Supporting Information

Kedzierska et al. 10.1073/pnas.0810274105

Fig. S1. Thermostability of the H2D^b-NP₃₆₆ and H2D^b-NPM6A complexes. Thermostability measurements of recombinant class I complexes were performed using circular dichroism. The measurements for the thermal melting experiments were made at 218 and 220 nm for H2D^b-NP₃₆₆ and H2Db-NP^{M6A}, respectively, at intervals of 0.1 °C at a rate of 1 °C/min from 20 °C to 90 °C. The midpoint of thermal denaturation (T_m) for each protein was determined at the point at which 50% unfolding was achieved. The peptide–MHC complex with NP₃₆₆ WT epitope had a T_m of 51.8 ± 0.7 °C, irrespective of the concentration of the complex used for the thermostability assay. The H2D^b bound with the variant NPM6A epitope shows a higher thermostability with a T_m of 63.3 ± 0.7 °C, irrespective of the concentration of the complex used for the thermostability assay.

Fig. 52. TCR avidity for pMHC complex by CD8 β dependence and tetramer dilution assay. pMHC-TCR avidity was assessed by two measures of the overall avidity: CD8 β dependence (*A* and *B*) and tetramer dilution assays (*C*). Splenocytes (*A* and *C*) or BAL samples (*B*) were obtained from mice sampled on day 10 after infection with either the WT HK or mutant HK-NPM6A virus. (*A* and *B*) Lymphocytes were precultured in the presence or absence of anti-CD8 β antibody (53.5–8) (10 μ g/mL). Cells were then stimulated for 5 h with peptide, IL-2, and GolgiStop in the presence or absence of anti-CD8 β antibody (5 μ g/mL). After stimulation, cells were analyzed for CD8 and IFN- γ expression. Shown is the percentage of CD8⁺ cells producing IFN- γ after stimulation in the presence of anti-CD8 β blocking mAb. (*C*) Cells were stained with either the D^bNP₃₃₆ or D^bNPM6A tetramers at 3-fold dilutions in the presence of NaAz, then washed and incubated with anti-CD8-FITC mAb. The progressive diminution in tetramer staining was measured. The Td50 value defines the time to 50% tetramer loss. Data represent mean \pm SD for groups of 5 mice.

Fig. S3. TCRV β usage in D^bNPM6A⁺ CD8⁺ T cell responses. WT D^bNP₃₆₆ (*A*) or mutant NPM6A (*B*) CD8⁺ T cell responses were generated by infection with the WT HK (*A*) or HK-NPM6A (*B*) viruses. Splenocytes were stained with the D^bNP₃₆₆ (*A*) or D^bNPM6A (*B*) tetramers; anti-CD8 and anti-V β mAbs were conjugated with FITC, then the tetramer⁺CD8⁺ cells were analyzed for profiles of V β staining. Shown are mean ± SD values for groups of 4–5 secondarily-infected mice.

Table S1. TCR repertoire diversity of M6A⁺CD8⁺ T cells during primary (i.p.) and secondary (i.p. \rightarrow i.n.) influenza-specific responses

Statistic	Primary M6A ⁺ CD8 ⁺	Secondary M6A ⁺ CD8 ⁺		
Mice analyzed	4	6		
TCRs sequenced	466	530		
Predominant J β region	251, 254	254		
Predominant CDR3 β length, aa	8, 9	8, 9, 10		
Different sequences	29	26		
Repeated sequences	6	3		
$V\beta$ per mouse	2.8	2.2		
Total sequences per V β	42.4	40.2		
Clonotypes per V β	3.3	2.4		
Clonotypes per mouse	9.0	5.0		
Clonotypes with basic amino acid (R, K or H), %	79.3	96.2		

Predominant CDR3 β and J β is defined as > 15%.

PNAS PNAS

Table S2. Frequency of TCR β amino acid sequences in M6A⁺CD8⁺ T cell responses

CDR3 β region	Jβ	Amino acid	Frequency					
			M1	M2	M3	M4	M5	M6
Vβ4								
SQERGRGNTL	153	10			55			
SQKTVNQAP	1\$5	9	22					
SQRQGYAEQ	251	9	12					
Vβ5.1/5.2								
SLDRKYEQ*	256	8					1	41
SLDRLYEQ	256	8						42
SLELKNTGQL	252	10					36	
SLGLKNTGQL	252	10					1	
SPHWGVYAEQ	251	10					3	
Vβ8.1/8.2								
GDGGRDTQ	2\$5	8				43		
GPGGARSERL	154	10				2		
RDKNTEV	151	7			2			
SDAGRNQAP	155	9				5		
SDTGRRGAETL	253	11			37			
Vβ12								
RLGNYAEQ	251	8	11					
SLRGGASDY	152	9			53			
RGGNYAEQ	251	8	2					
RGGNHAEQ	251	8	1					
RQGNYAEQ	251	8		26				
RQRLGGTYEQ	256	10	5					
Vβ13								
SFRGRGTEV	151	9				1		
SFRGRQNTL*	254	9		32		33	31	
SLRGALAEQ	251	9		4				
SLRGLNQAP	1\$5	9				8		
SLRGRQNTL	254	9					14	
SLWTTNTEV	151	9						38
RNRGRQNTL*	254	9		5			5	
Total sequences			53	67	147	92	91	121

M: individual mouse. Numbers of sequences for each clonotypes are shown. Please refer to ref. 1 for $D^bNP_{366}^+CD8^+$ TCR repertoire data. Secondary TCR repertoires are shown.

*Clonotypes correspond to repeated sequences.

PNAS PNAS

1. Kedzierska K, Turner SJ, Doherty PC (2004) Conserved T cell receptor usage in primary and recall responses to an immunodominant influenza virus nucleoprotein epitope. Proc Natl Acad Sci USA 101:4942–4947.

Table S3. Data collection and refinement statistics for D^bNP-M6A

Data collection statistics				
Temperature	100 K			
Space group	P1			
Cell dimensions (a,b,c), Å	57.71, 69.69, 72.38, 99.94°, 111.04°, 110.48°			
Resolution, Å	50–2.50			
Total no. of observations	80,021 (8,859)			
No. of unique observations	30,522 (3,335)			
Multiplicity	2.6 (2.6)			
Data completeness, %	94.9 (93.9)			
I/σ_1	13.70 (5.04)			
R _{merge} , %*	9.4 (27.3)			
Refinement statistics				
Nonhydrogen atoms				
Protein	6,385			
Water	35			
Resolution, Å	2.50			
R _{factor} , % ⁺	22.0			
R _{free} ,% [†]	28.5			
rmsd from ideality				
Bond lengths, Å	0.011			
Bond angles, °	1.416			
Ramachandran plot, %				
Most favored region	87.0			
Allowed region	11.5			
Generously allowed region	1.5			
B factors, Å ²				
Average B value	14.6			
rmsd of bonded B	0.7			

Values in parentheses are for the bin of highest resolution (approximate interval = 0.5 Å).

PNAS PNAS

* $R_{merge} = \Sigma |I_{hkl} - [I_{hkl}] | / \Sigma |_{hkl}$. * $R_{factor} = \Sigma_{hkl} || F_o | - | F_c || / \Sigma_{hkl} | F_o |$ for all data except $\approx 10\%$, which were used for R_{free} calculation.