
7. APPENDICES

A. Appendix I

Proof. (Proposition 3.7)

It follows from Eq. 3.6 and Eq. 3.10.

Proof. (Proposition 3.8)

Empirical evidence shows that eggs use dioxygen (R2) but freshly laid eggs do not (R1). Thus,

there are metabolic processes occurring during the embryo stage that are not present at the beg-

gining (fresh laid egg). The energy used in all metabolic processes comes from reserves (As-

sumption 3.4) implying that eggs must have reserve. However, reserve is not produced during the

embryo stage because the organism does not feed (Assumptions 3.2 and 3.4), i.,e., freshly laid

eggs must have reserve. Also, freshly laid eggs can not have a significant amount of structure

because they do not pay maintenance (Assumption 3.5). Thus, freshly laid eggs are composed of

reserve only.

Proof. (Proposition 3.9)

The z + 2 stoichiometric coefficients a1 to az, b1 and b2 of the assimilation process (Eq. 3.13)

are completely determined if we have at least z + 2 chemical elements because each chemical

element must obey a mass balance and the chemical composition of food, faeces (a product) and

reserve are constant (Assumption 3.3). The same reasoning applies to the growth and dissipation

processes. The yield coefficients η∗1∗2 are constant because they are only dependent on y∗1∗2 and

thermodynamic properties that are constant ( Assumption 3.3), e.g., ηXA = 1/(yA
EXµE).

Proof. (Proposition 3.10)

The net flows (input-output) at the boundary of the organism, are given by:

J̇∗1 = J̇∗1A + J̇∗1D + J̇∗1G (7.1)

where ∗1 stands for CO2, O2, heat, Nwaste, H2O and other compounds, J̇∗1A, J̇∗1G and J̇∗1D are the

net flows of ∗1 in the assimilation, growth and dissipation processes, respectively. Eq. 7.1 can be

rewritten as:

J̇∗1 = η∗1AṗA + η∗1DṗD + η∗1GṗG (7.2)
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where J̇∗1A ≡ η∗1AṗA, J̇∗1G ≡ η∗1GṗG and J̇∗1D ≡ η∗1DṗD (definition of η∗1∗2 in Proposition 3.9).

To obtain ṗA, ṗD and ṗG we have to: 1) know the net flows of any 3 compounds, 2) apply

Eq. 7.2 for each compound to obtain
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and 3) invert the square matrix in Eq. 7.3. This matrix is invertible if the columns are linearly

independent. This occurs because 1) each column is the set of conversion factors associated with

each metabolic process, 2) each set is dependent on the stoichiometry of the aggregate chemi-

cal reaction that describes that process and 3) growth, dissipation and assimilation correspond to

different aggregate chemical reactions.

Each power is a weighted average of the flows of 3 compounds. Thus, the flow of compound

∗1 (Eq. 7.2) can be written as a weighted average of any 3 compounds J̇∗2, J̇∗3 and J̇∗4.

Proof. (Proposition 3.12)

By replacing J̇X in Eq. 3.16 with

J̇X = ηXAṗA, (7.4)

it follows that

ṗA =
{J̇Xm}

ηXA
V 2/3f(X). (7.5)

Proposition 3.9 implies that ηXA is constant and therefore {ṗAm} ≡ {J̇Xm}
ηXA

is also constant.

Proof. (Proposition 3.13)

Each different category of chemical compounds, Ei, must represent a constant fraction λi of

the aggregate reserve E, otherwise the chemical composition of reserve as a whole would change,

violating Assumption 3.3.

The catabolic power mobilized from Ei has the chemical composition of that category of com-

pounds. Therefore, the mobilization of the different categories of chemical compounds, Ei, must

be coordinated, such that the aggregate chemical composition of the catabolic power is the same

as the chemical composition of E (Assumption 3.4) implying that ṗCi = λiṗC .

Also, the allocation to growth and maintenance of the different categories of chemical com-

pounds, Ei, must be coordinated, such that the aggregate chemical composition of the catabolic
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power allocated to these metabolic processes is the same as E’s (see the chemical composition of

ṗG and ṗM in Assumption 3.4),

κiṗCi = λiκṗC . (7.6)

Equation 7.6 implies that κi = κ. The same reasoning applies to the other energy flows. Again, the

catabolic power mobilized from each category Ei to 1) maintenance and growth, 2) maintenance

and 3) growth is proportional to the amount of energy embodied in it, i.e.,

ṗMi = λiṗM ; ṗGi = λiṗG. (7.7)

Equations 3.8, 3.3 and 7.7 imply that [ṗMi]
∗ = λi[ṗM ]∗ and [EGi] = λi[EG]. The relationship

between the overall metabolic power and the metabolic power mobilized from each category is the

following:

ṗCi(Ei, V, [ṗMi]
∗, [EGi], κi) = λiṗC(E, V, [ṗM ]∗, [EG], κ). (7.8)

This equation can written as Eq. 3.20 using Eq. 7.7 and κi = κ.

The assimilation power that goes to Ei has the chemical composition of that category of com-

pounds. Therefore, the assimilation power that goes to the different categories of chemical com-

pounds, Ei, must be coordinated, such that the aggregate chemical composition of the assimilation

power is the same as the chemical composition of E (Assumption 3.4) implying that ṗAi = λiṗA.

Thus, the reserve dynamics of each category of chemical compounds is:

d

dt
Ei = ṗAi − ṗCi = λi(ṗA − ṗC). (7.9)

Eq. 3.19 is obtained with Eq. 7.9.

Proof. (Proposition 3.14)

Follows from Eq. 3.20 and 7.6.

Proof. (Proposition 3.16)

Maintenance powers, ṗM and ṗJ given by Eq. 3.8 and Eq. 3.10 are set by the state of the organ-

ism V , by κ and other parameters that are constant. The energy that is not needed for maintenance

purposes is then allocated to growth by Eq. 3.3 and to maturation or reproduction by Eq. 3.11 or

Eq. 3.12.

Proof. (Proposition 3.18)
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By the definition of reserve density:

d[E]

dt
=

1

V

dE

dt
− [E]ṙ. (7.10)

Using Eq. 3.2 to replace dE
dt

and then Eq. 3.18 to replace ṗA, Eq. 7.10 becomes:

d[E]

dt
= {ṗAm}V

−1/3f(X) − [ṗC ] − [E]ṙ. (7.11)

This can be written as

d[E]

dt
= {ṗAm}V

−1/3f(X) − Φ(V, [E]), (7.12)

because 1) ṗC is a function of E and V (see Assumption 3.4), 2) dV/dt is proportional to ṗG (see

Eq. 3.3) and 3) ṗG is a function of E and V (see Assumption 3.4).

Assumption 3.17 implies that for any constant food level there is a reserve density [E]∗ that

remains constant, i.e.,
d[E]
dt

= 0. For [E]∗ Eq. 7.12 simplifies to

{ṗAm}V
−1/3f(X) = Φ(V, [E]∗). (7.13)

Also, Assumption 3.17 says that [E∗] is independent of volume because it remains constant along

the growth process, implying that Φ(V, [E]∗) = V −1/3H([E]∗).

Function Φ(V, [E]) can be generalized out of steady-state as Φ(V, [E]) = V −1/3H([E]) +

([E∗] − [E])G(V, [E], X∗) imposing that d
dX

(([E∗] − [E])G(V, [E], X)) = 0 because Φ(V, [E])

does not depend on food. Condition d
dX

= 0 implies that G(V, [E], X) = A 1
[E∗]−[E]

where A is a

constant, i.e., ([E∗] − [E])G(V, [E], X∗) = A.

Using this expression, Eq. 7.11 and Eq. 7.12, the catabolic flux can be written as

[ṗC ] = V −1/3H([E]) + A − [E]ṙ, (7.14)

or

ṗC = V 2/3H([E]) + AV − [E]V ṙ. (7.15)

The condition ṗC = 0 when the amount of reserve is null implies that A = 0. Proposition 3.13

on the partitionability of reserve dynamics is used to further specify H([E]). In the case of a fully

grown adult (dV/dt = 0), Eq. 3.20 implies that

λH([E]) = H(λ[E]). (7.16)
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Therefore H([E]) = v̇[E] where v̇ is a parameter, the energy conductance, and Eq. 7.14 simplifies

to:

[ṗC ] = v̇[E]V −1/3 − [E]ṙ. (7.17)

Proof. (Proposition 3.19)

With Eq. 7.17 the reserve density dynamics given by Eq. 7.11 is simplified to:

d[E]

dt
= V −1/3 ({ṗAm}f(X) − v̇[E]) . (7.18)

At any constant food level
d[E]
dt

= 0 (Assumption 3.17) implying that [E∗] = {ṗAm}f(X)
v̇

. At

abundant food, fX = 1 (Assumption 3.11), implying that [Em] = {ṗAm}
v̇

. Since {ṗAm} and v̇ are

finite parameters [Em] < ∞.

Proof. (Proposition 3.20)

Replacing ṗG in Eq. 3.3 by Eq. 3.5, 2) replacing ṗC with Eq. 3.22 multiplied by V , 3) replacing

ṗM with Eq. 3.8 and 4) replacing V with L3, the following is obtained:

dL

dt
=

1

3

[E]v̇κ − [ṗM ]L − {ṗT}

[EG] + κ[E]
. (7.19)

When the food level is maximum, i.e., E = Em (Assumption 3.17), the organism grows until it

reaches the following length:

L =
κ{ṗAm}

[ṗM ]
−

{ṗT}

[ṗM ]
. (7.20)

where [Em] has been replaced by Eq. 3.24. The maximum length Lm is achieved when the surface

maintenance costs are null, i.e., Lm = κ{ṗAm}
[ṗM ]

.

Proof. (Proposition 3.21)

Eq. 7.18 simplifies to

[E∗] =
f(x){ṗAm}

v̇
(7.21)

at constant food level (Assumption 3.17). Eq. 3.26 is obtained inserting the expression for the

maximum reserve density (Eq. 3.24).

Proof. (Proposition 3.23)

Eq. 3.27 is obtained by (1) multiplying Eq. 7.18 by [Em], (2) using the definition of scaled

reserve density and (3) using the expression for maximum reserve density (Eq. 3.24). Eq. 3.28 is

derived from Eq. 7.19 using Eq. 3.24, 3.25 and 3.29 and the definition of heating length Lh.
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Proof. (Proposition 3.24)

If resource density is constant, X∗, scaled reserve density is e∗ = [E∗]/[Em] = f(X∗) through

most of the individual’s life (see Eq. 3.26). Hence, the growth curve (see Eq. 3.28) is:

dL

dt
=

v̇

3

f − Lh/Lm − L/Lm

g + f
. (7.22)

Eq. 3.31 is obtained by combining Eq. 7.22 with Eq. 3.30 and Eq. 3.32.

Proof. (Proposition 3.25)

Eq. 3.33 is obtained by taking the limit e → ∞ in the right hand side of Eq. 3.28.

Proof. (Proposition 3.26)

For organisms kept under fasting conditions

J̇O2
= ηODṗM + ηODṗJ + (1 − κR)ηODṗR + ηOGṗG, (7.23)

where ηOD and ηOG are constant (Prop. 3.9).

Eq. 7.23 can be simplified to:

J̇O2
= ηOD

1 − κR + κRκ

κ
(ṗM + ṗG) + ηODκRṗJ (7.24)

by first inserting the expression for ṗR given by Eq. 3.6 and then replacing ṗC with Eq. 3.5.

The somatic and maturity maintenance powers are given by Eq. 3.8 and 3.10 and,

ṗG = [EG]v̇
(e − Lh/Lm)V 2/3 − V/Lm

g + e
, (7.25)

is obtained by combining Eq. 3.3 with Eq. 3.28. The power ṗJ is proportional to V while ṗG and

ṗM are a linear combination of V 2/3 and V . The dioxygen consumption must be approximately

proportional to V α with α ∈ [2/3, 1] because it is a linear combination of V 2/3 and V (see below).

If the animals of the same species have a similar reserve density then the proportionality constant

betweenJ̇O2
and wα is the same (see Eq. 7.36).

Suppose that we want make the following approximation for a polynomial

ax2/3 + bx ≈ cxα, (7.26)

in a given interval [x−, x+], where a > 0, b > 0 and c > 0 are constants. In this case, we will

choose α and c such that the total approximation error
∫ x+

x−
(y(x, α)xα − cxα)2dx where y(x, α) =

ax2/3−α + bx1−α is as small as possible.
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To minimize the total error we impose that 1) there is a point x∗ within the interval [x−, x+]

such that the error is null, i.e.,

c = ax∗2/3−α + bx∗1−α, (7.27)

and that 2) at x∗ the change with x is null, i.e.,
(

∂ (y(x, α)xα − cxα)

∂x

)

x=x∗

= (2/3 − α) ax−1/3 + (1 − α)b = 0, (7.28)

or that

α = 1 −
1

3

ax−1/3

ax−1/3 + b
. (7.29)

The optimal value for α is within the interval [2/3, 1] because 0 < ax−1/3

ax−1/3+b
< 1. The optimal

value for c is within the interval given by Eq. 7.27 for α ∈ [2/3, 1] and x∗ ∈ [x−, x+].

Proof. Proposition 4.3

Suppose that a reference species and species A are related and that z = LA
m

Lm
.

Parameter {ṗAm} is proportional to Lm (see Eq. 3.25) because κ = κA and [ṗM ] = [ṗA
M ]:

z =
LA

m

Lm
=

{ṗA
Am}

{ṗAm}
. (7.30)

Proof. Proposition 4.4

Suppose that a reference species and species A are related and that z = LA
m

Lm
.

Parameter Lh does not depend on Lm because both {ṗT} and [ṗM ] are constant parameters and

Lh = {ṗT }
[ṗM ]

.

Parameter [Em] is proportional to Lm, i.e., [EA
m] = z[Em] because v̇ = v̇A and {ṗA

Am} =

z{ṗAm} (see Eq. 3.24).

Parameter g is proportional to 1
Lm

, i.e., g = zgA because [EG] = [EG]A, κ = κA and [EA
m] =

z[Em] (see Eq. 3.29).

At abundant food (see Eq. 3.32), i.e., f = 1,

ṙA
B =

v̇A

3LA
m

1

gA + 1
. (7.31)

Eq. 4.1 is obtained by (1) rewriting the parameters of species A as a function of the parameters of

the reference species and then (2) applying logarithms.

For fully grown organisms kept under fasting condition

J̇O2
= ηOD(ṗM + ṗJ + (1 − κR)ṗR), (7.32)
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where ηOD is constant (Prop. 3.9).

Eq. 7.32 can be simplified to Eq. 7.24 with ṗG = 0 by first inserting the expression for ṗR given

by Eq. 3.6 and then replacing ṗC with Eq. 3.5.

For fully grown adults (l = 1 and EH = Ep
H ):

ṗM =
(

[ṗM ] + {ṗT }

V
A1/3
m

)

V A
m , (7.33)

ṗJ = k̇J [Ep
H ]V A

m , (7.34)

where all parameters are for the reference species with the exception of V A
m . Eq. 7.33 to 7.34 were

obtained from Eq. 3.8 and 3.10 respectively, by first replacing V with Vm because l = 1 and then

rewriting the parameters of species A, as a function of the parameters of a reference species with

the exception of V A
m .

The power ṗJ is proportional to V A
m while ṗM is proportional to a linear combination of V A

m and

V
A 2/3
m . The dioxygen consumption must be approximately proportional to V A α

m with α ∈ [2/3, 1]

because it is a linear combination of V
A 2/3
m and V A

m .

The relationship between the weight and the volume of species A,

w =
[Em]e

µEV
1/3
m

V A 4/3
m + dV V A

m , (7.35)

is obtained from Eq. 7.36 by replacing V with Vm, [E] with [Em]e and rewriting the parameters

of species A as a function of the parameters of a reference species with the exception of V A
m .

Thus, (1) the mass is approximately proportional to V β
m with β ∈ [1, 4/3] and (2) the dioxygen

consumption is approximately proportional to wα/β with α/β ∈ [0.5, 1].

B. Appendix II

The structural volume can be converted to weight using the following auxiliary proposition.

Proposition 7.1 (Volume to weight). The relationship between weight, w, and structural volume,

V , is

w =

(

[E]

µE
+ dV

)

V =

(

[Em]

µE
e + dV

)

V, (7.36)

where dV is the density of the structure and µE is the chemical potential of reserve.

Proof. The volume of the organism can be written as,

[E]V

dEµE
+ V, (7.37)
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where the first term is the volume of the reserve, i.e., the ratio between the reserve’s energy, [E]V ,

and the reserve’s energy per unit volume of reserve, dEµE, and dE is the density of the reserve.

The weight of the organism (Eq. 7.36) is obtained by multiplying the volume of the reserve by dE

and the volume of the structure by dV .
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