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Sampling of Probability Distributions. By applying the inversion
method (1) on the wrapped Cauchy distribution (WCD) we
obtain that the angle deviations � from a preferred direction �
follows:
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where u is a uniformly distributed random variable in the interval
u � [0,1], and � is the shape parameter of the probability
distribution � � [0,1]. We set � � 0 so the WCD accounts for
the tendency, observed in many organisms, to maintain the
previous directions while scanning, whereas the shape parameter
� of the WCD, controls the sinuosity and the correlation length
of the walk (2, 3). Tuning the shape parameter � one can go from
Brownian (� � 0) to ballistic movement (� � 1) (i.e., straight-line
searching) (4).

In the LMCRW model we generate the successive reorienta-
tion time intervals by sampling the power law distribution in the
following way (inversion method; ref. 1) t � t0u(1��)�1

, where t0
is the minimum time step (t0 � 1) and u is a random uniformly
distributed variable within the interval u � [0,1].

For the non-Lévy intermittent model we sample an exponen-
tial distribution with characteristic time 	 (inversion method; ref.
1) t � ln(ue�t0/	)	, where t0 is the minimum time step (t0 �1) and
u is a random uniformly distributed variable within the interval
u � [0,1]. We define the characteristic time as 	 � 
�p, where 
 �
[0.01,1] and �p is the average distance between patches (see
section above). Thus, the range of 	 chosen represents from 1%
to 100% of the average travel time between patches. The latter
is proportional to �p under the assumption that the searchers
move mostly in straight lines and with constant velocity.

Scaling of Simulations and Target Landscapes. The mean free path
(i.e., �) is defined as the average Euclidean distance between
target sites, hence, it has 1D spatial units. To make comparable
the encounter rates of diffusive-like searching processes at
distinct dimensional space (i.e., 2D, 3D) we need to fix the mean
free path (i.e., �) at a constant value so that the searchers have
similar probabilities to find the targets (4, 5). To compute � we
need to know the characteristic one-dimensional length (1D) of
the searching arena L, the number of target sites N, and the
detection distance R, i.e., the sum of the ‘‘radius of vision’’ of the
searcher and the target (R � rt � rs). The mean free path is given
by � � L2/2RN (2D) and � � L3/�R2N (3D) (4, 5). From the
equations above one can see that � is inversely related to the
target density, i.e., � � 1/�, where �2D � NL�2 and �3D � NL�3.

By fixing the number of targets Nt � 50 and the detection
distance R �1 we compute two average distances between
patches representing two different resource densities: �p � 100
(i.e., high-resource scenario) and �p � 1,000 (i.e., low-resource
scenario). Within each dimensional system then, �p represents a
resource density. However, when we compare different dimen-
sional systems such as �p-2D � �p-3D � 100, one must note that
to keep the same �p in different dimensionalities, the charac-
teristic length of the searching arena L must change if the
number of target sites N is fixed. Hence, although �p-2D and �p-3D
are equal, therefore the average probability of finding a target in
the landscape is maintained, the target densities i.e., �2D and �3D
are different.

To generate the patchy landscapes, we first locate five source

points in a uniformly distributed arrangement covering the
whole landscape. Each of these five points acts as a ‘‘seed’’ for
building up the patches. Each patch consists of 10 target sites
randomly located with an exponentially decaying radial distri-
bution centered at the seed position. This procedure leads to a
uniform distribution of patches, all of them having the same
number of Poisson-distributed targets. The ‘‘local’’ density in
each patch is defined by the characteristic spatial scale of the
exponential distribution,  � 0.025L. Thus, the local density
changes according to the size of L, whereas the ‘‘global’’ density
can be set independently of L. Each detected and consumed
target is replaced in the arena considering the original source-
patch from where it came from.

By construction, both the average distance between patches �p
and the average distance between targets �t (more related to the
global density) can be calculated in our landscapes. In high-
resource scenarios we have �p � 100 that corresponds to �t � 10.
In low-resource scenarios we have �p � 1,000 that corresponds
to �t � 100. Nevertheless, in patchy landscapes, the average
distance between patches �p is much more representative of the
average global density of targets than the average distance
between targets �t, being �p the most informative landscape
parameter. The scaling parameter �p that we choose in our
patchy landscapes (i.e., �p � 100 and �p � 1,000) could represent,
for example in a 3D system, patchy prey distributions with
density ranges representing two main marine resource scenarios:
coastal productive areas (i.e., from 103 to 104 cell per ml) and
open ocean areas (i.e., from 101 to 5 � 102 cell per ml),
respectively.

In the fractal-like landscapes, target locations represent the
points visited by a Lévy flight, the so-called Lévy dust (6), with
Lévy index � � 2. We maintained the same scaling conditions as
for the patchy landscapes by fixing the number of targets N and
the detection distance R � 1. Note, however, that for these types
of landscapes the average distance between patches �p is not
really informative. In these landscapes, detected and consumed
targets are replaced by new flights that have its origin in the last
placed target. Although encounters destroy the Lévy dust struc-
ture, fractal-like properties are maintained in the landscape
through the replacement of new targets that contribute to
generate new Lévy dust, thus balancing the loss of structure
caused by targets’ disappearances. Of note is the fact that such
a process might not easily reach a statistical equilibrium, hence,
the results obtained for fractal-like landscapes can be compa-
rable between them but might not be straightforwardly compa-
rable to the ones obtained in the patchy-landscape simulations,
where a statistical equilibrium and nontransient behaviors can be
assumed.

In all simulations, we set a searcher fixed-step length and a
velocity equal to the radius of vision �0 � �s � rs � rt � 0.5, and
we compute the average and the standard deviation of the search
efficiency (i.e., �) over 10 random walkers that travel a total of
N � 107 steps in 10 Monte Carlo replications of each type of
landscape: patchy and fractal-like.

Pointwise Model Selection (PWMS) Tests. The PWMS consist of
conducting sequential maximum likelihood fits and model se-
lection tests on subsets of a sample data (N). Model selection is
based on Akaike Information Criteria (AIC) weights, corrected
for small data samples (wAICc) (7, 8), which determine the
likelihood of a subset being fitted better by one model than the
other. The data are arranged in ascending order. Starting from

Bartumeus and Levin www.pnas.org/cgi/content/short/0801926105 1 of 4

http://www.pnas.org/cgi/content/short/0801926105


the smallest value, at each iteration (i), we obtain a subset of size
(N � i). Each time (i), two probabilistic models, an exponential
distribution (the simplest decaying function) and a uniform
distribution (UD), are confronted to fit by maximum likelihood
the resulting subset of the sampled data. The weight of evidence
that each subset N-i fits better one model than the other is then
computed through the AIC weights. For each iteration (i) the
AIC weights (i.e. wAICc) are then plotted as a function of the
size (N � i) of each fitted subset. To show the average behavior
of the PWMS tests for our null model, the nonintermittent
model, we generate 100 Monte-Carlo series of turning angles (of
length N) gleaned from a WCD (� � 0.9). If the results of the
PWMS tests at the tail of the two turning-angle distributions
(obtained with the nonintermittent and the intermittent model,
respectively) fall within the range of the observed results for the
Monte Carlo series, we can assume that the tail of the turning
angle distribution is not statistically different from the expected
tail in the null (nonintermittent) model, hence, we should
assume absence of intermittence in the trajectory. If intermit-
tence exists, the PWMS procedure can tell us the exact regime
of turning angle values for which we can expect to ‘‘observe’’
such phenomena. It also can show us the critical turning angle
�c where the transition in weight of evidence (wAICc) from an
exponential to a uniform distribution has occurred. Taking the
critical turning angle �c (or otherwise its double, to ensure that
we are not at the transition regime) and computing the time
intervals between turning angles � such as � � �c, we can recover
the scaling exponent � that characterizes the Lévy-intermittent
behavior.

Lévy Intermittence Compared with Enhanced Perceptual Capabilities
and Speed. We compare the effects on search efficiency of
Lévy-intermittent searching with nonintermittent searches (only
scanning behavior exists) where the searcher perceptual capa-
bilities (or equivalently size) and speed are gradually increased.
Fig. S2a shows that with a 2D nonintermitent search, velocity
should increase almost by 2-fold and the perceptual range (or
size) by 4-fold to obtain similar search efficiencies (up to a 50%
of search gain) as for an optimal Lévy-intermittent search
(dashed line in Fig. S2a). In 3D systems (Fig. S2b), the net effect
of optimal Lévy intermittence (dashed line in Fig. S2b) is
decreased, but still can represent an efficiency gain equivalent in
the nonintermittent model to an increase of 1.5-fold in speed or
size. Interestingly, in 3D systems, perceptual capability (or size)
is more important than speed to increase encounter rates,
whereas in 2D systems encounter rates are more sensitive to
speed than to perceptual capabilities.

Considering the energetic costs associated with enhancing
search efficiency by increasing the cruising speed and/or the
perceptual capabilities the timing of specific reorientation mech-
anisms search surely must be a strong target for natural selection.
The reorientation mechanisms providing an optimal Lévy inter-
mittence could be strongly favored, but more generally, natural
selection could favor mechanisms controlling a whole range of
Lévy indexes, which would allow animals for efficient adjust-
ments of average contact rates on the basis of some ‘‘reorien-
tation plan of action’’ triggered by coarse-grained, landscape
level environmental cues (e.g., absence/presence of mates, ab-
sence/presence of predators, absence/presence of resource).
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Fig. S1. Search efficiency gain ��(%) comparing search processes with and without Lévy intermittence in 2D fractal-like landscapes. Results are shown for low,
i.e., �p � 1,000 (a), and high, i.e., �p � 100 (b) patch densities, for different scanning behaviors: � � 0.7 (F) and � � 0.9 (E), and for different Lévy-intermittent
reorientation behaviors (1 � � � 3). Dashed lines indicate, zero search efficiency gain (�� � 0%).
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Fig. S2. Search efficiency gain �� (%) in the absence of Lévy intermittence caused by an increase in size (F) and velocity (E). Results are shown for 2D (a) and
3D (b) patchy landscapes. In all cases, scanning behavior of searchers was set at � � 0.9, and the initial size and cruising velocity were set at r � � � 0.5. Note the
logarithmic scale of the x axis indicating the increment factors of size and velocity. Dashed lines indicate the maximum range of change in search efficiency
observed for optimal Lévy-intermittent searches ��(� � 2, � � 0.9) (see Fig. 1).
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