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Supporting Text 
 

S1. Classification of cyclic motifs into all their possible non-isomorphs 
 
Complete classification of network motifs as they were previously defined for mixed graphs (graphs 
with both directed and undirected edges) [R Milo, S Shen-Orr, S Itzkovitz, N Kashtan, D Chklovskii, 
U Alon, Network Motifs: Simple Building Blocks of Complex Networks  
Science, 298:824-827 (2002)] results in the following sequence of distinct configurations for n nodes, 
where the first item in the sequence corresponds to n=3: 
 

13, 199, 9364, 1530843, 880471142, 1792473955306, … 
 
Hence, identification and classification of network motifs of sizes larger than 7 nodes is 
computationally impractical. We studied cycles in mixed graphs. We define cycles as closed walks that 
end at the node where the walk started visiting each node in the cycle exactly once regardless of the 
directionality of the edges. The number of distinct classes for cycles of n nodes (modulo reflection and 
rotational symmetries) with directed and undirected edges, starting with n=3, follows the sequence: 
 

7, 15, 30, 74, 171, 444, 1138, 3048, 8175, 22427, 61686, 171630, … 
  
Figure S4 shows the seven possible 3-cycle configurations and the fifteen possible 4-cycle 
configurations. It can be shown (see Supplement Section 1) that this sequence follows the equation: 
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where gcd(i,n) is the greatest common divisor of i and n. We deposited this sequence into the The On-
Line Encyclopedia of Integer Sequences (sequence ID A117747). 
 

S2. Cycle search algorithm 
 
The algorithm and pseudo-code we used to identify cycles in directed and mixed networks is the 
following: 
 
Input: A graph G = (V, E) 
Output: All size-k cycles in G. 
for each vertexv in V do 
call Expand(vertexv, currentv, k, depth, subgraph) 

endfor 
Expand(startv, currentv, k, depth, subgraph) 
if (current = startv and depth = k) then  
output subgraph 
return 
elseif (current = startv and depth < k) then  



return 
else  
for each neighborv of currentv do 

A:  if (not in subgraph and neighborv > startv) do 
add neighborv to subgraphs  
k=k+1 

Expand(startv, neighborv, k, depth, subgraph) 
endif 

endfor 
endif 
return 
 
Finding all cycles in large networks using this algorithm becomes exponentially time consuming. To 
deal with this problem we implemented a sampling approach where we placed a probability function 
before the recursive call. Line A in the above pseudocode was replaced with: 
 
A:  if (not in subgraph and neighborv > startv and probability p) 
 
The probability function, for the purpose of sampling, returns a probability to enter the recursive call 
based on a calculation that considers the network size in links and nodes, the size of the loops we are 
searching for, the number of processors available, using a randomly generated number. This is done in 
order to achieve reasonable sampling density across the entire network. 
 
In order to take advantage of the high-performance computing capabilities of BlueGene we parallelized 
the program. We start the recursive expansion of the graph search from each node. If there are more 
nodes in the graph than computing nodes available (in the computing cluster) the code automatically 
divides the job optimally to use all computational resources available using the following strategy: 
 
Input: Vertex v, number of processors available, processor ID, graph G 
Output: YES/NO to expand vertex v  
if (v MOD number of processors) == (processor ID + 1) 

return YES 
else  

return NO 
endif 
 
We implemented three speeding enhancements to improve the efficiency of the original algorithm: 
 

• Sorting the list of nodes by the number of links per node while placing highly connected nodes 
at the bottom/end of the list. 

• Creating an index for fast retrieval of nodes and interactions from a linked list of nodes and a 
linked list of links. 

Assigning a unique integer for each node and not expanding a node if its unique identifier is greater 
than the node we attempt to expand. This concept was introduced before by Wernicke [Sebastian 
Wernicke, A Faster Algorithm for Detecting Network Motifs, Lecture Notes in Computer Science, 
Springer Berlin / Heidelberg, ISSN 0302-9743 Pages 165-177 Volume 3692/2005, Algorithms in 
Bioinformatics, DOI 10.1007/11557067]. 



S3. Construction of network datasets 
We analyzed the 9 directed networks listed below: 
 

1) S. cerevisiae transcriptional regulatory network. Nodes in this network are genes/proteins 
affecting the transcription of other protein by binding to their DNA promoter sequence. Links 
indicate the binding of the former to the latter. The network was downloaded from: 
http://www.mrc-lmb.cam.ac.uk/genomes/madanm/tfcomb/. The network is a part of a study by 
Balaji et al. [Balaji S, Babu MM, Iyer LM, Luscombe NM, Aravind L. Comprehensive analysis 
of combinatorial regulation using the transcriptional regulatory network of yeast. J Mol Biol. 
2006 Jun 30;360(1):213-27] 

 
2) E. coli gene regulatory networks. The network was developed from the experimental 

biomedical literature and was downloaded and reconstructed from: 
http://regulondb.ccg.unam.mx/ (release 5.8) [Gama-Castro S, et al. RegulonDB (version 6.0): 
gene regulation model of Escherichia coli K-12 beyond transcription, active (experimental) 
annotated promoters and Textpresso navigation. 
Nucleic Acids Res. 2008 Jan;36(Database issue):D120-4.] 
 

3) Mammalian cell signaling network in CA1 neurons. Nodes in this network represent proteins or 
small molecules and links represent direct biomolecular mass-action or enzymatic reactions. 
This network was developed manually from experimental biomedical literature and can be 
downloaded from: 
http://www.mssm.edu/labs/maayan/datasets/qualitative_networks.shtml.  
Neutral links or undirected interactions in this network represent known physical protein-
protein interactions where the functional hierarchy effect (source affecting a target) between the 
two components is not clear or known. This is mainly reserved to scaffolding proteins and other 
proteins present in a complex but do not directly participate in information transfer. This 
network was published by our group in 2005 [Ma'ayan A, Jenkins SL, Neves S, Hasseldine A, 
Grace E, Dubin-Thaler B, Eungdamrong NJ, Weng G, Ram PT, Rice JJ, Kershenbaum A, 
Stolovitzky GA, Blitzer RD, Iyengar R. Formation of regulatory patterns during signal 
propagation in a Mammalian cellular network. Science. 2005 12;309(5737):1078-83]. 
 

4) C. elegans neuronal connectivity. Nodes in the network represent non-pharyngeal neurons and 
links represent three types of synaptic connections: chemical synapses, electrical junctions, and 
neuromuscular junctions. The network was downloaded from: 
http://www.wormatlas.org/handbook/nshandbook.htm/nswiring.htm. It was assembled from 
two original publications from 1986 and 1991 and was later updated. A full description of how 
thos network was created can be found at the Worm Atlas.   
 

5) Food web of Little Rock Lake, Wisconsin. Nodes in this network are autotrophs, herbivores, 
carnivors or decomposers whereas links represent food sources. Downloaded from: 
http://www.cosin.org/extra/data/foodwebs/littlerock.txt This network was first published by 
Martinez in 1991 [Martinez, N. D. 1991 Artifacts or attributes? Effects of resolution on the 
Little Rock Lake food web. Ecol.Monogr. 61, 367-392] 
 

6) Functional brain connectivity map was created from time-series fMRI images. Nodes are 
voxels, and a link is established if two voxels are temporally correlated. Directionality was 
determined using coarse-grain causality, as described in "Identifying directed links in large 



scale functional networks: application to brain fMRI", G.A. Cecchi, A.R. Rao, M.V. Centeno, 
M. Baliki, A.V. Apkarian & D.R. Chialvo, BMC Cell Biology 8(Suppl 1):S5 (2007). 

 
7) Air traffic control network. This network was constructed from the FAA (Federal Aviation 

Administration) National Flight Data Center (NFDC), Preferred Routes Database. Nodes in this 
network represent airports or service centers and links are created from strings of preferred 
routes recommended by NFDC; downloaded from: http://www.fly.faa.gov 

 
8) Electrical circuits were extracted from flat format files and benchmark electrical circuits at the 

gate level downloaded from: 
http://www.pld.ttu.ee/~maksim/benchmarks/iscas89/bench/s9234.bench 
 

9) Tracert network. An internet connectivity map was created using the tracert command line 
utility from RedHat Cygwin (UNIX/Linux emulation on Windows). Requests were sent from a 
host in New Jersey, US to randomly generated web-sites containing the following template: 
www.[A-Z][A-Z][A-Z].com. 

 
All nine networks are provided as SOM in the file network.xls where interactions are listed in 3 
columns: the first column is for source nodes, the second column for target nodes, and the third column 
for the effect. If the link has direction the effect is either positive (+) or negative (_) it is included 
where the default is positive (+). We did not consider the sign of the effect for most of the analyses in 
this study. If the link does not have directionality it is considered neutral (0). With neutral interactions 
the designation of source and target nodes is not considered such that the source nodes can be the 
targets and the targets can be the sources. 

 

S4. Spin Model for the computation of the magnetization in cyclic motifs 
 
We define the Hamiltonian for a 3-state spin system with nearest-neighbor interactions as 

∑ ∑
= =

+ −−=
N

i

N

i
iii shssJH

1 1
1β  where a circular topology is assumed, iNi ss =+ , h  is an external field, J is 

the coupling interaction between spins, { }1,0,1−=is  and kT/1=β . The parameters J and h are 
measured in units of kT. Notice that we assume that neutral links (corresponding to si=0) do not 
interact with directed links or among themselves. To control for the varying density of undirected links 
we include a chemical potential term μ (also measured in units of kT), so that the Hamiltonian is 
extended to: 
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where iλ  are the eigenvalues of K . From the partition function we can derive the first and second 
moments of the magnetization in the absence of external magnetic field: 
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as well as the average number of neutral links: 
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Henceforth, we will omit 0=h and simply refer to the second moment of the magnetization and mean 
number of 0=s  spins with ),,(22 NJMM μ=  and ),,( NJLL μ= . In order to test the validity of this 
approach, we estimated a unique pair of parameters ),( kkJ μ for each network k , by minimizing the 
error function: 
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w.r.t kJ and kμ . Notice that N spans a range between 3 and ~15, and therefore this is a two parameter fit 
to ~12 data points The measurements for the biological networks are as follows: the network 
equivalent of the second moment of the magnetization for each cycle of length N is computed 
as ( )22

rl nnM −= , where rln , is the total number of clockwise and counterclockwise arrows along the 

cycle; the density equivalent kL is simply the ratio of undirected links over total links for the entire 
network and is independent of N. 
 
As the eigenvalues of the transfer matrix can be derived analytically and computed using standard 
mathematical packages, it is possible to evaluate directly 2M and L as a function of J , μ and N ; 

these analytic expressions were used to find the values of kJ and kμ (see Table 1) that minimize the 
error kε . In order to simplify the information presented in Fig. 2, we used the values of J and μ  
obtained as explained above for each network, and computed and displayed the easier to interpret 
quantity || M sampling through a classical Monte Carlo method, instead of displaying 2M . 
 

S5. Derivation of the number of non-isomorphic N-cycles 
 
We consider cyclic graphs, with three types of links: neutral (i.e., no arrow), clockwise arrow and 
counterclockwise arrow (see Fig. 1 in the main text and Fig. S1).  
 
Notation: We denote neutral links with a “0”, clockwise links with a “1” and counterclockwise links 
with a “-1”, as indicated in Fig. S1. 
 



Convention: Given a cycle, we write its sequence of links in a clockwise fashion. For example, the 
cycle in Fig. S1 can be written as ‘0 -1 1 1’ if we start from node A. 
 
Symmetries The following symmetry operations take a graph to the same graph, even if its sequence 
representation is different. 
 
Rotations: Given a sequence s, a rotation Rk(s) changes the origin of s to the k-th node from the origin 
going clockwise. s = 0 -1 1 1   R1(s) = -1 1 1 0  R2(s) = 1 1 0 -1  R3(s) = 1 0 -1 1 
 
Flips: Given a sequence s, a flip F(s) changes the order in which we read the cycles from clockwise to 
counterclockwise, simultaneously changing the direction of the directed arrows (see Fig. S2): s = 0 -1 1 
1   F(s) = -1 -1 1 0. 
 
Note that arrows that are clockwise in the original graph become counter-clockwise in the flipped 
graphs. Therefore a flip operation is written by flipping the original sequence ‘0 -1 1 1’ from right to 
left, and changing -1 into 1, 1 into -1 and leaving 0 unchanged. Clearly F(F(s))=s. 
 
Special cycles 
Periodic cycles A periodic cycle s with n nodes is a cycle such that there exists a p < n such that Rp(s) 
= s. For example: s = ‘1 -1 0 -1 1 -1 0 -1’ is periodic with period 4, because R4(s) = s. The largest 
possible period contained in a sequence s1 s2 s3 … sn such that one period starts at position 1 and the 
same period or a subsequent one ends at position k is the gcd(k,n), where gcd(k,n) denotes the greatest 
common divisor between k and n. There are 3p possible sequences with period p for cycles whose 
length n is a multiple of p. These include all periodic sequences with period q such that q is a divisor of 
p. 
Flip invariant cycles A flip invariant cycle is a cycle that is invariant under flips, that is s = F(s). For 
example: s = ‘1 1 0 -1 -1’ is flip invariant because it verifies that F(s) = s. 
Rotation-flip invariant cycles. We call a cycle s rotation-flip invariant, if there exists a rotation of s that 
leads to a cycle that is the flipped version of the original one. In other words, s is rotation-flip invariant 
if there exists a k such that Rk(s) = F(s). For example: s = ‘1 -1 -1 1 0 -1 1’ ; R1(s) =  ‘-1 -1 1 0 -1 1 1’; 
R2(s) = ‘-1 1 0 -1 1 1 -1’ = F(s).  
 
Count of the number of rotation-flip invariant cycles. 
The number of possible rotation flip invariant cycles depends on the parity of the length n of the cycle. 
If n is odd the condition Rk(s) = F(s) imposes some restrictions on the sequence. Take n = 7 and k =3. 
Denoting sj = -sj, the rotation-flip invariant constraints for sequence s = s1 s2 s3 s4 s5 s6 s7 for k=3 are 
shown in Table S1. From Table S1 we see that the constraint in this case is that s2 = 0, given that s2 = -
s2. The same would have happened if k = 0 (in which case s4 = 0), or k = 1 (in which case s3 = 0), etc. 
Therefore, for odd n the number of flip invariant cycles with a rotation at which the invariance obtains 
has only (n-1)/2 degrees of freedom. In effect, one of the elements has to be 0, while one half of the 
remaining n-1 elements are determined by the other (n-1)/2 values. As each of the degrees of freedom 
can take 3 values, the number of Rotation-flip invariant n-cycles for odd n results to be: 3(n-1)/2 
On the other hand, if n is even the condition Rk(s) = F(s) imposes other restrictions on the sequence, 
depending on the parity of k. Take n = 6 and k =3 and k=4. Again, if denoting sj = -sj, the constraints 
for sequence s = s1 s2 s3 s4 s5 s6, and k=3 are shown in Table S2. From Table S2 we can see that the 
constraints are s2 = 0 and s5 =0. However, for k=4, no constrain is imposed. In general, for any even 
k=0,2,…,n, no constraint is imposed, whereas for odd k = 1, 3, …, n-1, two values of the sequence 
have to be zero. Therefore, for even n the number of flip invariant cycles with the rotation k at which 



the invariance obtains has only (n-2)/2 degrees of freedom if k is odd and n/2 degrees of freedom if k is 
even..  
Let’s concentrate now on the even k case. For every even k, there are 3n/2 sequences.  For each of these 
sequences for a given k, there is an equivalent one (via a translation) in the set corresponding to 
another k. Furthermore, except for the all-zero sequence, every sequence has a translation invariant 
within the same set. For example, take n = 4 and k = 2, the corresponding constraints are shown in 
Table S3, and the resulting group of sequences is shown in Table S4. So it can be seen (and proved in 
general) that for the chosen representative of even k, the number of unique (not reachable to each other 
through rotations) is (3n/2-1)/2, where the subtraction of 1 stems from the sequence Z of all zeros. 
In a similar way, it can be seen (and proved in general) that for the chosen representative of odd k, the 
number of unique sequences (i.e., not reachable to each other through rotations) is (3(n-2)/2-1)/2, where 
again the subtraction of 1 stems from the sequence of all zeros. 
Finally, the number of unique rotation-flip invariant cycles is the sum of the ones reached through the 
odd and even k, plus the sequences of zeros, that is: Number of Rotation-flip invariant cycles = 3(n-

2)/2/2+3n/2/2=(2/3) x 3n/2 
 
Count of the total number of non-equivalent directed cycles. 
Let’s call Nn the number of non-equivalent cycles of length n. We first divide Nn into two sets: a set S1 
that is composed of all the sequences that are non flip-rotation invariant and a second set S2 that 
contains only the sequences that are flip-rotation invariant, as shown in the Fig. S3.a. Next we create 
all the Rotations of these sequences, and all the flips of these sequences, leading to the four rows of 
boxes in Fig. S3b. 
 

We will argue that the number of sequences in the first three rows of boxes is equal to ∑
=

n

j

nj

1

),gcd(3 . To 

see this, let’s work out a concrete example with n = 4. We will organize our count in order of periodic 
cycles, starting with cycles of period 1 whose repeat subsequence ends at j=1. There are three such 
sequences (3gcd(1,4)) listed in Table S5 (the first 3 rows of the first column, noted by [j,p], where j=1 is 
the working offset in the sequence, and p=1 indicate the period). 
 
Let’s continue with the periodic sequences that have a period that start at location 1 and a longest 
period (which may be different form the one starting at location 1) ending at j=2. These sequences are 
period 2 sequences (which include all period 1 sequences), are shown in Table S5, and noted with [j,p] 
= [2,2]. Note that some of the resulting 9 (i.e., 3gcd(2,4)) sequences, some are simply Rotations of the 
sequences of period 1,  or Rotations of other the sequences of period 2.  
 
Next we consider j=3 and list the sequences that have the longest period that end at j=3 and start at j=1. 
As n=4 cannot accommodate sequences with period 3, and the sequences of period 2 cannot have a 
period that start at 1 and end at j=3, the only possibility are the periodic sequences of period 1, of 
which there are 3 (3gcd(3,4)). Those are annotated with a [3,2] next to them. We list these sequences in 
the first three rows, considering them rotations of the period 1 sequences discovered for lower values 
of j.  
 
Finally, we have the sequences whose longest period end at location 4, and start at location j=1. These 
are all periodic sequences of period 1, period 2 and period 4. Period 4 is not really a period, because it 
encompasses all the length of the sequence, but we will take here as a convention that if a period 
appears exactly k times in the whole sequence ( 1≥k ) we will consider that sequence periodic. (E.g., 
for n=4 and j=4, k=1.) There are 3gcd(4,4)=81 sequences with period 4, out of which we have already 



seen the 9 sequences with period 2 (which include the 3 sequences with period 1). Those will be 
located in the same row where we located them when we first found them with a lower period, but in 
subsequence columns. This completes the first 6 rows of Table S5. We have to still add the remaining 
72 sequences with period 4 that we haven’t added yet. (We will not do it explicitly here.) Once we 
have added all these sequences, we would have completed the three rows of boxes of Fig. 3b. But to 
complete the count of all the sequences in Fig. 3b, including the fourth row, we still need to add one 
more time the flip-rotation invariant sequences that appear just once in the consideration of the 
periodic sequences. 

We can now assemble the puzzle. The sum ∑
=

n

j
nj

1
),gcd(3 accounts for the upper rows of boxes in Fig. 3b. 

But we still have to add the count of flip-rotation invariant sequences (computed earlier on). This count 
will have to be multiplied by n, given that we have to include all the rotations for those sequences. In 
this way, we obtain: 
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which leads to our final result: 
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Table S6 shows the first 15 elements of the Nn sequence. Figure S4 shows the 7 different 
configurations of 3-node-cycles and the 15 configurations of 4-node-cycles. 
 

S6. Derivation of the magnetization for the case of a network with independent edges 
 
For an n-cycle with random assignment of directed edges and no neutral edges, the magnetization can 
be written in terms of the spins assigned to the edges as: 
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where +m  and −m  are the numer of the counterclockwise (spin 1) and clockwise (spin -1) edges in the 
cycle, respectively. As +m + −m = n, we have that 
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where n is the length of the cycle. The probability of having m+ counterclockwise edges in a cycle of 
length n is given by 
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Case n even and no neutral links in the n-cycle. We will denote the conditional average of the absolute 
value of the magnetization given that we have no neutral links by 0|nM . Writing n=2k, we have 
that 
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That is 
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To find an easier expression for Equation S16, we re-work the two sums between brackets in Eq. 
(S16). For the first sum, we observe that 
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From where the first sum between brackets in Eq. (S16) results: 
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For the second sum between brackets in (S16), we use the identity ⎟⎟
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Making use of the identity  
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we find that 
 

12

0
2

2 −

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑ k
k

j
k

j
k

j      (S21) 

 
Replacing (S18) and (S20) in (S16), we obtain for even n that  
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Case n odd and no neutral links in the n-cycle. Writing n=2k-1, we have that the equivalent of (1) is 
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Using the identity ⎟⎟
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and making use of Eq. (S18) we obtain that  
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Replacing (S25) and (S20) in (S23), we obtain 
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Eqns. (S22), valid for even n, and (S26), valid for odd n, can be summarized in the general formula, 
valid for all n>0: 
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Case any n and finite number of neutral links. Equation (S27) is valid when there are no neutral edges 
in the n-cycles cycle. If there are ν neutral edges in a cycle, the previous equation remains valid, 
provided that we replace ν by n- ν: If we denote the conditional average of the absolute value of the 
magnetization of an n-cycle given that it has exactly ν neutral edges by ν|nM , then it is clear that 
 

0|| νν −= nn MM .  (S28)    
 

If the fraction of neutral links in the whole network p, then the number of neutral links in each cycle 
will be variable, presumable following a binomial distribution with parameters n and p. Therefore, the 
average of absolute value of the magnetization under these conditions is 
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Finally, we can find an asymptotic expression for Eq. S27 for n>>1. Using Stirling formula it can be 
shown that the central binomial coefficient is 
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and therefore 
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S7. Statistics of the edge-edge correlation ρ 
 
To quantify the number of different types of nodes in a directed cycle, we introduced the edge-edge 
correlation ρ for a node, which by definition takes the values “-1” for sinks and sources, “1” for pass-
through nodes and “0” for nodes with at least one neutral/ bidirectional link. In the spin system 
representation of cycles, each spin represents an edge with values 0, -1 or 1 depending on whether the 
edge is neutral or traverses the cycle in a clockwise or counterclockwise direction. Therefore 

1+= ii ssρ . 
Figure S5 shows the distribution of the edge-edge correlation for the different networks and for all the 
cycle lengths considered. Except for the FAA, all the networks exhibit a tendency to have more weight 
in the ρ=-1 bin, consistent with the existence of anti-ferromagnetic interactions. The abundance of sink 
and source nodes in cycles changed with cycle length for the neuronal network, the internet, and the 
electrical-circuit. For other networks, such as the ecosystem foodweb, brain and FAA, ρ remained 
constant for all loop sizes. 

S8. The exclusion principle  
 
One possible explanation for the observed anti-ferromagnetism could be the existence of hubs that 
contain almost exclusively either incoming or outgoing edges. We call this possible organization of in 
and out degree distributions the “exclusion principle”. Clearly, if an exclusion principle is rigorously at 
play, a cycle passing through a node with an incoming arrow, should “exit” the node with an incoming 
arrow as well, making the node a sink for that cycle. (A similar description would apply for sources.) 
A measure of exclusion per node x can be defined as the difference between the in-degree din and out-
degree dout of a node, normalized by the maximum between din and dout (neutral links are not included 
in this calculation). For nodes with a perfect exclusion principle, we would have either x=1 (pure sink 
nodes) or x= -1 (pure source node), and the average 2x  (which we call exclusion degree) over all the 
nodes in the network would be 1. Alternatively, if the exclusion principle didn’t hold and the x-
distribution was uniform across all the nodes, then we expect 33.02 =x . Unimodal distributions with 

the mode of x between -1 and 1 will have 33.02 <x .  
Figure S6 shows the histograms of x for the hub nodes in the upper 10 percentile of the directed degree 
distribution. If an exclusion principle were at play, we would observe bimodal distributions. This is 
indeed the case for some, but not all the networks. For example, tracert has an exclusion degree of 
0.27. Still, the tracert network has a parameter J ~-1 (see Table 1), indicating a clear anti-ferromagnetic 
interaction between edges. In Figure S7 we take another look at the exclusion principle, which includes 
all the nodes in the networks (and not just the 10% most-connected nodes).   We can see a tendency for 
the nodes with largest in-degree or out-degree to align in the diagonal of the plots, indicating that hubs 
have a high exclusion degree. The thickening of the cloud of points towards smaller in- or out-degree 
shows that the exclusion principle is less valid for nodes with intermediate to low values of in and out 
degrees. 
 

S9. Relationship between the exclusion principle and the magnetization 
The scatter graph of the coupling constant J versus the exclusion degree <x2> (Fig. S8a) shows that 
there is a substantial correlation (correlation coefficient r = -0.74) between J and <x2>.  



The correlation is a little stronger (r = -0.82) in the region <x2>>0.75 (Fig. S8b). Hence, if <x2> >0.75 
then the coupling constant J < -0.5. As a rule of thumb we will say that the exclusion principle holds if 
<x2> >  0.75. Following this, we conjecture that the Exclusion Principle leads to Anti-ferromagnetism. 
 
However, the horizontal rectangle in Fig. S8a contains points such that J < -0.5 (which is anti-
ferromagnetic), but the exclusion degree is violated for some of those points. Therefore, we conclude 
that the exclusion principle is a sufficient (but not necessary) condition for anti-ferromagnetism. 
 
Example where the Exclusion Principle leads to Anti-ferromagnetism 
If the exclusion principle were perfectly observed (<x2>=1), then the magnetization of each cycle 
would be minimal. The reason is that if all nodes are either sinks or sources in the original graph (Fig. 
S8c), then they will be sink or sources in any cycle that they participate in. Notice also that in this case, 
there would be no cycle with an odd number of edges. 
 
Examples where Anti-ferromagnetism does not leads to Exclusion Principle 
If the exclusion principle were violated, (<x2> < 0.75), we show that the magnetization of each cycle 
could still be minimal. The reason is that even if there are few sinks and sources, the global 
architecture of the graph can allow for low magnetization cycles. Figure S8d an example of one cycle 
of length 4 (with magnetization = 0) and four cycles of length 3 (with magnetization = 1, i.e., the 
minimal for off length cycles). The exclusion degree in this case is 0.33, but we still have anti-
ferromagnetism (i.e, the magnetization is the minimal it can be). 
 
 
S10. The magnetization of real vs. randomized networks 
 
In Figure 2(e) and (f) of the main paper we plotted the magnetization for the foodweb and signaling 
networks, the in-and-out-degree-preserving (IODP) randomization (red lines), the total-degree-
preserving (TDP) randomization (green line). If Fig. S9 we show the equivalent plots for all the 9 
networks. In all the cases the actual network magnetization is smaller than their randomized 
counterparts, except for the FAA network, for which there is no difference between actual and 
randomized networks. The magnetization pertaining to the TDP randomization is perfectly explained 
by the analytical formula derived earlier in this Supplement. 

S11. Linear Stability Analysis of cycles and feedback loops 
 
To analyze the linear stability of the dynamics on cyclic topologies, we will consider cycles with 
directed links, excluding the case of non-directed/bidirectional links. In such cases, the number of 
sinks is equal to the number of sources. We will separate the case of cycles with at least one source and 
the case of cycles with no sources (and therefore no sinks). The latter case corresponds to feedback 
loops. 
 
Linear stability analysis of non-feedback loop cycles. Consider an n-cycle, with k>1 sources. We will 
assign indexes to the nodes as follows. The first k indexes will enumerate the sources, in no particular 
order. Identifying the pass-through nodes as clockwise (j nodes) and counterclockwise (l nodes), we 
index the j+l pass-through nodes as follows. Starting from source node number 1, and traversing the 
cycle in the clockwise direction, we index the clockwise pass-through nodes with indexes k+1, k+2,…, 
k+j. In a similar way, starting from source node number 1, and now traversing the cycle in the counter-
clockwise direction, we index the counter-clockwise pass-through nodes with indexes k+j+1, k+j+2,…, 



k+j+l. The remaining k sinks in the cycle are assigned indexes n-k+1,…,n. (See Fig. 3a in the main text 
for an example of this indexing scheme.) With this index convention, the dynamical equations for the 
sources are of the form 
 

, 1 .i i i
d x x i k
dt

δ= − ≤ ≤   (S30) 

 
Note that the dynamic equations of the sources are autonomous. We now turn to the dynamic equations 
for the pass-through nodes. Because of the choice of indexes, each pass-through node is activated 
either by a pass-through node with a lower index or by a source node. That is 
 

, , .i i i ir r
d x x x r i k i n k
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δ α= − + < < ≤ −   (S31) 

 
Finally, the sink nodes are activated by either pass-through nodes or by sources whose indexes are 
smaller that the indexes of the sink nodes. The sink node equations are 
 

, , , .i i i ir r it t
d x x x x r t i n k i n
dt

δ α α= − + + < − < ≤   (S32) 

 
In all the equations above, αrs represents the strength with which node s controls node r, and arise from 
the linearization of the (possibly non-linear) dynamical equations around a fixed point that without loss 
of generality can be assumed to be the origin (see next SOM section: Dynamical systems analyses of 
directed networks). The α‘s can be positive or negative. The δ's represents the degradation rate and are 
positive constants. In this way, a linear dynamics on this cycle would be represented by an equation of 
the form 
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The indexing conventions established above forces A to be a lower triangular matrix of the form 
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The linear stability of this system of ordinary differential equations is determined by the real part of the 
eigenvalues of the matrix A. If the maximum real part of the eigenvalues is positive, then the system is 
linearly unstable, and small perturbations around the fixed point will grow exponentially. Conversely, 
if the largest of the real part of the eigenvalues of matrix A is negative, then the system is linearly 
stable, and small perturbations around the fixed point will subside, bringing the dynamical state of the 
system back to the fixed point. As the matrix A for cycles with sinks and sources is lower triangular, 
its eigenvalues are given by the diagonal elements -δ1, -δ2, …, -δn, and therefore non-feedback loop 
cycles are linearly stable for all values of the parameters δ’s and α’s, as stated in Figure 3a. 



  
Linear stability analysis of feedback loop cycles. Consider an n-cycle, with n pass-through nodes. We 
will assign indexes to the nodes as follows. Choosing an arbitrary node as node 1 we index the nodes 
in increasing order as we traverse the cycle in the direction of the links. (See Fig. 3b in the main text 
for an example of this indexing scheme.) As usual, the linearized dynamical equations are  
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where, because of the index convention we chose above, the matrix A is of the form 
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For simplicity, we have assumed that all δ's are all the same, but this assumption can be removed 
without much change in the conclusions. As before, the stability of this system of equations depends 
on the eigenvalues ξ of the matrix A, which are computed as the roots of the characteristic 
polynomial [ ]( ) detp Aξ ξ= − 1 . This determinant can be expanded along the first row of the matrix, to 
yield 
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There are two cases to consider. The first case is the case of positive feedback loops, in which 
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and the maximum real part, corresponding to the most unstable eigenvalue, is 
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The second case is the case of negative feedback loops, in which 
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and the maximum real part, corresponding to the most unstable eigenvalue, is 
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For both negative and positive feedback loop cases, the condition of stability λ < 0, which translates 
into 
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These are the stability conditions of Fig. 3b in the main text. 
 

S12. Dynamical systems analyses of directed networks 
 
Assuming that each node has a dynamic variable associated with it, e.g., the concentration of the 
corresponding protein, we envision a dynamical system of the form 

)(),...,( 1 tbxxfx
dt
dx

iinii
i εξδ +++−= , for ni ≤≤1 , where we assume that each molecular species has 

a uniform degradation rate δ and a production rate bi. The interaction between the different species is 
given by the vector field fi(x’s) and each species is affected by a white-in-time noise ξi of magnitude 
given by ε. If the noise intensity ε were zero, the system would reach a stationary state x0 that balance 
the production, degradation and interactions, and which verifies the equations 0)( 00 =++− iii bfx xδ . 
As is customary, we assume that the deviations away from x0 are not large and linearize the system of 

equations around x0, to obtain )(
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= . We will call  ijij As  the signed adjacency matrix, and will denote it by A~ . In this way, 

if we use 1/δ as the unit of time we obtain that the linearized dynamic equations are given 
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, where we called τ = δ t, λ = α/δ and σ = ε/δ. To avoid divergence 

of the solutions of these linearized dynamic equations, we modify the dissipative term into )sinh( iy−  



which coincides with the original  iy−  for 1<<iy , but creates a nonlinear saturation that avoids 

divergences for 1>>iy . The resulting dynamic equations are: 
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Therefore the previous equations capture the dynamics of directed networks in a general sense. The 
linear term describing the local dynamical properties of each node, A~  is the signed adjacency matrix 
describing the connectivity, and λ is the parameter that determines the relative effects of the 
interactions as compared with the degradation rate. While these equations model the network dynamics 
around a fixed point, large deviations from the fixed points (if they exist) do not produce divergencies 
due to the dissipative nature of the sinh term. Therefore, these equations can capture the effects that 
linear instabilities have on the collective dynamics of coupled nodes beyond small perturbations 
around a fixed point. However specific behaviors such as intermittent bursts of activity that are 
observed in biological (both neuronal and gene) networks are not intended to be captured by these 
equations, and would required detailed information on the specific system. The analysis of the stability 
of the system for all the actual and randomized networks is shown in Figure S16. 
 
 

S13. Link degree and bifan degree hub removal 
 
In order to further analyze the effect of the link degree hubs, which tend to be exclusively out- or in-
link nodes, on the anti-ferromagnetism properties of the networks, we implemented an algorithm to 
construct surrogate networks where the hub structure was progressively dismantled. Following the 
same rationale, we also created similar surrogate networks based on the elimination of bifan degree 
hubs, i.e. nodes that contribute to the formation of many bifans.. 
The algorithms for link-hub and bifan-hub removal are as follows: 
A. Link degree hub removal 

1. Find the nodes with maximum out-link and in-link degrees 
2. Construct a first surrogate network, by reassigning all the links (i.e. out- and in-links) for both 

top out- and in-hubs randomly among all nodes. 
3. Construct a second surrogate network by randomly reassigning the same number of links as in 

(1), by picking links at random, as opposed to links from the top two hubs. 
4. Compute the magnetization for loops of size 3 and 4, for the first and second surrogate 

networks. 
5. Repeat steps (1-4) until a predetermined number of link-hubs are removed. 

 
B. Bifan hub removal 

1. Find the nodes with maximum out-bifan and in-bifan degrees. The out-bifan degree of a node is 
defined as the number of bifan motifs that include the node as source, computed as: 

[ ] ( ) ( )[ ]k
IO

kkk
TT

k DADAAAAB 12 )(2)( −−−=  
where A  is the adjacency matrix, k  is the node, ),( IOD  the out- and in-link degree vectors, and 
1  is a vector of 1's.  

2.  The in-bifan degree of a node is defined as the number of bifan motifs that include the node as 
asink, computed by exchanging A  with TA , and )(O  with )(I  in the equation above. 



3.   Construct a first surrogate network by randomly reassigning all the links (i.e. out- and in-links) 
for both top out- and in-bifan hubs among all nodes. 

4. Construct a second surrogate network by randomly reassigning the same number of links as in 
(1), by picking links at random, as opposed to links from the bifan hubs. 

5. Compute the magnetization for loops of size 3 and 4, for the first and second surrogate 
networks. 

6. Repeat steps (1)-(5) until a predetermined number of bifan-hubs are removed. 
 
C. Computation of magnetization for loops of size 3 and 4 
In all cases the neutral links of the networks were converted to directed links by assigning random 
directionality. For each network, the process was repeated to generate several realizations for 
computing population statistics. For simplicity and ease of computation, we only analyzed the effect of 
hub removal on the magnetization of loops of size 3 and 4, which can be done efficiently using linear 
algebra. For loops of size 3, the magnetization can be computed as: 

[ ] QPQPM /)(133 −+=  
where ( )[ ] 3/)3TAAtrQ +=  is the total number of triangles, regardless of orientation, and ( )3AtrP =  is 
the total number of directed feedback loops. For loops of size 4, the magnetization is: 
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