Supporting Information

Pondeville et al. 10.1073/pnas.0809264105

Fig. S1. Catalytic activities of AgCYP302A1, AgCYP315A1, and AgCYP314A1. Cell transfection and incubation with radiolabeled substrates and chromatographic analyses. Schneider Drosophila SL2 cell line was maintained at 22 °C in Schneider medium supplemented with 10% heat-inactivated FCS and antibiotics (100 µg/ml streptomycin and 60 µg/ml penicillin). Dimethyl dioctadecyl ammonium bromide (96 µg/plate) was used for transient transfection in 75 cm² culture plates. Cells (2.2 × 10⁷/well) were transfected with 5.5 µg pCaSpeR-actin-AgCYP302A1, plB/V5-AgCYP315A1, plB/V5-AgCYP314A1, or pCaSpeR-actin-GFP (negative control for metabolism experiments) in 11 ml medium with serum and antibiotics. Transfected cells were first incubated for 3 days at 22 °C to allow protein expression and further incubated for 2 days with 0.2 μ Ci radiolabeled [22,23 ³H₂]2,22dE (specific activity of \approx 20 Ci/mmol) for testing CYP302A1 activity, with 0.1 μ Ci [23,24 ³H₄]2dE (specific activity of \approx 25 Ci/mmol) for CYP315A1 and with 0.2 μ Ci [23,24 ³H₄]E (specific activity of 90 Ci/mmol) for CYP314A1. [³H]2,22dE and [³H]2dE were gifts from C. Hétru and J. Hoffmann (Strasbourg, France), and tritiated E was purchased from Perkin-Elmer. After incubation, media plus cells were stored at -20 °C. To analyze the conversion by transfected cells, radiolabeled ecdysteroids were extracted from incubation media and cells by C18-Sep Pak cartridges and eluted in methanol. Reference unlabeled ecdysteroids (1 µg) were added and samples were dried. After re-suspension in methanol:water:TFA (500:499:1, vol/vol/v), samples were further analyzed by RP-HPLC using a C₁₈ column (Spherisorb 5ODS2, 250 × 4.6 mm) and eluted using a step-gradient of solvent B (acetonitrile: isopropanol, 5:2, vol/vol) in A (0.1% TFA in water): 0 to 2 min from 15% to 25%, 2 to 8 min at 25%, and 8 to 28 min from 25% to 75% for experiments with [³H]2,22dE; 0 to 6 min at 18% and 6 to 28 min from 18% to 100% for experiments with [³H]2dE or [³H]E. Conversion of radiolabeled substrates by transfected cells analyzed by RP-HPLC is depicted. (A) CYP302A1-transfected cells hydroxylated 2,22-dideoxyecdysone (2,22dE) almost exclusively into 2-deoxyecdysone (2dE; solid line, 76.6% of total radioactivity), whereas only a background activity was observed in control cells (dotted line, 2% conversion). (B) Cells transfected with CYP315A1 converted 2dE mainly into E (30.1% of total radioactivity) whereas control cells did not significantly convert 2dE into E (3.3%) or 20E (0.6%). A limited further conversion into 20E (5.2% of total radioactivity) was also observed in CYP315A1-transfected cells, which likely corresponds to the endogenous capacity of the SL2 cells to metabolize E into 20E (dotted line, C). (C) CYP314A1-transfected cells metabolized E into 20E (29% of total radioactivity) at a higher rate than the control SL2 cells (15.2% of total radioactivity). Solid line, cells transfected with a candidate gene; dotted line, control cells transfected with GFP. Only relevant fractions are presented.

Fig. 52. In situ expression pattern of CYP302A1 in the ovary during the first gonotrophic cycle. (A) Ovary from a non-blood-fed female; the ovary is composed of multiple synchronous ovarioles. (Scale bar, 250 µm.) (B) Ovary at 6 h PBM. (Scale bar, 250 µm.) (C and D) Ovariole at 18 h PBM. (Scale bar, 60 µm.) (G) Ovariole at 48 h PBM. (Scale bar, 80 µm.) (H) Ovariole at 24 h PBM hybridized with a control sense probe. In ovaries, CYP302A1 was not detected in the ovarian follicles before the blood meal (A) and at 6 h PBM (B), but a slight labeling was observed in the germarium, and this may explain the signal observed with RT-PCR. At 18 and 24 h PBM, CYP302A1 was strongly detected in follicular (C and E) and nurse (D and F) cells of primary follicles. At 48 h PBM (G), only a weak signal was observed in the vitellogenic follicles. The sense probe was used as a negative control and gave no signal, as shown for a 24 h PBM ovary (H). See main article text for Materials and Methods.

Table S1. Specific primers used for cloning and RT-PCR experiments

Primers for gene cloning

DNAS PNAS

CYP306A1up1 5'-TTCAAGTAAAGTACAAGGAGAG-3'
CYP302A1up1 5'-CGCTCTTACTTTTCTTTCAATA-3'
CYP315A1up1 5'- CGAAGCGGAGTGCGTTGTT-3'
CYP314A1up1 5'-TGACCACCCAGTATCACTCT-3'
Primers for RT-PCR experiments
CYP306A1up2 5'-GTTACTGGAGCGGATTTATT-3'
CYP302A1up2 5'-CATCCTGCCCACCGACCA-3'
CYP315A1up1 (see above)
CYP314A1up2 5'-GTTCGGTGTGACCAATCTGA-3'
L17up 5'-TTCCGCATCTCGCTTGGTCT-3'

CYP306A1do15'-CGTTTTTAACAGTTTTATTATTA-3' CYP302A1do15'-TTATGAAGTTCTCGCCTTC-3'; CYP315A1do15'-CTAGTCCTGCATTTGTGCCA-3'; CYP314A1do15'-GCATCACCCGCTTCCTAATA-3'

CYP306A1do2 5'-GCTCTTCGCCCAAACACATA-3' CYP302A1do2 5'-CCAAACGGAAGCACCAGGT-3' CYP315A1do2 5'-CGTCTGTGCGTTTGCTATTC-3' CYP314A1do1 (see above) L17do 5'-CCTTCATTTCGCCCTTGTTG-3'