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SI Methods
Development of Metagene Predictor. From publicly available gene
expression data collections, all early stage colon cancer patients
(stages I and II) with known survival outcomes were identified,
which constituted the initial training data set (n � 52) for the
development of a genomic predictor of disease recurrence. Two
data sets were used for validation: an independent data set of 55
patients with stage I/II disease (1) and a plasmode data set (n �
73, GSE10402) representing consecutive patients with early
stage colon cancer treated at the University Medical Center
Göttingen, Germany, which was used to independently validate
the 50-gene predictor in a blinded manner.

Before statistical modeling, data sets with appropriate clinical
data were chosen for the training set. These include GSE5206
(n � 100) and GSE2138 (n � 20). Only early stage (stages I and
II) patient samples were identified and isolated from these two
data sets. These subsets of patients from both data sets were later
merged using the DWD method. The entire merged data set was
rearranged based on patient recurrence score, and appropriate
class labels were assigned a zero for all of the patients with no
recurrence (n � 45) and a one for all of the patients with
recurrence (n � 7) to create an initial training set that represents
two distinct biological states. This training set was further
filtered based on P values obtained from multiple t tests, and 91
specific genes with significant survival effects (P � 0.001) were
selected for Bayesian binary regression analyses. Bayesian fitting
of binary probit regression models to the training data then
permits an assessment of the relevance of the metagene signa-
tures in within-sample classification, and estimation and uncer-
tainty assessments for the binary regression weights mapping
metagenes to probabilities. To guard against over-fitting given
the disproportionate number of variables to samples, leave-one-
out cross validation analysis was performed to test the stability
and predictive capability of the model. Finally, a metagene
predictor consisting of 50 genes was developed using the afore-
mentioned methodologies. To understand the full meaning of
the biology captured in the 50 genes, within the context of the
entire biological system, GATHER (http://gather.genome.duke-
.edu/) was used. GATHER is a tool that integrates various forms
of available metadata to elucidate the biological context within
molecular signatures produced from high-throughput data.
GATHER also has the capacity to discover novel functions of
gene groups by integrating annotations from evolutionary ho-
mologs and other genes related through protein interactions or
literature networks. GATHER further annotates the character-
istics of the genes with respect to data sets from multiple systems,
helping synthesize evidence to develop or reinforce hypotheses.
Finally, the accuracy with which GATHER can infer novel
functions of signatures is interpreted through a Bayesian statis-
tical model.

Validating the 50-Gene Classifier. First, an optimal threshold re-
currence score value of 0.76 was chosen based on a receiver
operated characteristic (ROC) analysis, and was used as the
predefined ‘cut-point’, to dichotomize samples into low risk
(Recurrence Score �0.76) and high risk (Recurrence Score
�0.76).

Given a training set of expression vectors (of values across
metagenes) representing two biological states (in this case,
patient samples with recurrence and with no recurrence), a
binary probit regression model is estimated using Bayesian
methods. Before applying these methods, the initial training set

and the validation sets [E-MEXP-1224 (ref. 1) and GSE10402
(ref. 2)] were normalized using the DWD method. Standard
Kaplan-Meier mortality curves and their statistical significance
were generated from the predictive probability values of patients
using GraphPad software. For the Kaplan–Meier survival anal-
yses, the survival curves were compared using the log-rank test.
This test generates a two-tailed P value testing the null hypoth-
esis that the survival curves are identical in the overall popula-
tions. Therefore, the null hypothesis is that the populations have
no differences in survival.

Univariate and Multivariate Analysis. In an effort to fully under-
stand the prognostic significance of the 50-gene predictor for
colon cancer recurrence, univariate and multivariate analyses
were performed using Cox proportional hazard models. As seen
in Table 3, only factors that were significant in a univariate
analyses were used in the multivariate models. Analysis included
continuous covariates for age, and dichotomous covariates for
gender, stage of disease, and a prediction of recurrence (based
on the 50-gene predictor). No adjustment for multiple testing
was necessary. Hazard ratios and 95% confidence intervals are
reported. P values are based on likelihood ratio tests, and
analyses are performed using the statistical package R (3).

Cross-Platform Comparison. An in-house program that has been
previously validated (4), Chip Comparer, was used to map probe
sets (http://tenero.duhs.duke.edu/genearray/perl/chip/chipcom-
parer.pl) across various generations and platforms of Affymetrix
GeneChip (http://www.affymetrix.com) and spotted arrays.
Also, where needed, to reduce the likelihood of batch effects, a
normalizing algorithm, ComBat (http://statistics.byu.edu/
johnson/ComBat/) was applied (5). Because several different
microarray platforms were used in the data sets (HG-U133A,
HG-U133 two plus, and HG-U95Av2), the probe sets should be
matched to the identical genes. Each probe set ID in given
Affymetrix gene chips were first mapped to the corresponding
LocusID by parsing local copies of LocusLink and UniGene
databases to identify any inherent relationship between the
GenBank accession number associated with each probe set
sequence and its corresponding LocusID. This was followed by
matching probe sets from different gene chips that share the
same LocusID.

ComBat Method. When combining data sets from different plat-
forms and different experiments, non-biological experimental
variation or ‘‘batch effects’’ are most commonly faced by re-
searchers. It is inappropriate to combine data sets without
adjusting for batch effects. To reduce the systematic differences
from different data sets and integrate gene expression from all
data sets, ComBat method (http://statistics.byu.edu/johnson/
ComBat/) was applied. ComBat method applies either paramet-
ric or non-parametric empirical Bayes framework for adjusting
data for batch effects that is robust to outliers in a given data set.
The location (mean) and scale (variance) model parameters are
specifically estimated by pooling information across genes in
each batch to shrink the batch effect parameter estimated toward
the overall mean of the batch effect estimates. This method was
applied to data sets consisting of normal colon samples and
tumor samples separately.

Colon Cancer Cell Lines. Fourteen colon cancer cell lines (COLO-
320 HSR, DLD-1, HCT115, HCT116, HT29, LS174T, LS180,

Garman et al. www.pnas.org/cgi/content/short/0806674105 1 of 9

http://www.pnas.org/cgi/content/short/0806674105


RKO, SW48, SW403, SW1116, SW1417, SW1463, and WiDr)
that were commercially available were grown as recommended
by the supplier (American Type Culture Collection). Culture
media RPMI 1640 was used for COLO-320 HSR, HCT 15 and
DLD-1; Leibovitz-15 (L-15) was used for SW1417, SW48,
SW1116, SW403 and SW1463; Modified Essential Eagle Me-
dium was used for RKO, LS174T, LS180, and WiDr; McCoy 5A
was used for HT-29 and HCT-1116. All tissue culture media and
were obtained from Sigma–Aldrich and was supplemented with
10% Fetal Bovine Serum (FBS). For the drug-sensitivity assays,
celecoxib was obtained from LKT Laboratories Inc., the
LY294002 was obtained from Cayman Chemical, and the retinol,
and sulindac were obtained from Sigma–Aldrich. 5-FU and
oxaliplatin were obtained from the Duke University pharmacy.

We hypothesized that cell lines with a high Recurrence Score
would be more sensitive to treatment with targeted therapy. We
also predicted that treatment would reverse the high risk phe-
notype in gene expression analysis. To classify cell lines, we
measured genome-wide expression in the 14 colon cancer cell
lines using the Affymetrix U133A Plus 2.0 GeneChip. Total
RNA was extracted from the cells with RNeasy kits (Qiagen).
The RNA quality was assessed with the use of a bioanalyzer
(Agilent 2100 model). Hybridization targets were prepared from
the total RNA according to standard Affymetrix protocols.
‘Recurrence Scores’ were generated for the cell lines and the
predefined (from the training set) threshold value was then used
to dichotomize the cell lines into low and high risk phenotypes.
In vitro cell proliferation assays were used to demonstrate the
mean percent sensitivity when the highest concentration of drug
(celecoxib, retinol, LY294002, sulindac, 5-FU, and oxaliplatin)
was used in each cell line as the basis for comparisons of
sensitivity, between high and low recurrence risk groups, for
each of the drugs tested. Finally, in the cell lines with high
Recurrence Scores, 8 h after treatment with targeted drugs, gene
expression profiles were re-assessed to determine if the high-risk
phenotype had been reversed.

In Vitro Drug Sensitivity Assays. The cell proliferation assays for the
14 colon cancer cell lines profiled by gene array analyses included
growth inhibition measurements using standard colorimetric
assays. Cells were plated in 96-well assay plates at a density of
5,000 cells per well. After incubating for 24 h at 37°C, drugs were
added to each well at specific concentrations. Cells were grown
in the presence of drugs for an additional 96 h. Celecoxib was
used at concentrations of 0.1, 5, 25, 50, and 100 (�mol/l);
LY294002, a PI3Kinase inhibitor was used at concentrations of
0.1, 1, 10, 20 and 200 (�mol/l); retinol was used at concentrations
of 0, 0.1, 1, 5, 10, and 50 (�mol/l); sulindac was used at
concentrations of 0, 0.1, 1, 10, 100, and 1,000 (�mol/l); 5-FU and
oxaliplatin were used at concentrations of 0, 0.1, 1, 5, 10, and 20

(�mol/l). All concentrations were micromolar. Sensitivity to
celecoxib, LY294002, retinol, sulindac, 5-FU, and oxaliplatin was
determined by quantifying the percent reduction in growth at
96 h using the standard MTT Cell Proliferation Kit from Roche
Applied Science. A Perkin–Elmer Victor 3 Multilabel Plate
Reader was used to determine UV absorbance. All experiments
were repeated at least three times.

Cell and RNA Preparation. Total RNA was extracted using the
Qiashredder and Qiagen Rneasy Mini kits. Quality of the RNA
was checked by an Agilent 2100 Bioanalyzer. The targets for
Affymetrix DNA microarray analysis were prepared according
to the manufacturer’s instructions. Biotin-labeled cRNA, pro-
duced by in vitro transcription, was fragmented and hybridized to
the Affymetrix HG-U133A Plus 2.0 GeneChip arrays at 45°C for
16 h and then washed and stained using the GeneChip Fluidics.
The arrays were scanned by a GeneArray Scanner and patterns
of hybridization were detected as light emitted from the fluo-
rescent reporter groups incorporated into the target and hybrid-
ized to oligonucleotide probes. All analyses were performed in
a MIAME (minimal information about a microarray experi-
ment)-compliant fashion, as defined in the guidelines established
by Microarray and Gene Expression Data (MGED) Society.

RT-PCR Analysis. The top 10 differentially expressed genes from
among the 50-gene model were chosen for further validation
using real-time PCR. Briefly, the methods involved Taqman
(Applied Biosystems) custom arrays, a 384-well micro fluidic
card that enables 384 real-time PCR reactions to be performed
simultaneously without the use of liquid-handling robots or
multichannel pipettes. The array is designed for a two-step
RT-PCR. In the reverse transcription (RT) stage, total RNA
extracted from each of the seven high risk and seven low risk cell
lines are reverse transcribed into cDNA using random primers
from the High Capacity cDNA Reverse Transcription Kit (Ap-
plied Biosystems). One thousand ng of total RNA were tran-
scribed in a 25 �l reaction. After cDNA synthesis, 25 �l of
RNase/DNase-free water was added. For each cell line, a total
of four replicate samples were generated. For PCR, Taqman
(Applied Biosystems) gene expression assays (including 18 s used
as the manufacturing control) were preloaded into each of the
wells of the array. Sample-specific PCR mix was generated by
adding 50 �l of the Taqman Universal Master Mix (Applied
Biosystems) to the 50 �l of cDNA plus water reactions. One
hundred �l were pipetted into each port of the Taqman array and
run on the 7900HT Fast Real-Time PCR System with the Low
Density Array Block (Applied Biosystems). After PCR, gene
targets were analyzed by assessing Ct values after normalization
to GAPDH to compare quantitative expression values between
the low risk and high risk cell lines.
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Fig. S1. Accuracy of the 50-Gene Model. The 50-Gene Model successfully predicted recurrence with an accuracy of 90.3%. In this leave-one-out validation, of
the cases with actual recurrence (in red), all but one had a high recurrence score. Similarly, all but two of the patients who were disease free (in blue) were also
predicted accurately. The cut-point for this analysis was based on the ROC analysis.
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Fig. S2. The 50-Gene Model of recurrence by stage of disease. The 50-Gene predictor successfully predicted recurrence for both stage I and stage II colon cancer.
When separated by stage, accuracy for stage I was 90.0% and for stage II was 96.6%.
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Fig. S3. The Connectivity Map computationally matches drugs likely to be effective based upon a core gene expression profile. Represented here is the list of
drugs identified in such an analysis, based upon the 50-Gene Model.
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Fig. S4. Application of 50-Gene Model to 14 colon cancer cell lines. Gene expression data from the 14 cancer cell lines listed was used and Recurrence Scores
estimated for each cell, using the 50-Gene Model. The cell lines with high Recurrence Scores are clustered on the upper right, and those with low Recurrence
Scores are on the lower left.
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Fig. S5. Linear regression analyses of the probability of recurrence phenotype/recurrence scores in colon cancer cell lines and in vitro sensitivity to individual
therapeutic agents reveal a significant correlation for COX2 (celecoxib) (P � 0.03) and PI3kinase inhibition (LY294002) (P � 0.02), suggesting that specific COX2
and PI3Kinase inhibitors could be valuable as initial agents in therapeutic intervention studies, involving early stage colon cancer patients at high risk for disease
recurrence.
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Table S1. The demographic and clinical characteristics of the patients included in the development and validation of the 50-gene
predictor of disease recurrence

Training set (n � 52) Independent validation (n � 55) Blinded validation (n � 73)

Age, years
Median 68 64.5 69
Range 40–87 Unknown 28–92
Mean � SD 66.5 � 11.5 63.3 � 11.5 67.0 � 13.0
Sex
Male 28 (54%) 33 (60%) 54 (74%)
Female 24 (46%) 22 (40%) 19 (26%)
Histologic type
Adenocarcinoma 52 55 73
TNM Stage

0/1 20 (38%) 11 (20%) 0
2 32 (62%) 44 (80%) 33 (45%)
3 0 0 40 (55%)

Recurrence 7 (13%) 26 (47.2%) 10 (14%)
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Table S2. The genes that constitute the predictor of colon cancer recurrence

Probe ID Gene symbol Gene title

1598_g_at GAS6 growth arrest-specific 6
200917_s_at SRPR signal recognition particle receptor (’docking protein’)
201835_s_at PRKAB1 protein kinase, AMP-activated, beta 1 non-catalytic subunit
202052_s_at RAI14 retinoic acid induced 14
202619_s_at PLOD2 procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2
202620_s_at PLOD2 procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2
202723_s_at FOXO1 forkhead box O1
202848_s_at GRK6 G protein-coupled receptor kinase 6
203508_at TNFRSF1B tumor necrosis factor receptor superfamily, member 1B
204430_s_at SLC2A5 solute carrier family 2 (facilitated glucose/fructose transporter), member 5
204629_at PARVB parvin, beta
205868_s_at PTPN11 protein tyrosine phosphatase, non-receptor type 11 (Noonan syndrome 1)
207495_at RAB28 RAB28, member RAS oncogene family
208424_s_at CIAPIN1 cytokine induced apoptosis inhibitor 1
210405_x_at TNFRSF10B tumor necrosis factor receptor superfamily, member 10b
210495_x_at FN1 fibronectin 1
210809_s_at POSTN periostin, osteoblast specific factor
211251_x_at NFYC nuclear transcription factor Y, gamma
211628_x_at FTHP1 ferritin, heavy polypeptide pseudogene 1
211719_x_at FN1 fibronectin 1
212113_at LOC552889 hypothetical LOC552889
212437_at CENPB centromere protein B, 80kDa
212464_s_at FN1 fibronectin 1
212656_at TSFM Ts translation elongation factor, mitochondrial
212775_at OBSL1 obscurin-like 1
213256_at MARCH3 membrane-associated ring finger (C3HC4) 3
213446_s_at IQGAP1 IQ motif containing GTPase activating protein 1
213799_s_at PTPRA protein tyrosine phosphatase, receptor type, A
214048_at MBD4 methyl-CpG binding domain protein 4
214279_s_at NDRG2 NDRG family member 2
214827_at PARD6B par-6 partitioning defective 6 homolog beta (C. elegans)
215127_s_at RBMS1 RNA binding motif, single stranded interacting protein 1
215210_s_at DLST /// DLSTP dihydrolipoamide S-succinyltransferase (E2 component of 2-oxo-glutarate complex)
216205_s_at MFN2 mitofusin 2
216442_x_at FN1 fibronectin 1
217625_x_at — Homo sapiens, clone IMAGE:3851018, mRNA
217818_s_at ARPC4 actin related protein 2/3 complex, subunit 4, 20kDa
218382_s_at U2AF2 U2 small nuclear RNA auxiliary factor 2
218433_at PANK3 pantothenate kinase 3
219408_at PRMT7 protein arginine methyltransferase 7
219736_at TRIM36 tripartite motif-containing 36
219878_s_at KLF13 Kruppel-like factor 13
221463_at CCL24 chemokine (C-C motif) ligand 24
221518_s_at USP47 ubiquitin specific peptidase 47
221899_at PFAAP5 Phosphonoformate immuno-associated protein 5
221926_s_at IL17RC interleukin 17 receptor C
222020_s_at HNT neurotrimin
38340_at HIP1R /// LOC728014 huntingtin interacting protein 1 related /// similar to huntingtin interacting protein 1 related
39835_at SBF1 SET binding factor 1
47571_at ZNF236 zinc finger protein 236

There are two probes (202619_s_at and 202620_s_at) that represent splice variants for PLOD2.
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