Supporting Information

Konstantinov et al. 10.1073/pnas.0810305105

SI Text

Materials and Methods

Extraction and Purification of Surface Layer Proteins. One hundred milliliters of overnight Lactobacillus acidophilus NCFM and L. acidophilus NCK1377-CI were centrifuged (8,000 \times g for 20 min at 4 °C) followed by washing once with cold distilled water. The pellets were suspended in 5 M LiCl at 4 °C (1 mL of LiCl, 10 mg of biomass) followed by slight stirring for 15 min. Supernatant $(\approx 60 \text{ mL})$ was harvested after centrifugation. Dialysis of the supernatant against distilled water was conducted in a 4 °C cold room with frequent changes of the water during the first 4 h of dialysis for the total duration of dialysis of 24 h. During dialysis, a white precipitate appears that is characteristic of reassociated unsoluble paracrystalline S layers. The precipitate was harvested by centrifugation (40,000 \times g for 20 min at 4 °C). The pellet of the corresponding S layers was then resuspended and stirred in 1 M LiCl for 15 min at 4 °C (10 mL of LiCl per pellet) followed by centrifugation to $40,000 \times g$ for 20 min at 4 °C. Each pellet (pure S layer) was washed by 15 mL of cold sterile distilled water and stored at -20° C before further use.

Dendritic Cell (DC)-Driven Th1/Th2 Differentiation. Immature DCs (iDCs) were cultured from monocytes of healthy donors in Iscove's Modified Dulbecco's Medium (GIBCO), supplemented with 10% FCS (BioWithaker), 500 units/mL IL-4, and 800 units/mL GM-CSF (Biosource). At day 6, DC maturation was induced with varying concentrations of L. acidophilus NCFM cells, NCK1377-CI cells, or purified S layer proteins from NCFM (SlpA-dominant) at a concentration 1 μ g/mL and both with and without LPS (10 ng/mL). The following positive controls were included in the assay: (i) 10 ng/mL Escherichia coli LPS (mixed Th1/Th2 response) and (ii) 10 μ g/mL PGE2 and 10 ng/mL LPS (Th2). After 2 days, DCs were washed and incubated with autologous CD45RA⁺/CD4⁺ T cells (5 \times 10³ DC/20 \times 10³ T cells). In parallel, DCs were analyzed for expression of CD86 maturation marker (BD PharMingen) by flow cytometry. At day 5, recombinant IL-2 (10 units/mL) was added, and the cultures were expanded for the next 7 days. To determine cytokine production by Th cells, at day 12–15 quiescent T cells were restimulated with 10 ng/mL phorbol 12-myristate 13-acetate and 1 μ g/mL ionomycin (both Sigma–Aldrich) for 6 h. After 1 h, 10 μ g/mL Brefeldin A (Sigma–Aldrich) was added to the T cells. Single-cell production of IL-4 and IFN γ was determined by intracellular flow cytometric analysis. Cells were fixed in 2% paraformaldehyde, permeabilized with 0.5% saponin (Sigma– Aldrich) and stained with anti-human IFN γ –FITC and antihuman IL-4–phycoerythrin (BD PharMingen).

DC Binding by Bacteria. *L. acidophilus* NCFM and NCK1377-CI cells ($\approx 1 \times 10^9$ cfu/mL) were labeled by incubation with FITC (0.5 mg/mL) in PBS for 1 h at room temperature. The FITC-labeled bacteria were washed 3 times to remove unbound FITC. Immature DCs, CHO, or CHO–DC-SIGN cells (5×10^4) were preincubated with neutralizing antibody to DC-SIGN (AZN-D1), or EDTA (10 mM) in TSM buffer [20 mM Tris, 150 mM NaCl, 1 mM CaCl₂, and 2 mM MgCl₂ (pH 8.0)] plus 0.5% BSA for 10 min at room temperature. Thereafter, the FITC-labeled bacteria (bacteria:cell ratios of 1,000:1 to 1:10) were added and incubated for 45 min at 37 °C. After washing, the cells were analyzed by means of flow cytometry and gated for large cells in the forward scatter/side scatter, excluding unbound bacteria, and using FACScan analysis software (Becton and Dickinson).

Fluorescent Microscope. *L. acidophilus* NCFM (SlpA-dominant) and NCK1377-CI, the SlpA-knockout mutant (SlpB- dominant), were labeled with FITC as described above. DCs were incubated with the 2 bacteria for 45 min at 37 °C, spotted onto poly(L)-lysine-coated glass slides, and stained in red color by incubation with 4-di-10-ASP (DiA; Molecular Probes). The image analysis was performed on a Nikon Eclipse E800 fluorescent microscope.

Statistics. Data are expressed as means \pm SD. Data were analyzed for statistical significance by using ANOVA followed by an unpaired Student's *t* test to compare either different groups of multiple datasets or just 2 sets of data or variables between 2 groups, respectively. A *P* value of <0.05 was considered to be significant.

Fig. S1. L. acidophilus NCFM binding to iDCs is concentrations-dependent. The ligation of L. acidophilus NCFM to iDCs at different ratios was analyzed by FACScan (SI Materials and Methods).

IAS PNAS

Fig. S4. *L. acidophilus* NCFM (SlpA⁺) and NCK1377-Cl (SlpB⁺) activate Toll-like receptor (TLR)2 at similar levels. HEK-293 cell line transfected with TLR2 or TLR4 was incubated with TLR2 agonist PAM3CSK (PAM), TLR4 agonist LPS, or with NCFM and NCK1377-Cl at different ratios (1:1,000, 100:1, 1:10; HEK-TLR2 or 4:bacteria). Representative experiments for TLR2 or TLR4 activation are shown separately.

DN A C

Fig. S5. *L. acidophilus* NCFM (SlpA⁺) and NCK1377-Cl (SlpB⁺) stimulate maturation of DCs through expression of CD86. FACScan analysis of maturation markers CD86 after *L. acidophilus* NCFM, NCK1377-Cl, purified SlpA + LPS or purified SlpA (1 μ g/mL) treatment of iDCs is shown. A representative analysis is presented of the iDC maturation after incubation with *L. acidophilus* NCFM cells (100 cfu per iDC), LPS, LPS + PGE₂ or left untreated (immature DCs) for 2 days. Afterward, iDCs were harvested, washed extensively with PBA, stained with specific Abs for 1 h at 4 °C, and analyzed by FACS. Experiments were repeated 3 times, and the values are average \pm SD. MFI, mean fluorescence intensity.

Table S1. L. acidophilus NCFM strains used in this work

SANG SANG

L. acidophilus strains	Origin	Ref.
NCFM	Human intestinal isolate	1
NCK1377-CI	Knockout in the S layer protein A (<i>s/pA</i>) gene	2
NCK1398	Knockout of <i>lacL</i> gene (β -galactosidase)	3
NCK1660	Knockout of Mub, putative mucin-binding protein	2
NCK1661	Knockout of FbpA, putative fibronectin-binding protein	2
NCK166	Knockout of R28, putative adhesion protein	2

1. Sanders ME, Klaenhammer TR (2001) Invited review: The scientific basis of Lactobacillus acidophilus NCFM functionality as a probiotic. J Dairy Sci 84:319–331.

2. Buck BL, Altermann E, Svingerud T, Klaenhammer TR (2005) Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 71:8344–8351.

3. Russell WM, Klaenhammer TR (2001) Efficient system for directed integration into the Lactobacillus acidophilus and Lactobacillus gasseri chromosomes via homologous recombination. Appl Environ Microbiol 67:4361–4364.