Molecular Cell, Volume 29

Supplemental Data

A Single Mammalian Mitochondrial

Translation Initiation Factor

Functionally Replaces Two Bacterial Factors

Rahul Gaur, Domenick Grasso, Partha P. Datta, P.D.V. Krishna, Gautam Das, Angela Spencer, Rajendra K. Agrawal, Linda Spremulli, and Umesh Varshney

SUPPLEMENTAL RESULTS

Homology modeling of IF2_{mt}: A homology model of IF2_{mt} (Fig. 7) shows an overall similarity with the X-ray crystallographic structure of Methanobacterium thermoautotrophicum aIF5B (Roll-Mecak et al., 2000). This model is also very similar to the model that was derived by docking a homology model of E. coli IF2 (Fig. 7A) into the cryo-EM map of the 70S-initiation factor complex (PDB ID 1ZO1; Allen et al., 2005). However, the IF2_{mt} model revealed that the conserved 37 amino acid insertion in IF2_{mt} forms a helix that projects out from the main body of the molecule. We fitted the $IF2_{mt}$ model into the density corresponding to IF2 within the cryo-EM map of the E. coli initiation complex (Fig. 7B), using structurally conserved domains between the bacterial IF2 and IF2_{mt} (excluding the insertion domain) as the main guide. A rigidbody fitting orients the conserved 37 amino acid insertion of IF2_{mt} toward the small (30S) ribosomal subunit (Fig. 7B), such that a portion of the insert would partially overlap with the IF1 molecule in an X-ray crystallographic structure of the Thermus thermophilus 30S-IF1 complex (Carter et al., 2001). However, the contact sites of IF1 and the insertion domain of $IF2_{mt}$ on the 30S subunit appear to be different. IF1 interacts with three of the 30S-subunit components, helix 18, and the tip of helix 44 of the 16S rRNA, and protein S12 (Carter et al., 2001), which are

located on the inter-subunit side, the side that faces with 50S subunit in the 70S ribosome. In the case of $IF2_{mt}$, we find that the insertion sequence interacts only with S12. Helix 18 and helix 44 lie within ~7.5 Å and ~9.5 Å, respectively, from the position of the insert. Considering that the insertion domain is linked to the rest of the $IF2_{mt}$ molecule through unstructured flexible loops, the possibility of an interaction between $IF2_{mt}$, and rRNA helices 18 and 44 cannot be ruled out in the ribosome-bound state. Nevertheless, the observed partial overlap in our fittings of atomic models into the cryo-EM map suggests that the $IF2_{mt}$ insert can partially act as a structural complement of the bacterial IF1.

SUPPLEMENTAL EXPERIMENTAL PROCEDURES

Cloning the IF1 gene from *E. coli* and *M. tuberculosis*: *E. coli infA* was amplified from *E. coli* HB101 genomic DNA by *Pfu* DNA polymerase using forward primer *Eco*IF1-FP and reverse primer *Eco*IF1-RP (Table 2) and cloned between the NcoI and PstI sites of pTrc99C using standard procedures (Sambrook et al., 1989). Similarly, *M. tuberculosis infA* was amplified from the *M. tuberculosis* H37Rv genome by *Pfu* DNA polymerase using the forward primer *Mtu*IF1-FP and the reverse primer *Mtu*IF1-RP and cloned into the NcoI and KpnI sites of pTrc99C.

Generation of IF2 variants: The plasmid pTrc-IF2_{mt} comprises the predicted mature form of $IF2_{mt}$ (beginning at amino acid 78 which follows the mitochondrial localization signal) cloned from the original pET21c(+) (Spencer and Spremulli, 2005) into pTrc99C using the NcoI and XbaI sites. An alanine residue was incorporated at the N-terminus after the initial Met to maintain the sequence in-frame. The IF2_{mt} was excised from pTrc-IF2_{mt} using NcoI and HindIII and cloned into the same sites of pACDH to yield pACDH-IF2_{mt}. The plasmid pACDH-*Eco*IF2 harbors *Eco*IF2.

The chimeric constructs $IF2_{mt}\Delta 37$ and EcoIF2::37 were generated by PCR using *Pfu* DNA polymerase. For pACDH-IF2_{mt} $\Delta 37$, the first round of PCR was done with pACDH-*Eco*IF2 as a template and a forward (IF2_{mt}Del-FP) and reverse primer (IF2_{mt}Del-RP). This PCR generated a ~130 bp megaprimer that was used for an inverse PCR with pTrcIF2_{mt} as a template. The StuI-HindIII fragment from the resulting plasmid contained the chimeric region and was moved into StuI-HindIII sites of pACDH-IF2_{mt} to generate pACDH-IF2_{mt} $\Delta 37$. The construct *EcoIF2::*37 was generated by a similar approach. PCR using a forward primer (*EcoIF2Del-FP*) and a reverse primer (*EcoIF2Del-RP*) with pET21-IF2_{mt} as a template generated a PCR product that introduced silent mutations resulting in PmII and BamHI restriction sites at the 5' and 3' ends of the primer, respectively. The pET21-*EcoIF2* gene was also doubly mutated using *EcoIF2PmII-FP/RP* and *EcoIF2BamHI-FP/RP* to create PmII and BamHI silent restriction sites and the PCR product was subsequently digested and ligated into the gene to yield pET21 *EcoIF2::37*. The *EcoIF2::37* insert was subcloned into NcoI-HindIII sites of pACDH to yield pACDH*EcoIF2::37*. The chimeric nature of the constructs was confirmed by DNA sequencing.

Generation and analysis of gene knockouts in *E. coli* TG1: Gene knockouts were generated in *E. coli* TG1 as described by Datsenko and Wanner, 2000 using a one-step homologous recombination approach to create the deletions. To generate Δ IF2, the *infB* gene was replaced with *Kan*^R. *Pfu* DNA polymerase was used with forward (IF2-KO-FP) and reverse (IF2-KO-RP) primers (whose initial 36 nucleotides are homologous to 5' and 3' ends of *infB*, respectively; and the remaining sequences are complementary to the flanking regions of *Kan*^R marker in pKD4) to amplify a *Kan*^R cassette from pKD4. The PCR product was purified by gel elution (Bio101 Geneclean IITM) and electroporated into *E. coli* TG1 harboring pKD46 (expresses λ Red recombinase) and pACDH-*Eco*IF2. The transformants were selected on kanamycin (25 µg/ml)

and the allelic exchange $(infB::Kan^R)$ was confirmed by PCR using indicated primers (Fig. 2). In the confirmed knockouts, pKD46 (Amp^R) was cured by growth at 37 °C. To remove the genomic Kan^R , pCP20 (Amp^R) was transformed into the $\Delta infB::Kan^R$ strain and the transformants were selected at 34 °C and further grown at 37 °C (Datsenko and Wanner, 2000). The plasmid pCP20 was cured during growth at 37 °C and the *E. coli* Δ IF2 strain thus generated was sensitive to kanamycin and ampicillin. This strain was used as the recipient to generate *E. coli* Δ IF1 Δ IF2.

To generate Δ IF1, the *infA* gene was replaced by a *Chl*^R gene in *E. coli* DY330, a strain that harbors genes for λ Red recombinase in its genome (Lee et al., 2001). The *Chl*^R gene was amplified from the pKD3 template by *Pfu* DNA polymerase with forward (IF1-KO-FP) and reverse (IF1-KO-RP) primers whose initial 36 nucleotides are homologous to 5' and 3' ends of *infA*, respectively and the remaining sequences are complementary to the flanking sequences of *Chl*^R marker in pKD3. The PCR product was purified by gel elution (Bio101 Geneclean IITM) and electroporated into *E. coli* DY330 harboring pTrc-*Mtu*IF1, followed by recovery in 1 ml LB broth at 30 °C for 10 h. The cells were plated on LB agar containing chloramphenicol (30 µg/ml), with or without 1 mM IPTG and incubated at 30 °C. After two days of incubation, the plates were shifted to 37 °C and the colonies obtained after a day were analyzed by PCR using upstream (*Eco*IF1up-FP) and downstream (*Eco*IF1dn-RP) primers (Fig. 4).

To generate *E. coli* Δ IF1 Δ IF2, P1 phage raised on *E. coli* DY330 Δ *inf*A::*Chl*^R + pTrc-*Mtu*IF1 was used to deliver the *inf*A::*Chl*^R locus into *E. coli* Δ IF2 harboring pACDH-IF2_{mt}. The recipient strain did not contain *infB* or *Kan*^R as the *Kan*^R marker originally used to disrupt *infB* was removed by introducing pCP20 (mentioned above). Thus, the resulting *E. coli* Δ IF1 Δ IF2 strain is resistant to chloramphenicol and tetracycline (5 µg ml⁻¹) but sensitive to Kan.

Genomic and RT-PCR for infA: To analyse for replacement of infA, the flanking upstream (EcoIF1up-FP) and downstream (EcoIF1dn-RP) primers were used. To amplify a 160 bp region of infA ORF, internal forward (IF1-RT-FP) and reverse (IF1-RT-RP) primers were used along with Taq DNA polymerase and the genomic DNA (~100 ng) of various strains as template. For detection of *infA* mRNA, total RNA from various strains was prepared using hot-phenol method (Sarmientos et al 1983), and treated with RNase free DNaseI. Reverse transcriptase-PCR was carried out using iScriptTM one step RT-PCR kit (BioRad). Briefly, total RNA (200 ng) was used to make cDNA against IF1 mRNA to serve as template for PCR using forward (IF1-RT-FP) and reverse (IF1-RT-RP) primers. The PCR involved synthesis of DNA template at 50 °C for 10 min followed by heat inactivation of the reverse transcriptase at 95 °C for 10 min which also activated the hot start Taq DNA polymerase. To spike the DNA/RNA preparations, 50 ng DNA or 50 ng total RNA from the wild type strain was used. In both the genomic and RT-PCR reactions, as an internal control, for ORF specific primers for ung (EcoungSeq-FP and Ecoung-RT-RP) were also included to amplify a 137 bp fragment. The PCR products were analyzed by 8% PAGE using TBE buffer system and visualized by ethidium bromide staining (Sambrook et al., 1989).

In vitro assay of IF2 activity: The activity of the factors in initiation complex formation was tested in reaction mixtures (0.1 ml) that contained 50 mM Tris-HCl (pH 7.8), 5 mM MgCl₂, 80 mM KCl, 0.25 mM GTP, 1.25 mM phospho(enol)pyruvate, 0.1 unit pyruvate kinase, 1 mM dithiothreitol (DTT), 12.5 μ g poly(A,U,G), 0.06 μ M (6 pmol) [³⁵S]fMet-tRNA^{fMet} (approximately 70,000 cpm/pmol), 0.2 μ M *E. coli* initiation factor 3 (IF3), 0.23 μ M *E. coli* 70S ribosomes and the indicated amounts of IF1 and of the various IF2s. Samples were incubated at 37 °C for 15 min. After incubation, each sample was rapidly diluted with 3-4 ml of cold Buffer

Wash (50 mM Tris-HCl (pH 7.8), 5 mM MgCl₂, 80 mM KCl) and filtered through a nitrocellulose membrane (Millipore Corporation) that had been wetted with cold Buffer Wash. The filters were washed with the 3 aliquots (3-4 ml each) of cold Buffer Wash. Filters were dried for 5-7 min at 100 °C and counted in 5 ml toluene containing 5 g/l 2, 4 diphenyloxazole (PPO) scintillation cocktail. A blank representing the amount of [³⁵S]fMet-tRNA^{fMet} retained on the filter in the absence of IF2 (0.05 pmol) has been subtracted from each value.

Modeling of IF2_{mt} on *E. coli* ribosomes/initiation complex: Homology models of all IF2 sequences were obtained from the SWISS MODEL server (http://swissmodel.expasy.org/; Schwede *et al.*, 2003), using the X-ray crystallographic structure of *Methanobacterium thermoautotrophicum* aIF5B (Roll-Mecak et al., 2000) as a template structure. Atomic structure of the *Thermus thermophilus* 30S-IF1 complex (Carter et al., 2001; PDB ID 1HRO) was fitted into the small ribosomal subunit portion of the cryo-EM map of *E. coli* 70S-initiation complex (Allen et al., 2005; EMD ID 3523) using the 30S structure as the main guide. The molecular modeling package, O (Jones et al., 1991) was used for dockings. Visualization of the atomic structures and the cryo-EM density maps was done with Ribbons (Carson, 1991) and IRIS EXPLORER (Numerical Algorithms group, Inc. Downers Grove, IL), respectively.

E. coli strains	Relevant genotype/features	Reference
ΔIF1	$\Delta infA::Chl^{\mathbb{R}}$	This study
$\Delta IF1 \Delta IF2$	$\Delta infA::Chl^{\mathbb{R}}\Delta infB$	This study
ΔIF2	$\Delta infB::Kan^{R}$, the Kan^{R} was later removed from the	This study
DY330	genome W3110 ΔlacU169 gal490 [lc1857Δ(cro-bioA)]	Lee et al., 2001
HB101	supE44 hsdS20 (r _B r _B) recA13 ara-14 proA2 lacY1 galK2 rpsL20 xyl-5 mtl-1	Boyer and Roulland-Dussoix, 1969
TG1	supE hsd Δ 5 thi Δ (lac-proAB) F` [traD36 proAB ⁺ lacI ^q lacZ Δ M15]	Sambrook et al., 1989
Plasmids		
pACDH	Tet ^R , a medium copy number vector with pACYC origin of replication, compatible with ColE1 origin of replication	Mangroo and RajBhandary, 1995
pACDH-EcoIF2	pACDH harboring <i>Eco</i> IF2	This study
pACDH-EcoIF2::37	<i>Eco</i> IF2 containing the conserved 37 amino acid insert from $IF2_{mt}$	This study
pACDH-IF2 _{mt}	IF2 _{mt} cloned into NcoI and HindIII sites of PACDH	This study
pACDH-IF2 _{mt} Δ37	IF2 _{mt} lacking the conserved 37 amino acid insertion	This study
pCP20	Amp ^R , expresses FLP recombinase, temperature sensitive replicon	Datsenko and Wanner, 2000
pET21-EcoIF2	<i>Eco</i> IF2 cloned between NdeI and NotI sites	This study
pET21- <i>Eco</i> IF2::37	<i>Eco</i> IF2 containing the conserved 37 amino acid insert from $IF2_{mt}$	This study
pET21-IF2 _{mt}	IF2 _{mt} cloned into NdeI and XhoI sites of pET21c	Spencer and Spremulli, 2005
pET24b-IF2 _{mt} Δ37	IF2 _{mt} lacking the conserved 37 amino acid insertion, cloned between NdeI and NcoI sites	This study
pKD3	Amp^{R} , Chl^{R} , Chl^{R} is flanked by FRT sequences	Datsenko and Wanner, 2000
pKD4	Amp ^R , Kan ^R , Kan ^R is flanked by FRT sequences	Datsenko and Wanner, 2000
pKD46	Amp ^R , harbors λ Red recombination genes (γ , β	Datsenko and Wanner, 2000
pTrc- <i>Eco</i> IF1	and <i>exo</i>), temperature sensitive replicon. <i>E. coli</i> IF1 cloned into NcoI and PstI sites of pTrc99C	This study
pTrc-IF2 _{mt}	Predicted mature form of IF2 _{mt} cloned between	This study
pTrc-MtuIF1	NcoI and HindIII sites <i>M. tuberculosis</i> IF1 cloned into NcoI and KpnI sites of pTrc99C	This study

Table S1. List of strains and plasmids used in this study.

Table S2. List of oligonucleotides used in this study. The sequence is 5' to 3' from left to right. Restriction enzyme sites are denoted in italics.

EcoIF1-FP	GATTCCATGGCCAAAGAAGACA	
EcoIF1-RP	CGCC <i>TGCAG</i> GCGGTAAAACAA	
MtuIF1-FP	AAAGCCATGGCCAAGAAGGACG	
MtuIF1-RP	TGGGTACCTCGTTACTTGTACCGGT	
IF1-KO-FP	GGTTCAAATTACGGTAGTGATACCCCAGAGGATTAGGTGT	
	AGGCTGGAGCTGCTTCG	
IF1-KO-RP	TCGTTCTTTCTCTTCGCCCATCAGGCGGTAAAACAACATA	
	TGAATATCCTCCTTA	
EcoIF1up-FP	GGCGCTTCTGGTATTCTG	
EcoIF1dn-RP	GAGTTCACTGCCGTACAG	
IF1-RT-FP	GACAATATTGAAATGCAAGG	
IF1-RT-RP	GTCAGTTCAACAGTCACTTTG	
IF2-KO-FP	GGTTCGGTGACGAAGCGTAATAAACTGTAGCAGGAGTGTA	
	GGCTGGAGCTGCTTCG	
IF2-KO-RP	AGGTGGAAGGGCTGTTCACGTTGACCTGATAAGACCATAT	
	GAATATCCTCCTTA	
IF2-FP5	GCAAGGCTTCCAGAAGCC	
rbfA-RP	ACGGAATTCCAGACAGAGAC	
IF2-FP3	GCTGAACGTGAGGCCGCA	
IF2-RP3	ACTTCGTCAGTAGACAGT	
IF2 _{mt} FP	CATGCCATGGCCCAGAAATCTCCATTACCTTC	
IF2 _{mt} RP	CTAGTCTAGAATTATTAAAATCCTGGATCCCAAGAAG	
IF2 _{mt} Del-FP	CCAAGGGCACGTGAAGTTGCACTCTAT	
IF2 _{mt} Del-RP	AAAATGGCTTCAACAGAACCCTGTACGTC	
EcoIF2Del-FP	GAAGAAAGCACGTGAAGTTGTTGACTGGAGAAAGTATGAG	
EcoIF2Del-RP	CGCTTCGACGGATCCCTGAACATCACCTTTAACAATTACA	
EcoEFG-FP	ATGGCTCGTACAACACCCATC	
EcoEFG-RP	GTATGGATCCTTAGGCTTATTTACC	
<i>Eco</i> IF2PmlI-FP	CGTGACGAGAAGAAAGCACGTGAAGTTGCACTCTATCG	
<i>Eco</i> IF2PmlI-RP	CGATAGAGTGCAACTTCACGTGCTTTCTTCTCGTCACG	
EcoIF2BamHI-FP	GGCAGACGTACAGGGATCCGTCGAAGCGATCTCCG	
EcoIF2BamHI-RP	CGGAGATCGCTTCGACGGATCCCTGTACGTCTGCC	
EcoungRT-RP	CTGGCATCCAGTCAATCGGC	
EcoungSeq-FP	AGCAACGCCATCATGTAC	

SUPPLEMENTAL REFERENCES

Allen, G.S., and Frank, J. (2007). Structural insights on the translation initiation complex: ghosts of a universal initiation complex. Mol. Microbiol. *63*, 941-950.

Boyer, H.W., and Roulland-Dussoix, D. (1969). A complementation analysis of the restriction and modification of DNA in *Escherichia coli*. J. Mol. Biol. *41*, 459-472.

Carson, M. (1991). Ribbons 2.0, J. Appl. Crystallogr. 24, 103–106.

Carter, A.P., Clemons, W.M., Jr., Brodersen, D.E., Morgan-Warren, R.J., Hartsch, T., Wimberly, B.T., and Ramakrishnan, V. (2001). Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science *291*, 498-501.

Datsenko, K.A., and Wanner, B.L. (2000). One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640-6645.

Jones, T.A., Zou, J.Y., Cowan, S.W., and Kjeldgaard, M. (1991). Improved methods for building protein models in electron density maps and the location of errors in these models, Acta Crystallogr. A (Pt.2) 47, 110–119.

Lee, E.C., Yu, D., Martinez de Velasco, J., Tessarollo, L., Swing, D.A., Court, D.L., Jenkins, N.A., and Copeland, N.G. (2001). A highly efficient *Escherichia coli*-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73, 56-65.

Mangroo, D., and RajBhandary, U.L. (1995). Mutants of *Escherichia coli* initiator tRNA defective in initiation. Effects of overproduction of methionyl-tRNA transformylase and the initiation factors IF2 and IF3. J. Biol. Chem. 270, 12203-12209.

Roll-Mecak, A., Cao, C., Dever, T.E., and Burley, S.K. (2000). X-Ray structures of the universal translation initiation factor IF2/eIF5B: conformational changes on GDP and GTP binding. Cell *103*, 781-792.

Sambrook, J.F., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. 2nd Edn. (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press).

Sarmientos, P., Sylvester, J.E., Contente, S., and Cashel, M. (1983) Differential stringent control of the tandem *E. coli* ribosomal RNA promoters from the rRNA operon expressed *in vivo* in multi copy plasmids. Cell 32, 1337-1346

Schwede. T., Kopp, J., Guex, N., and Peitsch, M.C. (2003). SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. *31*, 3381-3385.

Spencer, A.C., and Spremulli, L.L. (2005). The interaction of mitochondrial translational initiation factor 2 with the small ribosomal subunit. Biochim. Biophys. Acta *1750*, 69-81.