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Methods. We denote the time series of step length for individual
i during time t-1 to t as yi,t. The autocorrelation function of each
yi,� revealed clear cycling in the data, with peaks occurring at lags
separated by more than 6 h, depending on the individual i. We
estimated missing values using expected values from a Kalman
smoother with a first-order autoregressive AR state-space model
assuming mean zero Gaussian process noise, as well as mean zero
Gaussian observation error (1). This smoothing imposed no
artificial seasonal (in the parlance of time domain methods)
cyclical structure to the data.

Spectral analysis is an effective tool for detecting frequencies
� driving periodic fluctuations in data time series, where the
spectral density is defined as the Fourier transform of a time
series autocovariance function (1). We obtained estimates of
spectrums using smoothed periodograms using a modified
Daniell smoother with adjacent three points, and a cosine
bell-tapered yi,�, standard approaches to accommodate the in-
herent discreteness and finiteness of data when estimating
spectral density functions (1). All analyses were done with R
2.6.1 software (2). To facilitate visual comparison with theoret-
ical spectral densities of white and red noise, we normalized by
the sample variance �i

2 for each yi,�. Under this normalization, the
theoretical power spectrum is given by 1/(1 � �2 - 2�cos(�)) for
red noise and the constant 1 for white noise where � is the lag-1
autocorrelation coefficient estimated separately from each data
time series (1).

Periodograms assume stationarity in the data, giving time-
averaged estimates of the frequency-dependent variance com-
ponents, thereby precluding the identification of localized
changes in the dominant frequencies in the periodograms, given
their presence. Wavelet analysis has emerged as a useful tool for
detecting temporal localization of frequencies explaining varia-
tion in stochastic time series data (3, 4). Using this technique
with software in Maruan and Kurths (5), we computed the
L2-normalized continuous wavelet transforms of the yi,�,
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for the analyzing (mother) wavelet, using the Morlet wavelet
�(t) � �1/4 e�i�0t)e�(t2

/2), to obtain an estimate (called the
scalogram) of the wavelet periodogram from the squared mod-
ulus values W[b, a] 2 without smoothing in either the time or
scale directions. We chose �0 � 2� to preserve an inverse
relationship between the scale of the analyzing wavelet and
frequency, a � 1/� (5). As suggested by Torrence and Compo (4),
we chose scales 	j, j � 0, …, J, by setting the minimum scale a0
� 6 h at twice the sampling interval, 	j � 1/24 and J � 120, giving
a maximum scale of 64 days. This is the natural choice for the
range of scales with the minimum being twice the sampling
interval, and the maximum imposed by overall sample size. We
bootstrapped 1000 replicate scalograms from the null AR(1)
model to obtain 0.95 quantile values for significance testing when
determining local patches of modulus values in the time fre-
quency domain that were different from red noise (4, 5)—that
is, had more complex autocorrelation structure than red noise.
As described next, we used these significant patches in two ways
to measure the emergence of complex autocorrelative structure
in movement. Finally, assuming an identical stochastic process
driving the movement time-series realizations for three catego-

ries of social ranking, the scalograms were averaged across
individuals of the same social rank category to estimate the social
group wavelet spectrum shown in Fig. 1.

To quantify a relative amount of autocorrelation structure at
each time step not attributed to the null model of red noise, we
used a Plancherel formula for wavelets. This formula for wave-
lets relates the total time-series variance �i

2 to the modulus values
of the wavelet transform by �W,W�H � TC��i

2 (6), where
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and C� is a wavelet-specific constant. Thus, for each time step,
we obtained the proportion of variance explained by scales inside
significant patches
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where 	(a) is a Dirac measure taking on the value of 1 when a
is inside a significant patch and 0 elsewhere. Averaging the �i, sig

2

in blocks of time offers a relative measure of the degree of
complex autocorrelation in movement across that block of time.

Simulation Study. To facilitate biological interpretation of the
types of spectral results and time distributions of step lengths, we
conducted a movement simulation study based on a stochastic
partial differential equation model (7) from which to apply the
statistical methods described herein. Following the notation in
Brillinger et al. (7), we simulated positions r(t) in the x-y plane
of an animal at time t given by using the stochastic differential
equation r(t) � r(0) � ʃ0

t 
(r(s),s)ds � ʃ0
t �(r(s),s)dB(s), where


 is the drift, � is the dispersion, and B is a Wiener process. We
simulated 100 paths r(t) for two different daily activity scenarios
that elicit similar diurnal frequency signatures, characterized in
Fourier and wavelet analyses results, to those found from
movements of the studied elephants. For simulations, we con-
sidered t from 0 to 32 days, with r(t) incremented in 30 s steps
and recorded at hourly intervals for the first 30 days. To simulate
a simple rest-active daily activity behavior, we fit normal distri-
butions to the logarithmic transformed velocity time series of
M31 during the wet season for values below and above the 3/24
quantile (chosen from visual inspection of the data to roughly
reflect an expected amount of resting time for these elephants).
Values for the pairs (
(r(s), s), �(r(s), s)) during resting and
active activities were estimated at (2.67, 0.90) and (6.12, 0.95),
respectively (turning angle is not considered, so the values are
the same for the x and y dimensions). Each hour of each
simulation day a random time value uniformly distributed on
[0.5 h, 1.5 h] was selected. For the first three random times (with
expected duration of 3 h), the simulation used the estimated rest
parameters (2.67, 0.90), and the subsequent 21 random times
(with expected durations of 21 h), the simulation used the
estimated active parameters (6.12, 0.95). The results of this study
are summarized in supporting information (SI) Fig. S2. To
simulate the twice-a-day rest-active daily activity behavior, we
used the M31 velocity time series during the dry season to obtain
estimates of three behaviors: rest, low activity, and high activity.
Parameters for these three behaviors were obtained by fitting a
log-normal distribution to the dry season velocity time series of
M31 for values below the 3/24 quantile, between the 3/24 and 5/6
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quantiles, and above the 5/6 quantile, yielding parameter values
of (2.47, 0.87), (5.52, 0.80), and (7.32, 0.35), for rest, low activity,
and high activity, respectively. As before, each hour of each
simulation day a random time value uniformly distributed on
[0.5 h, 1.5 h] was chosen. The daily behavioral sequence with
expected time duration was set at rest for 3 h, low activity for 4 h,
high activity for 3 h, rest for 2 h, low activity for 3 h, high activity
for 4 h, and low activity for 5 h. The results of this study are
summarized in Fig. S3. A more complete evaluation of the
Fourier and wavelet analyses for detecting behavioral constancy,
cycling, randomness, change under differing biological scenarios
(e.g., crepuscular activity or more complicated sequences of

movement activity), and amounts of stochasticity, in both the
distribution of duration of each movement activity and sampling
interval, remain a subject of current research (8).

Additional Data Analyses. For each individual we obtained their
smoothed periodograms (Fig. S1) and scalograms (Fig. S3), the
latter of which was used for the subsequent analyses to evaluate
hypotheses H1–H3 described in the main text. For individuals
M54, M5, R28, R22, and M31, data at a 1 h sampling interval was
available and we present their smoothed periodograms (Fig. S2)
and scalograms (Fig. S4) for comparative purposes.
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Fig. S1. Individual movement periodograms normalized so that white noise has a constant spectral density at 1 for individuals sampled every 3 h. Clear peaks
in the periodograms above the theoretical red-noise spectral densities (dashed lines at the foot of the peaks) suggest relatively elaborate movement
autocorrelation (these peaks remained significant as compared with Bonferroni corrected 95% confidence envelopes around the periodograms). Periodograms
paired by individual show dominant cycles during the dry season (Left) and wet season (Right). Socially dominant individuals (M54, M5, R28) show little seasonal
change in frequencies accounting for movement variation. In contrast, most lower-ranked individuals (M31, M46, R37) show clear seasonal differences in the
dominant periodogram frequencies. The emergence of a similar spectral signature as the dominants during the wet season possibly relates to impacts of changes
in resource abundance.
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Fig. S2. Individual movement periodograms normalized so that white noise has a constant spectral density at 1 for the subset of five individuals whose location
was sampled hourly, illustrating periodogram structure here is similar to that from the coarser sampling interval (Fig. S1). The dashed line shows the theoretical
red-noise power spectrum.
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Fig. S3. Wavelet scalograms of natural logarithmic transformed net displacement time series of the seven individual elephants with locations sampled every
3 h. Larger squared modulus values correspond to warmer colors (values of 1 are given a red color) and smaller values corresponding to cooler colors (values of
0 are purple). The thick solid line denotes the cone of influence outside of which modulus values are affected by zero padding and should not be considered;
the thick the vertical dashed line gives the approximate date of transition from the dry to wet season. The thin lines enclose regions of modulus values greater
than or equal to the 0.95 sample quantile of 1000 bootstrapped scalograms of a red-noise null model fit to the data and are used to define the temporal regions
of significant cycling referred to in the text. The first three scalograms are for the movements of dominants, the second two midranking, and the bottom two
are for the lowest-ranking elephants.
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Fig. S4. Wavelet scalograms of natural logarithmic transformed net displacement time series for five individual elephants that had their locations sampled
every hour, illustrating that the coarser sampling interval used in the main analysis for these five individuals does not change the findings about how the
distribution of modulus power is distributed over frequencies or time (Fig. S3). Larger squared modulus values correspond to warmer colors (values of 1 are given
a red color) and smaller values corresponding to cooler colors (values of 0 are purple). The thick solid line denotes the cone of influence outside of which modulus
values are affected by zero padding and should not be considered; the thick vertical dashed line gives the approximate date of transition from the dry to wet
season. The thin lines enclose regions of modulus values greater than or equal to the 0.95 sample quantile of 1000 bootstrapped scalograms of a red-noise null
model fit to the data and are used to define the temporal regions of significant cycling referred to in the text.
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Fig. S5. Box plots of the distribution of log step lengths (meters) by hour of day drawn from time steps with significant wavelet modulus value at a particular
frequency (a–c) or no significant frequency at all (d). Combined data from the seven elephants show that the differences in (A) one-, (B) two-, and (C) three-a-day
cycles are driven by the timing of periods of rest and movement across a day. (A) Extended periods of low to no displacement (relating to sleeping cycles) occurring
in the early morning, followed by moderate movements across the remaining diurnal period characterize one-a-day cycles of movement. (B) Two-a-day cycling
is characterized by two periods of rest, the first approximately the same time as that in one-a-day cycles with the second occurring midday coinciding with the
hottest time of the day. (C) Three-a-day cycles appear to be a modified version of (b) with different periodicity from the distributions associated with the previous
frequencies. (D) Stepwise displacements during periods without cycling show attenuated periodicity not registered as significant in the analysis. Comparison of
distributions from the same elephant shows the same, but stronger, differentiation.
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Fig. S6. Periodogram and scalogram structure for once-a-day rest diurnal activity from simulated data created using a simple two-mode model of rest and
movement similar to the movement pattern shown in Fig. S5A. (A) Black solid line shows the average normalized periodogram with tapered data and smoothed
using a modified Daniell smoother over the previous and subsequent three data points; lower and upper dashed lines give the 0.05 and 0.95 sample quantiles,
respectively, of the power at each frequency. The theoretical white-noise spectrum is at 1 for all frequencies. (B) Normalized average scalogram of squared
modulus values shown in color with 0 corresponding to purple and 1 corresponding to red, with the cone of influence (see text and ref. 4) given by the black
line. (C) Smoothed periodogram for one realization of a movement path (black line) with the theoretical red-noise spectrum shown by the red line and the
theoretical white noise taking values of 1 for all frequencies. (D) Using the same realized path r(t) analyzed in (C), normalized squared modulus values for specific
time-frequency values are shown in color, with 0 corresponding to purple and 1 corresponding to red. Thick solid line gives the cone of influence; thin solid lines
contain regions of significant squared modulus values different from red noise (5).
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Fig. S7. Periodogram and scalogram structure for twice-daily rest diurnal activity from simulated data created using a simple two-mode model of rest and
movement similar to the movement pattern shown in Fig. S5B. (A) Black solid line shows the average normalized periodogram with tapered data and smoothed
using a modified Daniell smoother over the previous and subsequent three data points; lower and upper dashed lines give the 0.05 and 0.95 sample quantiles,
respectively, of the power at each frequency. The theoretical white noise spectrum is at 1 for all frequencies. (B) Normalized average scalogram of squared
modulus values shown in color with 0 corresponding to purple and 1 corresponding to red, with the cone of influence (see text and ref. 4) given by the black
line. (C) Smoothed periodogram for one realization of a movement path r(t) (black line) with the theoretical red-noise spectrum shown by the red line and the
theoretical white noise taking values of 1 for all frequencies. (D) Using the same realized path r(t) analyzed in panel (C), normalized squared modulus values for
specific time-frequency values are shown in color with 0 corresponding to purple and 1 corresponding to red. Thick solid line gives the cone of influence; thin
solid lines contain regions of significant squared modulus values different from red noise (5).
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Table S1. Proportion of variation in movement data explained by autocorrelation calculated for blocks of time coinciding with NDVI
sampling intervals

Date M54 M5 R28 R22 M31 M46 R37 Avg

11 July 2001 0.42 0.41 0.41 0.35 0.28 0.24 0.35 0.35
21 July 2001 0.22 0.03 0.20 0.53 0.25 0.26 0.24 0.25
1 August 2001 0.34 0.37 0.45 0.08 0.29 0.41 0.29 0.32
11 August 2001 0.46 0.35 0.47 0.18 0.15 0.29 0.17 0.30
21 August 2001 0.30 0.23 0.23 0.15 0.27 0.20 0.22 0.23
1 September 2001 0.23 0.31 0.11 0.10 0.14 0.27 0.23 0.20
11 September 2001 0.20 0.16 0.15 0.25 0.40 0.35 0.20 0.24
21 September 2001 0.29 0.30 0.25 0.20 0.39 0.43 0.24 0.30
1 October 2001 0.04 0.13 0.43 0.25 0.26 0.20 0.38 0.24
11 October 2001 0.07 0.26 0.16 0.31 0.36 0.19 0.46 0.26
21 October 2001 0.23 0.08 0.29 0.21 0.25 0.29 0.27 0.23
1 November 2001 0.17 0.19 0.20 0.07 0.29 0.17 0.08 0.17
11 November 2001 0.11 0.18 0.25 0.11 0.10 0.18 0.16 0.16
21 November 2001 0.11 0.21 0.34 0.15 0.09 0.05 0.13 0.15
1 December 2001 0.19 0.23 0.10 0.06 0.06 0.03 0.03 0.10
11 December 2001 0.27 0.04 0.21 0.20 0.47 0.31 0.17 0.24
21 December 2001 0.14 0.51 NA 0.23 0.14 0.16 0.22 0.23

Data were averaged across all individuals, offering a metric of when autocorrelation in movements of the population was comparatively strong or weak.
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Table S2. Proportion of time (in percentages) that individuals produced autocorrelated movements significantly larger than expected
compared with best-fitting red noise at the indicated frequencies (<1 and >1 cycles per day) and seasons, within and outside
the park

Rank ID

Dry season Wet season

�1 cycle/day �1 cycle/day �1 cycle/day �1 cycle/day

In Out In Out In Out In Out

High M54* 64 NA 0 NA 40 39 0 0
High M5 48 53 0 0 35 61 0 0
High R28* 55 NA 0 NA 52 25 0 0
Mid R22 61 36 0 0 74 81 0 0
Mid M31 48 31 0 30 18 64 0 0
Low R37 79 29 2 14 73 28 0 9
Low M46 36 32 16 28 21 62 31 32

*These elephants spent less than 1% of their time outside protected areas during the dry season.
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Table S3. Proportion of days that elephants visited permanent
water sources

ID Dry, % Wet, %

M54 90 56
M5 97 84
R28 95 72
R22 90 66
M31 72 48
R37 83 34
M46 78 42

Note that percentages are significantly greater during the dry than the wet
season.
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Table S4. Proportion of time (across all frequencies) in which
movement autocorrelation was significantly different from red
noise

Rank ID
Proportion of time in
cyclic movements (%)

High M54 55
High M5 49
High R28 52
Mid R22 66
Mid M31 51
Low R37 47
Low M46 53

An AR(1) model was calculated from wavelet results, showing similar
proportions of the elephants’ movements were autocorrelated regardless of
social status.
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