋅( )⋅ 3− cos φ( )2

⋅ 3 cos θ( )2
⋅ cos φ( )2

⋅+ 1+( ) cos δ( ) cos δ( )2
+( )⋅ 2− ⋅:=

Term 7

term6 θ φ, δ, i,( ) 1

6
Econst

2 i,
Fconst

3 i,
⋅( )⋅ 3 cos θ( )2

⋅ 1−( ) cos δ( )2
cos δ( )+( )⋅ 2+ ⋅:=

Term 6

term5 θ φ, δ, i,( ) 1

40
Econst

2 i,
Fconst

2 i,
⋅( )⋅ 35 cos θ( )4

⋅ 30 cos θ( )2
⋅− 3+( ) cos δ( ) cos δ( )2

+( ) cos δ( )2
⋅ ⋅ 1− 7 30 cos θ( )2

⋅− 15 cos θ( )4
⋅+( )⋅ cos δ( )2

cos δ( )+( )⋅+ 8+ ⋅:=

Term 5

term4 θ φ, δ, i,( ) 1

120
− Econst

2 i,
Fconst

1 i,
⋅( )⋅ cos δ( ) 1 cos δ( )+( )⋅ cos δ( )2

120− cos φ( )2
⋅ cos θ( )2

⋅ 15 cos φ( )2
⋅+ 105 cos φ( )2

⋅ cos θ( )4
⋅+ 3− 15 cos θ( )2

⋅+( )⋅

45− cos φ( )2
⋅ cos θ( )4

⋅ 15 cos θ( )2
⋅− 15 cos φ( )2

⋅− 7+ 60 cos φ( )2
⋅ cos θ( )2

⋅++

...







⋅ 8−







⋅:=

Term 4

term3 θ φ, δ, i,( ) 1

6
− Econst

1 i,
Fconst

3 i,
⋅( )⋅ 3− cos φ( )2

⋅ 3 cos θ( )2
⋅ cos φ( )2

⋅+ 1+( ) cos δ( ) cos δ( )2
+( )⋅ 2− ⋅:=

Term 3

term2 θ φ, δ, i,( ) 1

120
− Econst

1 i,
Fconst

2 i,
⋅( )⋅ cos δ( ) cos δ( )2

+( ) cos δ( )2
120− cos φ( )2

⋅ cos θ( )2
⋅ 15 cos φ( )2

⋅+ 105 cos φ( )2
⋅ cos θ( )4

⋅+ 3− 15 cos θ( )2
⋅+( )⋅

45− cos φ( )2
⋅ cos θ( )4

⋅ 15 cos θ( )2
⋅− 15 cos φ( )2

⋅− 7+ 60 cos φ( )2
⋅ cos θ( )2

⋅++

...







⋅ 8−







⋅:=

Term 2

term1 θ φ, δ, i,( ) 1

40
Econst

1 i,
⋅ Fconst

1 i,
⋅ cos δ( ) cos δ( )2

+( ) cos δ( )2
30− cos φ( )2

⋅ 35 cos θ( )4
⋅ cos φ( )4

⋅+ 30 cos θ( )2
⋅ cos φ( )2

⋅+ 70 cos θ( )2
⋅ cos φ( )4

⋅− 3+ 35 cos φ( )4
⋅+( )⋅

15− cos θ( )4
⋅ cos φ( )4

⋅ 15 cos φ( )4
⋅− 30 cos φ( )2

⋅+ 30 cos θ( )2
⋅ cos φ( )4

⋅+ 30 cos θ( )2
⋅ cos φ( )2

⋅− 7−+

...







⋅ 8+







⋅:=

pre1
Term 1

δtest 72.931167 deg=φ test 153.981433− deg=θ test 117.989485 deg=

trace 16:=δtest 1.272889:=φ test 2.687483−:=θ test 2.059305:=

SLOW WOBBLE terms
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cross terms (xy):

term10 θ φ, δ, i,( ) 1

8
Econst

4 i,
Fconst

1 i,
⋅( )⋅ cos φ( )⋅ sin φ( )⋅ sin θ( )2

⋅ cos δ( )2
cos δ( )+( )⋅ cos δ( )2

7 cos φ( )2
⋅ sin θ( )2

⋅ 3−( )⋅ 3 cos φ( )2
⋅ sin θ( )2

⋅− 3+ ⋅:=

term11 θ φ, δ, i,( ) 1

8
Econst

4 i,
Fconst

2 i,
⋅( )⋅ cos φ( )⋅ sin φ( )⋅ sin θ( )2

⋅ cos δ( )2
cos δ( )+( )⋅ cos δ( )2

7 cos θ( )2
⋅ 1−( )⋅ 3 cos θ( )2

⋅− 1+ ⋅:=

term12 θ φ, δ, i,( ) 1

2
Econst

4 i,
Fconst

3 i,
⋅( )⋅ cos φ( )⋅ sin φ( )⋅ sin θ( )2

⋅ cos δ( )2
cos δ( )+( )⋅:=

beam 1 yz cross terms:

term13 θ φ, δ, i,( ) 1

8
Econst

5 i,
Fconst

1 i,
⋅( )⋅ sin θ( )⋅ cos θ( )⋅ sin φ( )⋅ cos δ( )2

cos δ( )+( )⋅ cos δ( )2
7 cos φ( )2

⋅ sin θ( )2
⋅ 1−( )⋅ 3 cos φ( )2

⋅ sin θ( )2
⋅− 1+ ⋅:=

term14 θ φ, δ, i,( ) 1

8
Econst

5 i,
Fconst

2 i,
⋅( )⋅ sin θ( )⋅ cos θ( )⋅ sin φ( )⋅ cos δ( )2

cos δ( )+( )⋅ cos δ( )2
7 cos θ( )2

⋅ 3−( )⋅ 3 sin θ( )2
⋅+ ⋅:=

term15 θ φ, δ, i,( ) 1

2
Econst

5 i,
Fconst

3 i,
⋅( )⋅ sin θ( )⋅ cos θ( )⋅ sin φ( )⋅ cos δ( )2

cos δ( )+( )⋅:=

beam 2 'yz' cross terms

term16 θ φ, δ, i,( ) 1

8
Econst

5 i,
Fconst

1 i,
⋅( )⋅ cos θ( ) sin θ( )⋅ cos φ( )⋅ cos δ( )2

cos δ( )+( )⋅ cos δ( )2
7 cos φ( )2

⋅ sin θ( )2
⋅ 3−( )⋅ 3 cos φ( )2

sin θ( )2
⋅ 1−( )⋅− ⋅ ⋅:=

term17 θ φ, δ, i,( ) 1

8
Econst

5 i,
Fconst

2 i,
⋅( )⋅ cos θ( ) sin θ( )⋅ cos φ( )⋅ cos δ( )2

cos δ( )+( )⋅ cos δ( )2
7 cos θ( )2

⋅ 3−( )⋅ 3 sin θ( )2
⋅+ ⋅ ⋅:=

term18 θ φ, δ, i,( ) 1

2
Econst

5 i,
Fconst

3 i,
⋅( )⋅ sin θ( ) cos θ( )⋅ cos φ( )⋅ cos δ( )2

cos δ( )+( )⋅ ⋅:=
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for convenience, combine all terms into matrix

Allterms θ φ, δ,( )

bm2 0←

bm1 1←

i 9≥ i 12≤∧if

bm2 1←

bm1 0←

i 13≥ i 16≤∧if

N term1 θ φ, δ, i,( ) term2 θ φ, δ, i,( ) term3 θ φ, δ, i,( ) term4 θ φ, δ, i,( ) term5 θ φ, δ, i,( ) term6 θ φ, δ, i,( ) term7 θ φ, δ, i,( ) term8 θ φ, δ, i,( ) term9 θ φ, δ,((←

sum 0←

sum sum N
0 j 1−,

+←

M
j i,

N
0 j 1−,

←

j 1 18..∈for

M
0 i,

sum←

i 1 16..∈for

M

:=

Values for intensities  for each trace (sum of terms is in row zero)

p1x s1x p1y s1y p2x s2x p2y s2y IL1x

Allterms θ test φ test, δtest,( )

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

10

11

12

0.000000 2.425478 1.543189 2.152517 2.670394 2.320238 3.763005 2.202937 1.606874 1.996934

0.000000 0.136538 -2.879991 -0.136538 2.879991 -0.136538 2.879991 0.136538 -2.879991 -1.476938

0.000000 0.010272 -0.216658 -0.025326 0.534211 -0.010272 0.216658 0.025326 -0.534211 -0.111108

0.000000 0.017134 -0.361406 0.225931 -4.765567 -0.017134 0.361406 -0.225931 4.765567 -0.185339

0.000000 0.861855 -0.750869 -0.861855 0.750869 0.826257 0.000000 -0.826257 0.000000 -0.000756

0.000000 0.703136 -0.612589 -1.733714 1.510455 0.674094 0.000000 -1.662105 0.000000 -0.000617

0.000000 0.332062 -0.289301 4.378629 -3.814771 0.318347 0.000000 4.197775 0.000000 -0.000291

0.000000 0.252831 4.615695 -0.252831 -4.615695 0.461628 0.211535 -0.461628 -0.211535 2.586432

0.000000 0.058397 1.066109 -0.143990 -2.628692 0.106624 0.048859 -0.262902 -0.120472 0.597400

0.000000 0.053254 0.972200 0.702210 12.819593 0.097232 0.044555 1.282121 0.587516 0.544778

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.003522

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000318

0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000938

=
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Measured Intensity

II is the predicted intensity for a dipole oriented at (θ,φ) with slow wobble cone δ, fast wobble cone = 24 degrees when illuminated/detected by 

the i'th combination of excitation/detection polarizations.

bm1 i( ) ans 1← i 9≥ i 12≤∧if

ans

:= bm2 i( ) ans 1← i 13≥ i 16≤∧if

ans

:=

II θ φ, δ, i, κ,( ) κ term1 θ φ, δ, i,( ) term2 θ φ, δ, i,( )+ term3 θ φ, δ, i,( )+ term4 θ φ, δ, i,( )+ term5 θ φ, δ, i,( )+ term6 θ φ, δ, i,( )+ term7 θ φ, δ, i,( )+ term8 θ φ, δ, i,( )+
term9 θ φ, δ, i,( ) term10 θ φ, δ, i,( ) term11 θ φ, δ, i,( )+ term12 θ φ, δ, i,( )+

bm1 i( ) term13 θ φ, δ, i,( ) term14 θ φ, δ, i,( )+ term15 θ φ, δ, i,( )+( )⋅+
...

bm2 i( ) term16 θ φ, δ, i,( ) term17 θ φ, δ, i,( )+ term18 θ φ, δ, i,( )+( )⋅+
...









++
...










⋅:=

Example:

Read in Data

the provided data file (XXXXx_ib.txt file) contains simulated data for a single fluorophore twirling about the x-axis.  The columns contain the traces (p1x, s1x...), with 

time increasing down.  The first row is the average background for each trace (here set to zero in the simulation).  In actual data, the background intensity for each 

polarization must be determined from the recording after the fluorophore bleach.  These background intensities should then be subtracted from each intensity leaving 

the raw signal for analysis.  The format for the ib file is:

col 1 col2 col3 col4 col5...

filename point # cycle # p1x s1x...

Each point (i.e., fluorophore bleach) to be analyzed consists of a background and several measurement cycles.

CWD "D:\YEGlab\2008_TwirlingPaper\mathCAD supplement\"=

ib_file concat CWD "0001d_ib.txt",( ):=
mathCAD supplement

ib_file "D:\YEGlab\2008_TwirlingPaper\mathCAD supplement\0001d_ib.txt"=

Iib READPRN ib_file( ):=

routine to separate the row of background intensities from the signal intensities in the input (XXXXx_ib.txt) file.

RemoveBak Iib( ) i 0←

bakVec i Iib
0 2,

Iib
0 3,

Iib
0 4,

Iib
0 5,

Iib
0 6,

Iib
0 7,

Iib
0 8,

Iib
0 9,

Iib
0 10,

Iib
0 11,

Iib
0 12,

Iib
0 13,

Iib
0 14,

Iib
0 15,

Iib
0 16,

Iib
0 17,







←

M
i j,

Iib
i 1+ j 1+,

←

j 0 16..∈for

i 0 rows Iib( ) 2−..∈for

bakVec

M









:=
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IL2x RemoveBak Iib( )1 0,( ) 13〈 〉
:=

bakR2x RemoveBak Iib( )0 0,( )
0 14,

:=
bakR1x RemoveBak Iib( )0 0,( )

0 10,
:= IR1x RemoveBak Iib( )1 0,( ) 10〈 〉

:= IR2x RemoveBak Iib( )1 0,( ) 14〈 〉
:=

bakL2y RemoveBak Iib( )0 0,( )
0 15,

:=
IL2y RemoveBak Iib( )1 0,( ) 15〈 〉

:=
bakL1y RemoveBak Iib( )0 0,( )

0 11,
:= IL1y RemoveBak Iib( )1 0,( ) 11〈 〉

:=
bakR2y RemoveBak Iib( )0 0,( )

0 16,
:=

IR2y RemoveBak Iib( )1 0,( ) 16〈 〉
:=

IR1y RemoveBak Iib( )1 0,( ) 12〈 〉
:=

bakR1y RemoveBak Iib( )0 0,( )
0 12,

:=

combine into one matrix Iact p( ) p Ip1x
p

Is1x
p

Ip1y
p

Is1y
p

Ip2x
p

Is2x
p

Ip2y
p

Is2y
p

IL1x
p

IR1x
p

IL1y
p

IR1y
p

IL2x
p

IR2x
p

IL2y
p

IR2y
p







T
:=

Itot p( )
1

16
1

16

i

Iact p( )i∑
=

⋅:= Total intensity plot

0 20 40 60 80 100 120
0

0.5

1

1.5

Itot k( )

k

scale factors (for plotting)

χ 1:= Imax max submatrix Iib 1, kmax, 2, 17,( )( ):=

Imax 5.433000= cycle number (k)

xdat RemoveBak Iib( )1 0,( ) 0〈 〉
:=

cycle number (k)

tdat xdat
0 0,

1− xdat rows xdat( ) 1−( ) 0,
1−..:=

kmax rows xdat( ) 1−:= k 0 rows xdat( ) 1−..:=

bakp1x RemoveBak Iib( )0 0,( )
0 1,

:=
bakp2x RemoveBak Iib( )0 0,( )

0 5,
:=

Ip1x RemoveBak Iib( )1 0,( ) 1〈 〉
:= Ip2x RemoveBak Iib( )1 0,( ) 5〈 〉

:=
baks1x RemoveBak Iib( )0 0,( )

0 2,
:=

Is1x RemoveBak Iib( )1 0,( ) 2〈 〉
:= baks2x RemoveBak Iib( )0 0,( )

0 6,
:=

Is2x RemoveBak Iib( )1 0,( ) 6〈 〉
:=

bakp1y RemoveBak Iib( )0 0,( )
0 3,

:=

Ip1y RemoveBak Iib( )1 0,( ) 3〈 〉
:= bakp2y RemoveBak Iib( )0 0,( )

0 7,
:= Ip2y RemoveBak Iib( )1 0,( ) 7〈 〉

:=
baks1y RemoveBak Iib( )0 0,( )

0 4,
:=

Is1y RemoveBak Iib( )1 0,( ) 4〈 〉
:= Is2y RemoveBak Iib( )1 0,( ) 8〈 〉

:=
baks2y RemoveBak Iib( )0 0,( )

0 8,
:=

bakL1x RemoveBak Iib( )0 0,( )
0 9,

:=
IL1x RemoveBak Iib( )1 0,( ) 9〈 〉

:= bakL2x RemoveBak Iib( )0 0,( )
0 13,

:=
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Beam 1, APD y (top), APD x (bottom) Beam 2, APD y (top), APD x (bottom)

0 20 40 60 80 100
1

2

3

2 χ⋅ Ip1y
k

1

Imax
⋅+

2 χ⋅ Is1y
k

1

Imax
⋅+

2 χ⋅ IL1y
k

1

Imax
⋅+

2 χ⋅ IR1y
k

1

Imax
⋅+

1 χ⋅ Ip1x
k

1

Imax
⋅+

1 χ⋅ Is1x
k

1

Imax
⋅+

1 χ⋅ IL1x
k

1

Imax
⋅+

1 χ⋅ IR1x
k

1

Imax
⋅+

31 93

k
0 20 40 60 80 100

1

2

3

2 χ⋅ Ip2y
k

1

Imax
⋅+

2 χ⋅ Is2y
k

1

Imax
⋅+

2 χ⋅ IL2y
k

1

Imax
⋅+

2 χ⋅ IR2y
k

1

Imax
⋅+

1 χ⋅ Ip2x
k

1

Imax
⋅+

1 χ⋅ Is2x
k

1

Imax
⋅+

χ IL2x
k

1

Imax
⋅+

χ IR2x
k

1

Imax
⋅+

31 93

k

__ p1Iy

__ s1Iy

__ L1Iy

__ R1Iy

__ p2Iy

__ s2Iy

__ L2Iy

__ R2Iy

__ p2Ix

__ s2Ix

__ L2Ix

__ R2Ix

__ p1Ix

__ s1Ix

__ L1Ix

__ R1Ix
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numerical solutions (points on below graphs)

Θans
t

answer
t( )

0 0,
:= Φans

t
answer

t( )
1 0,

:= δans
t

answer
t( )

2 0,
:= κans

t
answer

t( )
3 0,

:=

αt atan2 sin Θans
t







sin Φans
t







⋅ cos Θans
t







,





:= βt acos sin Θans
t







cos Φans
t







⋅





:=

χ2t Ip1x
t

II Θans
t

Φans
t

, δans
t

, 1, κans
t

,





−





2
Is1x

t
II Θans

t
Φans

t
, δans

t
, 2, κans

t
,





−





2
+ Ip1y

t
II Θans

t
Φans

t
, δans

t
, 3, κans

t
,





−





2
+ Is1y

t
II Θans

t
Φans

t
, δans

t
, 4, κans

t
,





−





+

IL1x
t

II Θans
t

Φans
t

, δans
t

, 9, κans
t

,





−





2
IR1x

t
II Θans

t
Φans

t
, δans

t
, 10, κans

t
,





−





2
+ IL1y

t
II Θans

t
Φans

t
, δans

t
, 11, κans

t
,





−





2
+ IR1y

t
II Θans

t
Φans

t
, δans

t
, 12, κ,


−


++

:=

known solutions (for simulation, dotted lines)

αinp
k

mod 2 π⋅
k

kmax
⋅








π+ 2 π⋅,







π−:= βinp
k

40deg:= δinp
k

10deg:= κinp
k

1 cos θ0( )−( ):=
χ2avg

t

χ2t∑




 t

1∑






1−
⋅:=

θ inp
k

acos sin βinp
k







sin αinp
k







⋅





:= φ inp
k

asin

sin βinp
k







cos αinp
k







⋅

sin acos sin βinp
k







sin αinp
k







⋅





















:=
χ2avg 1.235445 10

6−
×=

Solultion in MathCAD via minimizing the Root mean Square 

Guesses 

θ' 80deg:= φ' 35deg:= δ' 15deg:= κ' 1:=
t 2:=

Given
(minimize this function)

Ip1x
t

II θ' φ', δ', 1, κ',( )−





2

II θ' φ', δ', 1, κ',( )

Is1x
t

II θ' φ', δ', 2, κ',( )−





2

II θ' φ', δ', 2, κ',( )
+

Ip1y
t

II θ' φ', δ', 3, κ',( )−





2

II θ' φ', δ', 3, κ',( )
+

Is1y
t

II θ' φ', δ', 4, κ',( )−





2

II θ' φ', δ', 4, κ',( )
+

Ip2x
t

II θ' φ', δ', 5, κ',( )−





2

II θ' φ', δ', 5, κ',( )
+

Is2x
t

II θ' φ', δ', 6, κ',( )−





2

II θ' φ', δ', 6, κ',( )
+

IL1x
t

II θ' φ', δ', 9, κ',( )−





2

II θ' φ', δ', 9, κ',( )

IR1x
t

II θ' φ', δ', 10, κ',( )−





2

II θ' φ', δ', 10, κ',( )
+

IL1y
t

II θ' φ', δ', 11, κ',( )−





2

II θ' φ', δ', 11, κ',( )
+

IR1y
t

II θ' φ', δ', 12, κ',( )−





2

II θ' φ', δ', 12, κ',( )
+

IL2x
t

II θ' φ', δ', 13, κ',( )−





2

II θ' φ', δ', 13, κ',( )
+

IR2x
t

II θ' φ', δ,(−


II θ' φ', δ', 14,(
++

δ' 0> δ'
π

2
<

ans θ' φ', δ', κ', t,( ) MinErr θ' φ', δ', κ', t,( ):= t k:=

Find minimum for each cycle k using the result from k-1 as the new guess at k

answer M
0

ans 80deg 35deg, 15deg, 1, 0,( )←

M
t

ans M
t 1−( )

0
M

t 1−( )
1

, M
t 1−( )

2
, M

t 1−( )
3

, t,





←

t 1 kmax..∈for

M

:=

<---Enable this if you want to execute solve block
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50

0

50

100

150

Θans
t

deg
1−

⋅

Φans
t

deg
1−

⋅

θinp
t

deg
1−

⋅

φinp
t

deg
1−

⋅

t

90 45 0 45 90
0

45

90

135

180

Θans
t

deg
1−

⋅

θinp
t

deg
1−

⋅

Φans
t

deg
1−

⋅ φinp
t

deg
1−

⋅,

θ
φ

θ vs φ

0

22.5

45

67.5

90

δans
t

deg
1−

⋅

δ inp
t

deg
1−

⋅

t

δ α

0 20 40 60 80 100
180

90

0

90

180

αt deg
1−

⋅

αinp
t

deg
1−

⋅

t

0

0.25

0.5

0.75

1

κans
t

κinp
t

t

κ 

β

0 20 40 60 80 100
0

45

90

β t deg
1−

⋅

β inp
t

deg
1−

⋅

t0 20 40 60 80 100
0

2.5 .10
6

5 .10
6

χ2t

t

 χ2
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I'R1y
t

II Θans
t

Φans
t

, δans
t

, 12, κans
t

,





:=
I'R2y

t
II Θans

t
Φans

t
, δans

t
, 16, κans

t
,





:=
I'L1y

t
II Θans

t
Φans

t
, δans

t
, 11, κans

t
,





:=
I'L2y

t
II Θans

t
Φans

t
, δans

t
, 15, κans

t
,





:=

I'R1x
t

II Θans
t

Φans
t

, δans
t

, 10, κans
t

,





:=
I'R2x

t
II Θans

t
Φans

t
, δans

t
, 14, κans

t
,





:=

I'L2x
t

II Θans
t

Φans
t

, δans
t

, 13, κans
t

,





:=I'L1x
t

II Θans
t

Φans
t

, δans
t

, 9, κans
t

,





:=

I's1y
t

II Θans
t

Φans
t

, δans
t

, 4, κans
t

,





:=
I's2y

t
II Θans

t
Φans

t
, δans

t
, 8, κans

t
,





:=

I'p1y
t

II Θans
t

Φans
t

, δans
t

, 3, κans
t

,





:=
I'p2y

t
II Θans

t
Φans

t
, δans

t
, 7, κans

t
,





:=

I's2x
t

II Θans
t

Φans
t

, δans
t

, 6, κans
t

,





:=I's1x
t

II Θans
t

Φans
t

, δans
t

, 2, κans
t

,





:=

I'p2x
t

II Θans
t

Φans
t

, δans
t

, 5, κans
t

,





:=I'p1x
t

II Θans
t

Φans
t

, δans
t

, 1, κans
t

,





:=

maximum likelihood intensities
t
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Maximum likelihood Intensities
___  simulated intensity

�   maximum likelihood intensity

θ0 64.000000 deg= δe 24.000000 deg=

Beam 1, APD y
Beam 1, APD x

0 20 40 60 80 100
0

0.5

1

Ip1x
k

1

Imax
⋅

Is1x
k

1

Imax
⋅

IL1x
k

1

Imax
⋅

IR1x
k

1

Imax
⋅

I'p1x
k

1

Imax
⋅

I's1x
k

1

Imax
⋅

I'L1x
k

1

Imax
⋅

I'R1x
k

1

Imax
⋅

k

0 20 40 60 80 100
0

0.5

1

Ip1y
k

1

Imax
⋅

Is1y
k

1

Imax
⋅

IL1y
k

1

Imax
⋅

IR1y
k

1

Imax
⋅

I'p1y
k

1

Imax
⋅

I's1y
k

1

Imax
⋅

I'L1y
k

1

Imax
⋅

I'R1y
k

1

Imax
⋅

k

__ p1Ix

__ s1Ix

__ L1Ix

__ R1Ix

__ p1Iy

__ s1Iy

__ L1Iy

__ R1Iy
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Beam 2, APD y

0 20 40 60 80 100
0

0.5

1

Ip2x
k

1

Imax
⋅

Is2x
k

1

Imax
⋅

IL2x
k

1

Imax
⋅

IR2x
k

1

Imax
⋅

I'p2x
k

1

Imax
⋅

I's2x
k

1

Imax
⋅

I'L2x
k

1

Imax
⋅

I'R2x
k

1

Imax
⋅

k

Beam 2, APD x

0 20 40 60 80 100
0

0.5

1

Ip2y
k

1

Imax
⋅

Is2y
k

1

Imax
⋅

IL2y
k

1

Imax
⋅

IR2y
k

1

Imax
⋅

I'p2y
k

1

Imax
⋅

I's2y
k

1

Imax
⋅

I'L2y
k

1

Imax
⋅

I'R2y
k

1

Imax
⋅

k

__ p2Ix

__ s2Ix

__ L2Ix

__ R2Ix

__ p2Iy

__ s2Iy

__ L2Iy

__ R2Iy
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Econst4

0

0

0

0

0

0

0

0

Econst4 ζL1( )
Econst4 ζR1( )
Econst4 ζL1( )
Econst4 ζR1( )
Econst4 ζL2( )
Econst4 ζR2( )
Econst4 ζL2( )
Econst4 ζR2( )





















































:=
Econst5

0

0

0

0

0

0

0

0

Econst5 ζL1( )
Econst5 ζR1( )
Econst5 ζL1( )
Econst5 ζR1( )
Econst5 ζL2( )
Econst5 ζR2( )
Econst5 ζL2( )
Econst5 ζR2( )





















































:=
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IR2x IL2y IR2y

Econst1 

14 15 16

0.000000 0.000000 0.000000

1.416023 1.416023 1.416023

1.413242 1.413242 1.413242

0.205552 0.205552 0.205552

0.047860 -0.047860 0.047860

2.941626 -2.941626 2.941626

Econst2 

Econst3 

Econst4

Econst5 
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14 15 16

0.000000 0.000000 0.000000

4.094017 -4.094017 -4.094017

1.181300 -2.912717 -2.912717

0.335956 4.429973 4.429973
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term1 θ test φ test, δtest, trace,( ) 1.476938−=

term2 θ test φ test, δtest, trace,( ) 0.273958−=

term3 θ test φ test, δtest, trace,( ) 2.443913=

term4 θ test φ test, δtest, trace,( ) 0.384310−=

term5 θ test φ test, δtest, trace,( ) 0.773081−=

term6 θ test φ test, δtest, trace,( ) 1.952476=

term7 θ test φ test, δtest, trace,( ) 0.327859−=

term8 θ test φ test, δtest, trace,( ) 0.186719−=

term9 θ test φ test, δtest, trace,( ) 0.910592=
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term10 θ test φ test, δtest, trace,( ) 0.003522−=

term11 θ test φ test, δtest, trace,( ) 7.848211− 10
4−

×=

term12 θ test φ test, δtest, trace,( ) 0.012372=

term13 θ test φ test, δtest, trace,( ) 0.061875=

term14 θ test φ test, δtest, trace,( ) 0.163635−=

term15 θ test φ test, δtest, trace,( ) 0.449715=

term16 θ test φ test, δtest, trace,( ) 0.262278−=

term17 θ test φ test, δtest, trace,( ) 0.335226−=

term18 θ test φ test, δtest, trace,( ) 0.921294=
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term 15

term 10

term 9

10 11 12 13 14 15 16 17

1.910187 2.785538 2.073498 2.619062 3.564824 1.552261 2.215971

-1.476938 1.476938 1.476938 1.476938 1.476938 -1.476938 -1.476938

-0.111108 0.273958 0.273958 0.111108 0.111108 -0.273958 -0.273958

-0.185339 -2.443913 -2.443913 0.185339 0.185339 2.443913 2.443913

-0.000756 0.000756 0.000756 0.384310 0.384310 -0.384310 -0.384310

-0.000617 0.001521 0.001521 0.313536 0.313536 -0.773081 -0.773081

-0.000291 -0.003842 -0.003842 0.148070 0.148070 1.952476 1.952476

2.586432 -2.586432 -2.586432 0.327859 0.327859 -0.327859 -0.327859

0.597400 -1.473003 -1.473003 0.075727 0.075727 -0.186719 -0.186719

0.544778 7.183534 7.183534 0.069057 0.069057 0.910592 0.910592

-0.003522 -0.003522 0.003522 -0.003522 0.003522 0.003522 -0.003522

-0.000318 -0.000785 0.000785 -0.000318 0.000318 0.000785 -0.000785

-0.000938 0.012372 -0.012372 -0.000938 0.000938 -0.012372 0.012372

term 2

term1 

sum 

R2yL2yIR2xIL2xR1yL1yIR1x

i, ) term10 θ φ, δ, i,( ) term11 θ φ, δ, i,( ) term12 θ φ, δ, i,( ) bm1 term13 θ φ, δ, i,( )⋅ bm1 term14 θ φ, δ, i,( )⋅ bm1 term15 θ φ, δ, i,( )⋅ bm2 term16 θ φ, δ, i,( )⋅ bm2 term17 θ φ, δ, i,( )⋅ bm2 term⋅

test test test( )
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term 15
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II θ φ, δ, i, κ,( ) κ term1 θ φ, δ, i,( ) term2 θ φ, δ, i,( )+ term3 θ φ, δ, i,( )+ term4 θ φ, δ, i,( )+ term5 θ φ, δ, i,( )+ term6 θ φ, δ, i,( )+ term7 θ φ, δ, i,( )+ term8 θ φ, δ, i,(+
term9 θ φ, δ, i,( ) term10 θ φ, δ, i,( ) term11 θ φ, δ, i,( )+ term12 θ φ, δ, i,( )+

bm1 i( ) term13 θ φ, δ, i,( ) term14 θ φ, δ, i,( )+ term15 θ φ, δ, i,( )+( )⋅+
...

bm2 i( ) term16 θ φ, δ, i,( ) term17 θ φ, δ, i,( )+ term18 θ φ, δ, i,( )+( )⋅+
...









++





⋅:=
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2
Ip2y

t
II θ' φ', δ', 7, κ',( )−





2

II θ' φ', δ', 7, κ',( )
+

Is2y
t

II θ' φ', δ', 8, κ',( )−





2

II θ' φ', δ', 8, κ',( )
+

δ' 14, κ', )


2

14 κ', )

IL2y
t

II θ' φ', δ', 15, κ',( )−





2

II θ' φ', δ', 15, κ',( )
+

IR2y
t

II θ' φ', δ', 16, κ',( )−





2

II θ' φ', δ', 16, κ',( )
+

... 0=




2
Ip2x

t
II Θans

t
Φans

t
, δans

t
, 5, κans

t
,





−





2
+ Is2x

t
II Θans

t
Φans

t
, δans

t
, 6, κans

t
,





−





2
+ Ip2y

t
II Θans

t
Φans

t
, δans

t
, 7, κans

t
,





−





2
+ Is2y

t
II Θans

t
Φans

t
, δans

t
, 8, κans

t
,





−





2
+

κans
t





2
IL2x

t
II Θans

t
Φans

t
, δans

t
, 13, κans

t
,





−





2
+ IR2x

t
II Θans

t
Φans

t
, δans

t
, 14, κans

t
,





−





2
+ IL2y

t
II Θans

t
Φans

t
, δans

t
, 15, κans

t
,





−





2
+ IR2y

t
II Θans

t
Φans

t
, δans

t
, 16,


−


+

...
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16 κans
t

, 




2

...
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