

Supplemental Figure 1

Supplemental Figure 1: Time course of malate and citrate efflux from excised root apices

Excised root apices from six-day-old seedlings were washed in a glass vial on a shaker with 1 mL of 0.2 mM CaCl₂ (pH 4.3). After washing the solution was replaced with a control solution (\circ) or a similar solution containing 50 µM AlCl₃ (\bullet). The solutions were replaced every 60 minutes and assayed for malate (A) and citrate (B) efflux assays. Data show the mean and standard error (n=3 to 4).

Supplemental Figure 2: Frequency distribution of citrate efflux in BC₁F₁ seedlings derived from EGA-Burke/Carazinho

Citrate efflux was measured from the excised root apices of 13 individual BC_1F_1 seedlings. Data are presented as the percentage of the Carazinho parental line. Mean values for the parental lines are indicated by the arrows.

Supplemental Figure 3

Supplemental Figure 3: Comparison of citrate efflux from Carazinho, Egret and their F₁ progeny

Citrate efflux was measured from the excised root apices of six-day-old seedlings in the presence of 50 μ M Al. Data show the mean and standard error (n=3).

Supplemental Figure 4: A major QTL for citrate efflux maps to chromosome 4B

A major quantitative trait locus (QTL) for citrate efflux maps on the chromosome 4B in the F_2 population derived from EGA-Burke/Carazinho. The data plots the mapping distances of markers versus LOD scores (logarithm of the odds). A critical LOD threshold of 3 was used to determine significant association between molecular markers and the citrate efflux phenotype. QTL analysis was performed with Cartographer software version 2.5 (Wang et al 2007; http://statgen.ncsu.edu/qtlcart/WQTLCart.htm).

Supplementary Figure 4

Supplemental Figure 5: Endpoint products from qRT-PCR used to measure *TaMATE1* expression in F_{2:3} families derived from Egret/Carazinho

Data show a subset of the products from the qRT-PCR described in Figure 10 after separation by gel electrophoresis. Numbers identify the families shown Supplemental Figure 1. (A) *TaMATE1* products and (B) *PT-1* (reference gene) products. All samples with undetectable *TaMATE1* expression also showed low citrate efflux.

Citrate	F_3 family #	Citrate efflux	Citrate Efflux	Malate Efflux	Malate efflux	TaMATE1
Efflux	or genotype	pmol/apex/h	%Carazinho	nmol/apex/h	%Carazinho	expression
Low	3	1.3	4	2	101	no
	5	1.5	3	1.3	118	no
	8	1.8	6	0.65	32	no
	13	4.3	7	0.28	25	no
	17	7.0	7	0.39	35	no
	20	10.0	15	0.08	23	no
	22	0.8	1	0.84	75	no
	23	5.5	7	0.29	83	no
	26	0.0	0	1.5	75	no
	27	3.0	5	0.29	26	no
	28	1.8	6	1	50	no
	29	2.3	4	0.23	26	no
Med-	Egret	2.3	5	0.2	16	no
High	1	22.9	31	0.07	19	ves
8	$\overline{2}$	24.0	46	0.96	113	ves
	6/7	21.0	36	0.91	82	ves
	9	27.5	48	0.15	13	ves
	10	17.8	59	1.38	69	ves
	11	26.5	51	0.40	48	ves
	12	18.5	36	0.08	10	ves
	14	49.0	95	0 74	87	ves
	15	49.8	96	0.82	113	ves
	16	38.3	74	0.83	97	ves
	18	20.0	38	0.65	75	ves
	19	23.5	44	0.92	108	ves
	21	15.0	26	0.86	101	ves
	24	17.5	33	0 74	87	ves
	25	57.0	76	0 27	79	ves
	30	61.5	107	0.20	18	ves
	31	12.3	41	0.80	40	ves
	32	15.0	22	0.23	26	ves
	33	35.0	60	1.10	100	ves
	35	65.0	133	0.35	41	ves
	36	30.0	40	0.20	57	ves
	37	39.5	53	0.30	85	ves
	39	58.0	101	0.16	14	ves
	40	32.8	57	0.79	71	ves
	41	11.0	37	0.30	15	ves
	42	17.5	59	0.47	24	ves
	43A	14.0	47	1.48	74	ves
	43B	31.0	41	0.04	11	ves
	44	18.3	61	0.40	20	ves
	45	28.3	38	0.29	82	ves
	46	20.8	69	1.98	99	ves
	47	49.8	36	0.13	37	ves
	48	18.0	60	1.47	74	yes

Supplemental Table I Malate and citrate efflux in 50 μ M AlCl₃ from 45 F₃ families. Data show fluxes from excised root apices and values relative to Carazinho. *TaMATE1* expression is scored as the presence of a band from quantitative RT-PCR reactions