Chemistry	Modification property	Modification pattern	T _m
2'-MOE	High affinity, 2' sugar	5'-A _s ^m C _s A _s A _s ^A _s ^m C _s A _s ^m C _s A _s ^T C _s A _s ^T C _s A _s ^m C _s A _s ^m C _s A _s ^m C _s ^T C _s ^m C _s A-3'	78.9
F-MOE	High affinity, 2' sugar	5'-A _s C _s A _s A _s A _s C _s A _s C _s C _s A _s U _s U _s G _s U _s C _s A _s C _s A _s C _s U _s C _s C _s A-3'	80.7
DMAEOE/ 2'-MOE	Charged group, 2 sugar	5'-A _s ^m C _s A _s A _s A _s ^m C _s A _s ^m C _s A _s ^m C _s A _s ^T _s T _s G _s T _s ^m C _s A _s ^m C _s A _s ^m C _s T _s ^m C _s A-3'	71.6
Tri-MOE/ 2'-MOE	Bulk, 2' sugar	5'-A _s ^m C _s A _s A _s ^A _s ^m C _s A _s ^m C _s A _s ^T _s T _s G _s T _s ^m C _s A _s ^m C _s A _s ^m C _s T _s ^m C _s ^{A-3} '	78.4
Phenoxazine/ 2'MOE	High affinity, nucleobase	5'-A _s C _s A _s A _s A _s C _s A _s C _s C _s A _s T _s T _s G _s T _s C _s A _s C _s A _s C _s T _s C _s C _s A-3'	>95
MMI-2'OMe/2'-MOE	Neutral backbone	5'-A _s ^m CA _s A _s A _s ^m CA _s ^m C _s ^m C _s AT _s T _s G _s T ^m C _s A _s ^m C _s A ^m C _s T _s ^m C _s ^m CA-3'	n/a

2'-TriMOE

2'-O-methoxyethyl

2'-DMAEOE

2'-O-methoxyethyl phenoxazine

HO^{[°] ⁷OCH₃ 2[°]-O-methyl MMI dimer}

В

ÓCH₃

R

А

В

Α

В

saline 1

4

Supplementary Figure Legends

Supplementary Figure 1 Evaluation of a panel of chemically-modified miR-122 ASOs. Normal mice were treated i.p. with 25 mg/kg of miR-122 ASOs twice weekly for 3 weeks. n=4. Error=SEM (A) Plasma cholesterol levels. (B) Aldolase A mRNA levels in liver by RTPCR.

Supplementary Figure 2 Insertion of additional 2'-MOE modifications into the 2'-F/MOE cap ASO ameliorates splenomegaly while retaining ASO activity. Normal mice were treated i.p. with 25 mg/kg of miR-122 ASOs twice weekly for 3 weeks. n=5. Error=SEM (a) Chemical composition of anti-miR ASOs incorporating additional 2'-MOE modifications into 2'-F/MOE ASO. (b) Real-time RT-PCR measuring levels of miR-122 target gene ALDOA in liver RNA. (c) Change in total plasma cholesterol levels. (d) Spleen weight at sacrifice.

Supplementary Figure 3 Recovery of ASOs and miR-122 in presence of ASOs through Trizol purification process. (a) Recovery of radiolabeled ASOs after Trizol purification of liver RNA. (b) Recovery of radiolabeled miR-122 in presence of ASOs after Trizol purification of liver RNA.

Supplementary Figure 4 Competitor PNA has ability to free miR-122 from miR-122-ASO duplex in mouse total liver RNA. The indicated ASOs were added to liver lysates and RNA was Trizol-purified. Radiolabeled miR-122 RNA was added to total RNA sample, RNA was separated by denaturing PAGE in presence of competitor PNA and transferred to membrane, which was exposed on a phosphoimager. Northern blotting for U6 was also performed for normalization. **Supplementary Table 1** miR-122 inhibition by 2'-MOE and 2'-F/MOE ASOs *in vivo* has little effect on global expression of microRNAs. In one experiment, mice were treated i.p. with 75mg/kg of the 2'-MOE ASO twice weekly for 4 weeks and real time RT-PCR was used to measure the levels of 162 miRNAs in the liver compared to salineor ASO-treated mice. In the second experiment, mice were treated with 5mg/kg of the 2'-F/MOE ASO twice weekly for six weeks and miRNA microarray profiling was performed.

Supplementary Methods

ASO labeling and gel shift assay

ASOs and miR-122 RNA were 5'-³²P-labelled with T4 polynucleotide kinase and purified on Sephadex columns (Roche). Labeled ASOs were added into 1ml Trizol preparations containing 50mg mouse liver. Labeled miR-122 RNA was added into 1ml Trizol preparations containing 50mg liver and 10µg ASO. After Trizol purification, the percent recovery was determined by scintillation counting. For gel shift assays, ³²P-labeled miR-122 RNA was added into total RNA prepared from 50mg mouse liver containing 1, 10, or 100µg ASO. 10 µg total RNA in 1x TBE-Urea loading buffer (Invitrogen) was separated on a 15% TBE-Urea polyacrylamide gel (Invitrogen) in presence of PNA competitor and transferred to membrane, which was exposed on a phosphoimager. Northern blotting for U6 was also performed for normalization.

miRNA Profiling

Total RNA extracted from whole liver tissue using miRNeasy kit (Qiagen). Array of 2'-MOE ASO treated samples was performed using Taqman microRNA Early Access kit (Applied Biosystems). Array of 2'-F/MOE ASO treated samples performed by LCSciences (array version: miRRodentia_9.1).