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The complete nucleotide sequence of a cloned streptolysin O (SLO) gene and the amino acid sequence of
SLO, predicted from the DNA sequence, are reported. SLO contains a single cysteine residue located close to
the C terminus of the molecule and shares extensive structural homologies with other thiol-activated toxins,
which allow us to predict functionally important features.

A variety of proteins from both procaryotes and eucary-
otes lyse cells by forming hydrophilic channels in the target
cell membrane (2, 4-6, 11). Even though the primary se-
quences of a number of pore-forming cytolysins are known
(7, 9, 15), the molecular mechanisms involved in pore
formation are not understood, partly because the functional
domains in these very different sequences have not been
defined. The thiol-activated toxins, in addition to being of
interest as important bacterial virulence factors, are ideal
models for studies on the mechanisms of pore formation.
Although they are produced by taxonomically diverse spe-
cies of pathogenic bacteria, they share biological and immu-
nological properties, suggestive of a similar mechanism of
action and common evolutionary origin (1, 5, 12, 24). All are
lytic for a wide range of eucaryotic cells, reversibly sensitive
to oxidation (thiol activated), irreversibly inhibited by cho-
lesterol and related sterols, and immunologically cross-
reactive. However, hybridization experiments using cloned
thiol-activated toxin gene probes have failed to detect ho-
mology with DNA from species producing other thiol-
activated toxins (17). This suggests that thiol-activated toxin
genes may have undergone a considerable degree of diver-
gence and that functionally important structures might there-
fore be identifiable as conserved regions in the primary
amino acid sequences of toxins from different species. To
facilitate detailed studies on structure-function relationships
among thiol-activated toxins, the genes for streptolysin O
(slo) and pneumolysin (ply) have been cloned and the ply
gene sequence has been reported (17, 25). In this paper, we
describe the complete nucleotide sequence of the slo gene,
the predicted amino acid sequence of streptolysin O (SLO),
and its relationship with the predicted pneumolysin se-
quence (25). This comparison reveals common structural
features, which may be important in function.

The complete nucleotide sequence of both strands of the
slo gene was determined by the dideoxy chain termination
method (20), from a series of M13mp10 or M13mpl1 clones
containing specific and overlapping restriction endonucle-
ase-generated fragments which were subcloned from the slo
encoding region of plasmid pMK157 (17). Sequences were
analyzed with the programs described previously (18, 19, 21,
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22, 24). The slo gene sequence (Fig. 1) consists of an open
reading frame extending from the ATG codon at base
position 199 to 201 to the TAG codon at base position 1912
to 1914. Upstream from this open reading frame, there are
sequences which resemble consensus ribosome-binding and
promoter sequences (14, 16), including those compiled from
other sequenced streptococcal genes (10), but in the absence
of direct supporting evidence, caution should be exercised in
assuming that these sequences are involved in the expres-
sion of the slo gene. Nine bases upstream from the desig-
nated slo open reading frame, there is a second, in-frame,
ATG codon (position 190 to 193). At present, we do not
know which of these adjacent ATG triplets is used as the
initiation codon, but from the positions of the triplets with
respect to potential ribosome-binding sites, we currently
assume that it is the second.

The sequence of the primary slo gene product, predicted
from the DNA sequence and starting at the second in-frame
ATG codon, consists of 571 amino acid residues and has a
molecular weight of 63,645. The 33 N-terminal residues
possess all the consensus features of a gram-positive bacte-
rial signal peptide (22), suggesting that they may be removed
during secretion of SLO by Streptococcus pyogenes, to
produce a 538-residue secreted form of the toxin with a
molecular weight of 60,151. Native SLO appears to undergo
a proteolytic cleavage subsequent to secretion, removing a
segment with an estimated M, of 7,000, to produce a pre-
dominant low-molecular-weight form of the toxin in culture
supernatants (3, 17). The N-terminal amino acid sequence of
the high-molecular-weight form of secreted SLO has not
been determined, because it has not been possible to purify
sufficient quantities of this form for sequencing studies.
Therefore, the prediction of a signal peptide based on
sequence data awaits direct confirmation. Although SLO is
very difficult to purify to homogeneity, sufficient quantities
of the highly purified low-molecular-weight form have re-
cently been obtained to allow its four N-terminal residues to
be tentatively identified as Ser-Asp-Glu-Asp- (P. Falmagne
and J. Alouf, personal communication). The only similar
sequence (Ser-Glu-Glu-Asp-) in our predicted SLO sequence
occurs between residues 101 and 104 (Fig. 1). Ser is pre-
ceded by Lys, suggesting that a protease-sensitive site and
the proteolytic removal of the 67 residues between the end of
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FIG. 1. Nucleotide sequence of the slo gene and predicted primary sequence of SLO. The nucleotide sequence is numbered at the left of
the diagram, and the locations of possible promoter and ribosome-binding recognition sites (13, 15) are denoted by lines above the sequence.
The predicted amino acid sequence is numbered on the right of the diagram. The N-terminal residues which possess the consensus features
of a signal peptide involved in secretion are underlined. The probable N terminus of the low-molecular-weight form of SLO is denoted by the
open box. The location of the single Cys residue, at position 530, is highlighted by a closed box.

the predicted signal sequence (see above) and this Ser would
be consistent with the observed difference between the sizes
of the high- and low-molecular-weight forms of the toxin.
This, together with the fact that the alignment between the
predicted SLO and pneumolysin sequences begins in this
region (see below), strongly suggests that Ser-101 represents
the N terminus of the low-molecular-weight form of SLO,
but more extensive N-terminal amino acid sequencing would
be desirable to confirm this.

Like other thiol-activated toxins, SLO and pneumolysin
activity in crude culture supernatants is rapidly lost on
exposure to air (1). This has lead to the assumption that loss
of activity is due to the formation of an intramolecular di-
sulfide bridge. However, only one Cys residue has been
detected in the predicted SLO and pneumolysin sequences
(Fig. 1; also see Fig. 3), indicating that intramolecular
disulfide bridges cannot be formed. Loss of activity may
result from reactions between the single Cys residue and the
Cys of a second toxin molecule or a Cys in other proteins
present in culture supernatants. The observation that the

activity of purified SLO or pneumolysin is stable on expo-
sure to air suggests that the latter is the case (1). Biochemical
studies with thiol-blocking agents have shown that thiol-
activated toxins contain at least one essential Cys residue
(13). This allows us to predict that the regions in SLO and
pneumolysin containing the single Cys residues correspond
to functionally important structures. This is supported by the
observations described below.

Hybridization probes failed to detect homology between
slo and ply gene sequences (17). However, a dot matrix
comparison of the complete nucleotide sequences suggests
that these genes have originated from a common evolution-
ary source but reveals that they have undergone a consider-
able degree of divergence (Fig. 2). Despite this divergence at
the DNA level, extensive structural homology exists be-
tween the two toxins at the amino acid sequence level (Fig.
3 and 4). The predicted sequence of the low-molecular-
weight form of SLO, starting with Ser-101, is 471 residues
long. This is remarkably similar in size to the predicted
pneumolysin sequence, which, minus the N-terminal Met, is
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FIG. 2. Dot matrix comparison of the nucleotide sequences of
the slo (x axis) and ply (y axis) genes. Each dot represents a match
of 14 nucleotides in a window of 21. At higher stringencies, the
number of matches decreases rapidly. Comparisons were performed
by using a program described by Maizel and Lenk (19).

470 residues in length (pneumolysin is not secreted by the
producing organism and, after removal of the N-terminal
Met, does not undergo proteolytic processing). These two
sequences can be aligned, by using a best-fit program (23),
such that there are no extensive gaps and 42% of the residues
match (Fig. 3a). Interestingly, this alignment places the

104
1

mo B89 xo
cm M »x
o [ oz
EJ &=

==

o b

o>

re b

> <

<+

=2d

=)

>

&

xo

- n

<

" x

=

o)

-

'Y 9|

[2)

ex

>0

wo

o>

»a

- <

oo

sLo
PLY

!!lK SLNELEVAK)IT}‘VPVKKA SLo
| Y F AN DXRKLLTHQ s RFIRECGNQLP PLY
D A
A v

164
41

mx

184
81

wH o=

sLo

BHER

Qe PLY
223 ANST MV Y3k s SLo
121 s s|vjRr g TAuSs|ME PLY
253 1EAAL 3 sLo
168 LEKVKFT LY
303 [Tvsjaw sLo
200 [T vsjvop PLY

363
261

sSLo
LY

ne G ve o= B3

e
™~ < 3
” 7
Ll
l
- v
- v
Ex
” 7y
i
oz
™o n
mwn ”
=]
= >
-
=
2K}
< 4
"o
»
LUNS |
- o
L
7w

EES
o =
oo
EX]
-

463
361

sLo
PLY

T 3 N

Q
383 s "T\'LCCDAA‘_‘)!I-»..\’TKD’ VIRNYTKDNAT sLo
281 [1ijpfajrEvklavii[LccppsscarvvijexvipyveEDL|IjgEGS® PLY
423 RKNAY‘ISYTS\'KIIK!G\FNR gfv v s[rzv]T SLO
321 apslpjerir v sy T sl= LR plulv vialT F elelclzjoly v = 1)k v|T]alY|R LY

-
o
-z
EDQ
o w
&=
w o
GX3l
e
oS o4,
< =
v o
O O
3
1
e
EIE
w L

i o
ow
2k
>wn
x 0
&=
w <
]
9 vl
e
”no
Q>
ks
Ed
v
<~
7
-
=
0 0j
B
o 0
| -
Ed
z z| (55
0 1
< £
< =
= x|
4 7
=< =

1
PP
=
(XD
o %
nm
3 0
&
2 |2 o)
=3 wx
<n 23 2w [H oo 3 4 B9 =~

oc Bo] Hw

503
401

sLo
T PLY
5¢3 NI]s[C]s[TLIs[Ply cs 1T Y X SLo
441 siawlejr{z LjylrjloveEDRvEND LY

"o
-
lUUi
<
L
E9 =
<wun
mR Hwn
7
-
-z
-

INFECT. IMMUN.

single Cys residues at identical positions in both toxins. The
extent of the structural homology between the two toxins is
even more striking when the sequences are aligned by
matching structurally similar, in addition to identical, resi-
dues (Fig. 3b). On this basis, over 60% of the residues
match. An examination of the hydropathicity profiles of the
molecules, in which the average hydropathicity at each
position is calculated in the context of six flanking residues
(Fig. 4), suggests that these amino acid sequence homologies
are reflected by an overall structural homology between the
two toxins. Superimposition of the SLO and pneumolysin
profiles (Fig. 4, center) shows that they are almost indistin-
guishable.

The longest continuous identical sequence in SLO and
pneumolysin consists of 12 residues encompassing the single
Cys residue, close to the C termini of the molecules. This
supports our suggestion that this is a functionally important
region. Interestingly, preliminary sequencing studies on the
3’ end of a third thiol-activated toxin gene, encoding listerio-
lysin from Listeria monocytogenes, have revealed significant
amino acid sequence homologies with the corresponding
regions of SLO and pneumolysin (P. Cossart, personal
communication). Thus, thiol-activated toxins from different
species, and indeed different genera, may share a strongly
conserved, functionally important structure close to the
C-terminal ends of the molecules.

Except for the predicted signal sequence of SLO, neither
toxin contains long highly hydrophobic regions. A similar
situation has been observed for other cytolytic toxins for
which primary sequence data is available. For example, the
Staphylococcus aureus alpha-hemolysin contains only three
short hydrophobic regions, separated in its primary se-
quence (15). It is possible that only a limited region of
these toxins interacts with the hydrophobic region of the
membrane. Alternatively, toxin folding or conformational
changes induced by binding may bring short hydrophobic
segments, which are separated in the primary sequences,
into juxtaposition to form a hydrophobic face in the mem-
brane. It seems likely that the region of the toxin involved in

b
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FIG. 3. Alignment of the predicted amino acid sequences of SLO and pneumolysin. Boxes denote common residues. (a) Alignment based
on identical residues, represented by single-letter code. (b) Alignment based on similar residues. Abbreviations: A, neutral, weakly
hydrophobic (P, A, G, S, T); D, hydrophilic, acid, amine (Q, N, E, D); H, hydrophilic, basic (H, K, R); I, hydrophobic (L, I, V, M); F,
hydrophobic, aromatic (F, Y, W); and C, cysteine. The comparisons were made using a best-fit program, described by Smith and Waterman

(23).
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FIG. 4. Hydropathic profiles of SLO (top) and pneumolysin (bottom). The center displays the superimposition of the SLO and
pneumolysin profiles, aligned at the single Cys residue in both molecules. The hydropathic indices were determined by the rules of Kyte and
Dolittle (18). Positive values denote hydrophobicity, and negative values denote hydrophilicity. The lower scales denote the amino acid

sequences.

binding to the cholesterol receptor in the membrane (1, 5, 24)
would be composed of strongly conserved, specific residues.
It is possible that the 12 residues encompassing Cys in SLO
and pneumolysin form part of this structure. After binding, it
may be the overall structure (folding) of the toxin in the
membrane, rather than specific active sites, which mediates
cell lysis. This would be consistent with the strong conser-
vation of structure throughout the whole lengths of the SLO
and pneumolysin molecules. Folding must produce a hydro-
phobic face to interact with membrane lipids, with at least
two toxin-toxin faces which join noncovalently to form the
large oligomeric structures which have been visualized by
electron microscopy in lysed erythrocyte membranes (5, 8),
and probably a hydrophilic pore-forming face. The availabil-
ity of the cloned and sequenced slo and ply genes will allow
us to investigate the role of individual structures in function
by constructing mutant and hybrid toxins and altering indi-
vidual residues by site-directed mutagenesis. In addition, the
prediction based on sequence data of the SLO signal peptide
can now be tested directly by constructing slo-ply gene
fusions. The striking structural similarities between SLO and
pneumolysin described here suggest that the failure of
pneumolysin to be secreted might be due solely to the
absence of a signal sequence, and it would be interesting to
determine whether the 33 N-terminal residues of SLO could
direct the secretion of pneumolysin. The construction of
mutant and hybrid toxins could also contribute to our
understanding of the role of the residues (probably 67) which
are removed after secretion to generate the low-molecular-
weight form of SLO. It has been reported that their removal
is not required for activation of cytolytic activity, at least in
vitro (3), but the possibility that they play a role in SLO

activity or stability in vivo, in sublytic SLO activities against
host cells (1), or in toxin secretion by group A streptococci
cannot be ruled out.
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