Neutral and Cationic Alkyl Tantalum Imido Complexes: Synthesis and Migratory Insertion Reactions

Laura L. Anderson, Joseph A. R. Schmidt, John Arnold^{*}, Robert G. Bergman^{*}

Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 rbergman@berkeley.edu, arnold@berkeley.edu

Supporting Information

General Procedures for X-Ray Crystallography. Relevant data for 1 are summarized in Table 1. A crystal of appropriate size was mounted on a glass capillary using Paratone-N hydrocarbon oil. The crystal was transferred to a Siemens SMART diffractometer/CCD area detector,¹ centered in the beam, and cooled by a nitrogen flow low-temperature apparatus that had been previously calibrated by a thermocouple placed at the same position as the crystal. Preliminary orientation matrices and cell constants were determined by collection of 60 10-second frames, followed by spot integration and least-squares refinement. An arbitrary hemisphere of data was collected and the raw data were integrated using SAINT.² Cell dimensions reported in Table 1 were calculated from all reflections with I > 10 σ . The data were corrected for Lorentz and polarization effects, but no correction for crystal decay was applied. Data were analyzed for agreement and possible absorption using XPREP.³ An empirical absorption correction based on comparison of redundant and equivalent reflections was applied using SADABS.⁴ The structure was solved and refined with teXsan software package.⁵ ORTEP diagrams were created using ORTEP-3 software package.⁶

Figure S1. Ortep Diagram of Compound 1.

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Lattice Parameters

Space Group Z value D_{calc} F_{000} $\mu(MoK\alpha)$

B. Intensity Measurements

Diffractometer Radiation

Detector Position Exposure Time Scan Type No. of Reflections Measured

Corrections

C. Structure Solution and Refinement

Structure Solution Refinement C₂₅H₃₀NTa 525.47 yellow, block 0.330 x 0.240 x 0.150 mm Trigonal Primitive a = 11.158(1) Åb = 11.158(1) Å c = 10.156(1) Å $a = 90^{\circ}$ $b = 90^{\circ}$ $g = 120^{\circ}$ $\tilde{V} = 1095.14(7) \text{ Å}^3$ P31c 2 1.593 g/cm^3 520.00 5.02 cm⁻¹

SMART CCD MoK $\alpha(\lambda = 0.7107 \text{ Å})$ graphite monochromated 60.5 mm 10 s seconds per frame. ω (0.3 degrees per frame) Total: 4878 Unique: 2340 (R_{int} = 0.0413) Lorentz-polarization Absorption (T_{max} = 0.58, T_{min} = 0.32)

Direct Methods (SIR92) Full-matrix least-squares

Function Minimized	$\Sigma w (F_{o} ^{2} - F_{c} ^{2})^{2}$
Least Squares Weighting scheme	$w = 1/[\sigma^2(F_o^2) + (qP)^2 + 0.000P]$
	where $P = [F_o^2 + 2F_c^2]/3$
p-factor	0.030
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (I>2.00 (I))	2062
No. Variables	81
Reflection/Parameter Ratio	25.46
Residuals: R; R _w ; R _{all}	0.0239; 0.0307; 0.0258
Goodness of Fit Indicator	1.253
Max Shift/Error in Final Cycle	0.0000
Maximum peak in Final Diff. Map	$0.50 \text{ e}^{-1}/\text{Å}^{3}$
Minimum peak in Final Diff. Map	$-1.48 \text{ e}^{-}/\text{Å}^{3}$

(1) SMART: Area-Detector Software Package, Siemens Industrial Automation, Inc.:

Madison, WI, 1995.

(2) SAINT: SAX Area Detector Integration Program, V4.024, Siemens Industrial

Automation, Inc.: Madison, WI, 1995.

(3) XPREP: Part of SHELXTL Crystal Structure Determination Package, V5.03,

Siemens Industrial Automation, Inc.: Madison, WI, 1995.

(4) SADABS: Siemens Area Detector ABSorption correction program 1996.

(5) TeXsan: Crystal Structure Analysis Software Package, Molecular Structure

Corporation: The Wodlands, TX, 1992.

(6) Farrugia, L. J. J. Appl. Cryst. 1997, 30, 565.

Images of 2D spectra for Compounds 5, 6, 7, 10, 12, 13, and 15 and a ¹H NMR spectrum of 5.

¹H-¹³C HMQC Spectrum for Compound **5**

¹H-¹³C HMQC Spectrum for Compound **6**

¹H-¹³C HMBC Spectrum for Compound 6

¹H-¹³C HMBC Spectrum for Compound **13**

¹H-¹H TOCSY Spectrum for Compound **13**

¹H-¹³C HMQC Spectrum for Compound 14

¹H-¹H NOESY Spectrum for Compound **14**

¹H-¹³C HMBC Spectrum for Compound **16**

¹H NMR Spectrum of Compound **5**.

