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Description: Tables S1-S3 summarize the rate constants for the different kinetic
model presented in the manuscript. The standard error on the kinetic parameters
is reported in these tables as determined by bootstrapping. If no error is reported,
then the kinetic parameter was bound to the value during least squares
minimization. Units are s-1.

Table S1: Rate constants and standard errors for Mg solution condition, k=4, I=3.
U I1 I2 I3 F

U 0 0.70±0.06 0.78±0.09 0.34±0.03 0.01±0.003
I1 0 0 0.23±0.04 0.31±0.02 0.00±0.005
I2 0 0.01±0.002 0 0.07±0.01 0.12±0.01
I3 0 0.01±0.002 0.01±0.001 0 0.001±0.000
F 0.00±0.005 0 0 0 0

Table S2: Rate constants and standard errors for Na solution condition, k=3, I=2
U I1 I2 F

U 0 37.5±2.8 70.1±6.7 20.2±1.9
I1 0 0 0.00±0.0002 1.7±0.11
I2 0 0.001±0.004 0 0.25±0.01
F 0.0001±0.00003 0 0 0

Table S3: Rate constants and standard errors for Mg solution condition, k=3, I=2
U I1 I2 F

U 0 0.79±0.08 0.35±0.03 0.002±0.001
I1 0 0 0.03±0.005 0.11±0.004
I2 0 0.001±0.0002 0 0.003±0.0004
F 0.0001±0.0001 0 0 0



Description: Tables of clustered sites of protection. Numbers correspond to
central residue (Full L-21 Tetrahymena termophila numbering)

Mg2+ mediated folding, 1998 data set

Green Cluster
185,152,140,110,163,170,175
Red Cluster
46, 57, 83, 94, 342, 204,105,120, 25, 29
Blue Cluster
330,282,273,300

Na+ mediated folding

Yellow Cluster
359, 369
Magenta Cluster
204, 215, 225, 256, 266, 273, 279, 299
Grey Cluster
59, 82, 96, 106, 111, 122, 126, 140, 154, 318, 328

Mg2+ mediated folding, 2004 data set

Green Cluster
111,126,139,154,257
Red Cluster
48, 59, 82, 96,105,119,203,283,344
Blue Cluster
273,303
Cyan Cluster
163,180



Description: Details of Gap Statistic for determination of k.

The Gap Statistic is a formalism that analyzes the relative within cluster
dispersion (Wk) as a function of k (the number of clusters) for clustering data. For
normally distributed data, Wk will decrease monotonically with k as is illustrated
by the blue data in Figure S1a.  If the data is not randomly distributed, but rather
can be clustered into tight groups with small within cluster dispersion, then for
small values of k the average within cluster dispersion will decrease rapidly with
increasing k.  This is the case with time-resolved hydroxyl radical footprinting
data, as is illustrated by the red data in Figure S1a.

The Gap Statistic compares the expected relative decrease in cluster dispersion
(blue line Figure S1a, Wk

*) for normally distributed data as a function of k with the
actual decrease for the experimental data (red line Figure S1a, Wk). This makes
it possible to determine a lower bound for a value of k above which clustering
becomes ill-defined for the experimental data. This difference is normalized
relative to the variance in Wk

* for multiple repeats of the clustering (indicated by
the blue error bars). This is the principle behind the Gap Statistic, illustrated in
Figure S1b. In this case, the Gap statistic picks a value of k=4, as indicated by a
red vertical line. The reason for this choice is that at k=4 the condition

€ 

Gap(k) ≥Gap(k +1) − sk+1 is satisfied. For values of k>4 the clustering of the
experimental data behaves like normally distributed data.

This formalism also allows us to estimate the relative signal to noise of the
different data sets clustered in this manuscript on a cluster by cluster basis. The
value of the Gap(k) parameter is a measure of relative tightness of the clusters
compared to a random distribution. Therefore, larger values of Gap(k) indicate
tighter clusters.  As can be seen in Table S4, the more recent data sets (2004)
have larger values of Gap(k), indicating tighter clusters. This is a result of lower
signal to noise in the data due to improved data collection methodology.

Table S4: Values of Gap(k) for the
Gap(k)

2004 Mg2+ data
Gap(k)

1998 Mg2+ data
Gap(k)

2004 Na2+ data
k=3 0.70±0.03 0.64±0.02 0.88±0.02
k=4 0.80±0.03 0.66±0.03 0.90±0.02
K=5 0.82±0.03 0.67±0.03 1.02±0.02

Description: Supplementary Material Figure 1: a.) Plot of the within cluster
dispersion as a function of k for randomly distributed data (blue, Wk

*) and for the
2004 Mg2+ mediated folding data (red, Wk). Error bars represent variance when
clustering is repeated 100 times. b.) Plot of Gap(k) (as defined in Equation 1 of
the manuscript) as a function of k for the same data set.  The vertical red line
indicates the selection of k=4 as per the Gap statistic criterion.





Description: Supplementary Figure 2 Caption: Clustering and kinetic analysis of
1998 Mg2+ mediated folding data set with k=3. a) Colored secondary structure
diagram representation of the L-21 T. thermophila group I intron. Colors
represent regions of the molecule exhibiting similar time-progress as determined
by k-means clustering of site-specific progress curves. Boxes indicate protection
sites used. b) Best fitting kinetic model predictions (lines) to average time-
progress curves (×). c) Time-evolution of the different species in solution. d) Best
fitting kinetic model with rate constants given in s-1. Reverse rates were
constrained to zero as an equivalently good fit to the data was obtained with and
without constraints. The I2 and I3 intermediates correspond structurally to I2 and
I3 in Figure 3c. e) Summary histogram of the relative flux through the different
folding possible folding pathways. f.) Cartoon representations of major flux
through the different folding pathways of the ribozyme.





Description Supplementary Material Figure S3 Caption. Plots of the best fits to
the data for the second and third best models tested. These plots correspond to
the RMSE calculations in Table 1  a.) and b.) are for the Mg2+ mediated folding
reaction with k=4. c.) and d.) are for the Na+ mediated folding reaction, and e.)
and f.) are for Mg2+ mediated folding but with k=3.
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Introduction

This package contains a series of matlab scripts to analyze and model time-
progress curves measured with local probes of structure. Local probes of
macromolecular structure are measurements that are sensitive to the
environment of a relatively small region within a macromolecule. These
include, but are not limited to, NMR deuterium exchange and shift perturbation
analysis, Fluorescence Resonance Energy Transfer (FRET), and RNA/DNA protein
footprinting. The separate transitions reported by individual probes yield
unique insight into folding intermediates. While simultaneous acquisition of
many unique local transitions provides a cornucopia of information, creating
an accurate global de-scription of folding that remains faithful to local
details is very challenging.

The package requires Matlab which one can obtain from the Mathworks
http://www.mathworks.com), although some of the scripts will also work
with Octave (http://www.octave.org). This is not necessarily intended as
"easy to use" software, but rather to provide the basic tools to carry
out an analysis similar to the one reported in Laederach et al., "Local kinetic
measures of macromolecular structure reveal partitioning among multiple
parallel pathways from the earliest steps in the folding of a large RNA
molecule," JMB 2006. This manuscript details the algorithms implemented in the
accompanying code.

Any questions, bug reports maybe reported to Alain Laederach.
(alain@helix.stanford.edu)

Methods:

Below are function definitions and usage examples for the main scripts to carry
out a complete analysis of a data set. By inputting the commands in matlab that
are shown after >> you can get through the example data provided here. (The
steps that require a supercomputer are noted.

Data entry:

function [time_bins,interp_data_ave,res_labels]=readxlsfootprintdata(filename);

This function will read in an plot data from an excel spreadsheet.  The data
is binned and vectorized for k-means clustering.

example:
>> [time_bins,interp_data_ave,res_labels]=readxlsfootprintdata('dataeg.xls');
Note the format of the data in the excel file dataeg.xls, it is important
that this format is respected if you are inputting your own data.
The result will be (in this case) 21 figures showing the binned and
extrapolated
data.

Gap Statistic:

The data can now be analyzed using the gap statistic as follows:



>> khat=compute_Gap(time_bins,interp_data_ave,[2 6],10,100)
This will take a couple of minutes to run, but will return a value of khat=3.
This means that the Gap statistic has estimated that the data has three
clusters
and this value should be used in the clustering, which is the next step. Note
that for this and the next step you need to have the Statistics Toolbox
installed. To check if you can type

>> kmeans
??? Error using ==> kmeans
At least two input arguments required.

If that is the error you get, then the Toolbox is installed, if you get a
different error message, it will have instructions on how to install that
toolbox.

If you do not want to install this toolbox or are using Octave you will need to
skip the clustering step, I have stored the results of the clustering so for
this demonstration you can continue.

Clustering:

Now we will cluster the data using kmeans clustering:

>> [IDX, C, SUMD, D] = kmeans(interp_data_ave',
3,'Distance','cityblock','Replicates',100,'EmptyAction','singleton')

Notice how the number of clusters is specified, it is the second argument of
the
function.

You can see the results of the clustering using the following two commands:

>> load visualization.mat
>>
display_clusts(IDX,res_labels,C,exp(time_bins),1,interp_data_ave,imagex,offset,
residue_locations,1,2)

Note that this is specific to the L-21 tetrahymena ribozyme, as this function
displays the data on the secondary structure.

Kinetic Model Fitting:

This step requires a supercomputer, but for the purposes of this example, it is
possible to run the code like this:

>> search_kspace('17')

after a while you should get output like:

 Iteration  Func-count     f(x)          step          optimality   CG-
iterations
     0         13         39.4335                          2.54

This tells the code to test model number 17 (out of 28, given that k=3, and
that the number of intermediates =2). The code is setup to try and optimize
the model for approximately 15 hours of CPU time and this would need to
be repeated for all models. This particular numerical solution is also the
most computationally efficient, less efficient code is available upon request
to Alain Laederach (alain@helix.stanford.edu) that can handle stiff systems.
This is common of there are large differences (greater than 3 orders of
magnitude) between the slowest and fastest forming sites).

Optimization visualization:



The results of a supercomputing run are stored in the analysis_all.mat file and
can be visualized by typing the command:

>> make_plots_interest(1,1,4)

Best fits to the data are shown as well as the time-evolution of the different
intermediates.

Note that the output values (mean_K) are the rate constants of the best fitting
model with K(1,2) corresponding to the rate from U->I1, K(1,3)-> U->I2 etc.

Flux analysis

Flux analysis also requires a significant amount of time to compute accurately,
but for the purposes of this demonstration the following commands can be
issued:

>> get_fluxes_t(1)

This command should be repeated at least 100 times to get better sampling, each
time incrementing the argument by one. (About 100 CPU hours)

Pathway Analysis:

This command analyzes the result of all the pathways data stored in the
pathways
folder.

>> pathways=analyze_state_pathways;

Pathway Visualization:

The most common pathways can be vizualized by issuing the following command.

>> [clust_pathway,diff_pathway_vect]=pathway_analysis(pathway);

This will show a histogram of the fluxes through the major pathways.

The analysis presented above can be repeated with a different data set but
will require the use of a super computer (between 200-300 nodes) for the
computationally expensive steps. The scripts for generating massively parallel
runs are nto included in this distribution as they are specific to the setup
of the machine.  For help with distributed computing setup, feel free to
contact Alain Laederach (alain@helix.stanford.edu).


