Cell Host & Microbe, Volume 4

Supplemental Data

Antiretroelement Activity of APOBEC3H

Was Lost Twice in Recent Human Evolution

Molly Oh Ainle, Julie A. Kerns, Melody M.H. Li, Harmit S. Malik, and Michael Emerman

Figure S1. Genotyping the APOBEC3H Coding Sequence in a Panel of Diverse Humans

The *APOBEC3H* coding sequence was sequenced from genomic DNA from 5 South American, 4 Central American, 10 Caucasian, 8 African Pygmy, 9 South of Sahara and 7 North of Sahara individuals. The seven polymorphisms typed in the panel are detailed at the top of the figure (the six non-synonymous polymorphisms are shown in gray – delN15, R18L, R105G, E121K, E121D and E178D). All polymorphisms are shown as changes from the ancestral sequence (ancestral and derived bases at each position are shown at bottom of figure) and do not necessarily represent minor alleles. Derived changes are shown in green and ancestral states are shown in white with heterozygotes represented by split squares. Missing data is shown in gray. Haplotypes that encode stable proteins contain G105 and do not have the deletion at position N15 (delN15).

CLUSTAL 2.0.5 multiple sequence alignment

hanTTT	MAILTARTERLOFN-KERLERDVYDRKALLCYOLTOONGSTPTRGYFFNKKKCHAFTCFT	59
hapTV		50
hapiv	MAIITAETENJEN KKDINKEITENKKALICYJITENKGETEITENKKKCHAFICEI	60
hapii	MALI MAEMEDI OENNYADI DE VIDEVALI CVOL MONOCOMDO CVEENYYYCUAETOFI	60
human anasatan	MALLIASTERLYFNNARALARFITERAALUCTULFFUNGSTETAGTENARACHASTCFT NAIL MAEMEDI OENNYNDYDDYDDYNDTULFCTULFFUNGSTETAGTENAVYCULFTCFT	60
human_ancestor		60
Chimpanzee	MALLTAETFRLQFNNRRRLRRPIIPRRALLCIQLTPQNGSTPTRGIFENRRCHAEICFI	60
hu_ch_ancestor	MALLTAETFRLQFINNKRRLRRPYYPRKALLCYQLTPQNGSTPTRGYFENKKKCHAEICFI	60
gorilla	MALLTAETFRLQFNNKLRLRRPYYRRKTLLCYQLTPQNGSMPTRGYFKNKKKCHAEICFI	60

hapIII	NEIKSMGLDETQCYQVTCYLTWSPCSSCAWELVDFIKAHDHLNLRIFASRLYYHWCKPQQ	119
hapIV	NEIKSMGLDETOCYOVTCYLTWSPCSSCAWELVDFIKAHDHLNLRIFASRLYYHWCKPOO	119
hapII	NEIKSMGLDETOCYOVTCYLTWSPCSSCAWELVDFIKAHDHLNLRIFASRLYYHWCKPOO	120
hapI	NEIKSMGLDETOCYOVTCYLTWSPCSSCAWELVDFIKAHDHLNLGIFASRLYYHWCKPOO	120
human ancestor	NEIKSMGLDETOCYOVTCYLTWSPCSSCAWELVDFIKAHDHLNLRIFASRLYYHWCKPOO	120
chimpanzee	NEIKSMGLDETOCYOVTCYLTWSPCSSCAWKLVDFIOAHDHLNLRIFASRLYYHWCKPOO	120
hu ch ancestor	NEIKSMGLDETOCYOVTCYLTWSPCSSCAWKLVDFIKAHDHLNLRIFASRLYYHWCKPOO	120
gorilla	NEIKSMGLDETOCYOVTCYLTWSPCSSCAWKLVDFIKAHDHLNLRIFASRLYYHWCKROO	120
y	*****	
_		
hapIII	DGLRLLCGSQVPVEVMGFPEFADCWENFVDHEKPLSFNP <u>Y</u> KMLEELDKNSRAIKRRLDRI	179
hapIV	$\texttt{DGLRLLCGSQVPVEVMGFPEFADCWENFVDHEKPLSFNP}_KMLEELDKNSRAIKRRLDRI$	179
hapII	DGLRLLCGSQVPVEVMGFPEFADCWENFVDHEKPLSFNP <u>Y</u> KMLEELDKNSRAIKRRLDRI	180
hapI	KGLRLLCGSQVPVEVMGFPEFADCWENFVDHEKPLSFNPYMLEELDKNSRAIKRRLERI	180
human_ancestor	EGLRLLCGSQVPVEVMGFPEFADCWENFVDHEKPLSFNP <u>Y</u> KMLEELDKNSRAIKRRLERI	180
chimpanzee	EGLRLLCGSQVPVEVMGLPEFNDCWENFVDHEKPLSFDP <u>C</u> KMLEELDKNSRAIKRRLERI	180
hu_ch_ancestor	EGLRLLCGSQVPVEVMGFPEFADCWENFVDHEKPLSFDP <u>S</u> KMLEELDKNSRAIKRRLERI	180
gorilla	EGLRLLCGSQVPVEVMGFPEFADCWENFVDHEKPLSFDP <u>S</u> KMLEELDKNSRAIKRRLERI	180
	.*************************************	
hapIII	KOS 182	
hapIV	ко́s 182	
hapII	KOS 183	
hapI	ко́s 183	
human ancestor	KOS 183	
chimpanzee	KOS 183	
hu ch ancestor	KOS 183	
gorilla	KOSWSVDVLENDLRSLOLGPVSHSLSRSNSR 211	

Figure S2. Alignment of Gorilla, Chimpanzee and Predicted Human and Ancestral Human APOBEC3H Protein Sequences

Amino acid sequences of gorilla, chimpanzee, the PHASE-predicted human APOBEC3H haplotypes (hapl, haplI, haplII and haplV) as well as the parsimonypredicted human ancestor APOBEC3H (human ancestor) and human/chimpanzee APOBEC3H (hu_ch_ancestor) proteins were aligned using CLUSTAL_X (Thompson et al., 1997). Underlined in the human/chimpanzee ancestor sequence is the site (aa 160) at which parsimony could not yield a simple prediction of the ancestral state; therefore, three versions of the protein, 160C, 160Y and 160S (data shown is for 160S version), were constructed and found to encode proteins of similar stabilities and antiviral activities.

Table S1. Human APOBEC3H Haplotype Frequencies

Frequencies of the predicted *APOBEC3H* haplotypes as inferred using PHASE 2.1.1 software (Stephens and Donnelly, 2003; Stephens et al., 2001). Haplotypes found at frequencies > 10% are highlighted in bold.

index	haplotype	E (freq)	S.E.
1	1TGCGCC	0.00148	0.00388
2	1TGCGCG	0.001593	0.004926
3	1TGGAGC	0.000463	0.002274
4	1TGGAGG	0.002247	0.005927
5	1TCCGCC	0.177715	0.01187
6	1TCCGCG	0.000234	0.001634
7	1GGCGCC	0.000117	0.00116
8	1GGCGCG	0.001856	0.005638
9	1GGGAGG	0.02652	0.005603
10	1GCCGCC	0.113544	0.009882
11	1GCCGCG	0.00023	0.001624
12	0TGCGCC	0.00081	0.003389
13	0TGCGCG	0.01218	0.005034
14	0TGGAGG	0.00012	0.001183
15	0TCCGCC	0.00083	0.003008
16	0GGCGCC	0.010153	0.005361
17	0GGCGCG	0.053672	0.007507
18	0GGGAGC	0.011164	0.002282
19	0GGGAGG	0.30762	0.008177
20	0GCCGCC	0.264882	0.014036
21	0GCCGCG	0.000239	0.001654
22	0GCGAGG	0.0121	0.002301

Table S2. Human APOBEC3H Haplotype CountsNumbers of each haplotype identified in the panel according to the "best reconstruction" byPHASE. The single haplotype in which both the delN15 and the R105G polymorphisms are found on the same chromosome is shown in bold (2/86 chromosomes).

	Haplotype	Count
1	1TCCGCC	16
2	1GGGAGG	2
3	1GCCGCC	10
4	0TGCGCG	1
5	0GGCGCC	1
6	0GGCGCG	5
7	0GGGAGC	1
8	0GGGAGG	27
9	0GCCGCC	22
10	0GCGAGG	1

Table S3. Typing the APOBEC3B Deletion

Genotyping of the APOBEC3B deletion in the African American, European American and Han Chinese populations. Presence of deletion is denoted by 1; absence of deletion is denoted by 0.

sample ID		
(NA)	population	Genotype
17102	African American	0 0
17103	African American	10
17104	African American	0 0
17105	African American	0 0
17106	African American	0 0
17107	African American	0 0
17108	African American	0 0
17109	African American	0 0
17110	African American	0 0
17111	African American	0 0
17113	African American	0 0
17116	African American	0 0
17125	African American	0 0
17133	African American	0 0
17135	African American	0 0
17136	African American	0 0
17137	African American	0 0
17138	African American	0 0
17139	African American	10
17140	African American	0 0
6990	European (EC)	0 0
7019	European (EC)	0 0
7348	European (EC)	0 0
7349	European (EC)	0 0
10830	European (EC)	10
10831	European (EC)	0 0
10842	European (EC)	0 0
10843	European (EC)	0 0
10844	European (EC)	0 0
10845	European (EC)	0 0
10848	European (EC)	0 0
10850	European (EC)	0 0
10851	European (EC)	0 0
10852	European (EC)	0 0
10853	European (EC)	0 0
10854	European (EC)	0 0
10857	European (EC)	0 0
10858	European (EC)	10
10861	European (EC)	00
12547	European (EC)	0 0
12548	European (EC)	0 0
12560	European (EC)	0 0
17201	European (EC)	0 0
17733	Han Chinese (HL)	0 0

17734	Han Chinese (HL)	11
17735	Han Chinese (HL)	0 0
17736	Han Chinese (HL)	0 0
17737	Han Chinese (HL)	10
17739	Han Chinese (HL)	10
17740	Han Chinese (HL)	0 0
17741	Han Chinese (HL)	10
17742	Han Chinese (HL)	11
17743	Han Chinese (HL)	10
17744	Han Chinese (HL)	10
17745	Han Chinese (HL)	10
17746	Han Chinese (HL)	11
17747	Han Chinese (HL)	0.0
17749	Han Chinese (HL)	10
17752	Han Chinese (HL)	11
17753	Han Chinese (HL)	10
17754	Han Chinese (HL)	11
17755	Han Chinese (HL)	10
17756	Han Chinese (HL)	0 0
17757	Han Chinese (HL)	10
17759	Han Chinese (HL)	10
17761	Han Chinese (HL)	0 0

Table S4. APOBEC3H Primers

er	lence (5' to 3')
e	
)12	AACTGACATGCCCCAGGG
)15	ACACGATGGCTCTGTTAACAGCC
36	GCTCTGTTAACAGCCGAAAC
43	GGTACCGGCTCTGTTAACAGCCGAAACATTCC
73	ACACGATGGCTCTCCTAACAGCC
)8	GGGTGCGTGAGTGCAGGG
0	TTGAAAAACTACCTATTGGGTGC
85	MJGTTAACAGCCGAAACATTCCGCTTAC
86	ACCTTGTTTTCAAAGTAGCCTCT
For	ACACGATGGCTCTGTTAACAGCC
Rev	GCACCCGCTTCCTGCC
k3_For	GGGTGCGTGAGTGCAGGG
k3_Rev	TTGAAAAACTACCTATTGGGTGC
For	ACCCCAATAGGTAGTTTTTCAACCC
Rev	AACTGACATGCCCCAGGG
76	TCTGTTGCACAGAAACACGATGG
71	TTCCCGAAGTAGTGACTGAGC
72	GCCACGCACTAGAAAGTTCAC
73	CGGGTGGTGTCAGATCTTG
74	TCTGACACCACCCGGGAG
75	ACAGTGCCTCACCTTTATCC

Supplemental References

Stephens, M., and Donnelly, P. (2003). A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet *73*, 1162-1169.

Stephens, M., Smith, N. J., and Donnelly, P. (2001). A new statistical method for haplotype reconstruction from population data. Am J Hum Genet *68*, 978-989.

Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res *25*, 4876-4882.