Supplemental Methods.

Cell population analysis:

For the experiments described in Fig. 1, viral transduction efficiency was approximately 50% and transduced and untransduced cells could not be readily determined in our myocyte Ca²⁺ measurement system. Consequently, contributions of non-expressing AVM to the aggregate cell population would likely result in an underestimation of the contribution of PLC ϵ expression to Iso and cpTOME responsiveness. Population analysis of PLC $\epsilon^{-/-}$ myocytes transduced with wild type PLC ϵ shows that a significant fraction of the cells had responses to Iso (Supplemental Fig. 1A top panel) or cpTOME (Supplemental Fig. 1B top panel) that were greater than YFP transduced cells. However, Iso- and cpTOME-treated cells transduced with each of the mutant PLC ϵ viruses showed very few cells with responses greater than YFP transduced cells (Supplemental Fig. 1A and B bottom panels). These results further indicate that PLC ϵ -Rap-GEF activity, Rapbinding to the RA2 domain and PLC hydrolytic activity are all required for PLC dependent effects on CICR.

Supplemental Figure Legends

Supplemental Figure 1. A) (*upper panel*) Distribution of Ca²⁺ transient amplitudes for all PLC $\varepsilon^{-/-}$ cells transfected with either YFP or wtPLC ε expressing adenoviruses and treated with isoproterenol. (*lower panel*) Distribution of Ca²⁺ transient amplitudes in all PLC $\varepsilon^{-/-}$ cells transfected with either YFP or various mutant PLC ε expressing adenoviruses as indicated and treated with isoproterenol. B) Same as A except stimulated with cpTOME.

Supplemental Figure 2. Representative fluorescence (*left*) and phase (*right*) micrographs of Cy3-labeled siRNA transfected myocytes (*upper*) and mock transfected (*lower*) myocytes.

Supplemental Figure 3. Representative L-type Ca²⁺ currents (*lower black traces*) and intracellular Ca²⁺ transients (*upper red traces*) in myocytes from PLCe^{+/+} (A and B) and PLCe^{-/-} mice in both the absence (A and C) and presence (B and D) of 1µM isoproterenol. Ca²⁺ currents and transients were elicited by 200 ms depolarizations to test potentials to - 50 mV, -20 mV, 0 mV, 30 mV, and 50 mV. The kinetics of Ca²⁺ current inactivation for test potentials to 0 mV was fitted by a single exponential function (*green solid lines*). The time constant of inactivation was not significantly different (p>0.3) between PLCe^{+/+} ($\tau_{inact} = 37.5 \pm 1.9$ ms) and PLCe^{-/-} ($\tau_{inact} = 34.9 \pm 1.9$ ms) myocytes under basal conditions. However, in the presence of 1µM isoproterenol, the time constant of inactivation higher in PLCe^{-/-} myocytes compared to PLCe^{+/+} (PLCe^{+/+}: $\tau_{inact} = 19.0 \pm 1.2$ ms; PLCe^{-/-}: $\tau_{inact} = 24.6 \pm 1.3$ ms, p<0.01). The scale bars shown in D apply to all panels.

Supplemental Figure 4. Diagram depicting the Epac/PLC_c pathway.

Supplemental Fig. 1

Supplemental Figure 2.

Supplemental Fig. 3

Supplemental Fig. 4