Anionic Snieckus-Fries Rearrangement: Solvent Effects and Role of Mixed Aggregates

Jason C. Riggs, Kanwal J. Singh, Yun Ma, and David B. Collum*

Contribution from the Department of Chemistry and Chemical Biology

Baker Laboratory, Cornell University, Ithaca, New York, 14853-1301

Received xxx; E-Mail: <u>dbc6@cornell.edu</u>

Supporting Information

Part I: NMR Spectroscopic Studies

Figure 1	¹³ C NMR and ¹ H NMR spectra of 4b .	S 8
Figure 2	¹³ C NMR and ¹ H NMR spectra of 5b .	S9
Figure 3	¹³ C NMR spectra of 0.21 M(+)-taddol and 0.10 M cyclohexanediamine in toluene- d_8 .	S10
Figure 4	$^{13}\mathrm{C}$ NMR spectra of 0.21 M (+)-taddol and 0.10 M TMCDA in toluene- d_8 .	S11
Figure 5	¹³ C NMR spectra of neat R,R -TMCDA and S,S -TMCDA.	S12
Figure 6	⁶ Li and ¹⁵ N NMR spectra of 0.20 M [⁶ Li, ¹⁵ N]LDA with 0.40 equiv of 4b in 1.0 M <i>n</i> -BuOMe/pentane at -70 °C.	S13
Figure 7	⁶ Li and ¹⁵ N NMR spectra of 0.20 M [⁶ Li, ¹⁵ N]LDA with 0.40 equiv of 4b in 4.0 M <i>n</i> -BuOMe/pentane at -70 °C.	S14
Figure 8	⁶ Li and ¹⁵ N NMR spectra of 0.20 M [⁶ Li, ¹⁵ N]LDA with 0.40 equiv of 4b in 7.0 M <i>n</i> -BuOMe/pentane at -70 °C.	S15
Figure 9	⁶ Li and ¹⁵ N NMR spectra of 0.20 M [⁶ Li, ¹⁵ N]LDA with 0.20 equiv of 4b in 7.0 M <i>n</i> -BuOMe/pentane at -70 °C.	S16
Figure 10	⁶ Li spectra of 0.20 M [⁶ Li, ¹⁵ N]LDA with 0.40 equiv of 4b in 4.0 M <i>n</i> -BuOMe/pentane at various temperatures.	S17

Figure 11	⁶ Li and ¹⁵ N NMR spectra of 0.10 M [⁶ Li, ¹⁵ N]LDA with 1.0 equiv of 4c in 5.6 M <i>n</i> -BuOMe/pentane at -30 °C.	S18
Figure 12	⁶ Li NMR spectra of 0.10 M [⁶ Li, ¹⁵ N]LDA with 1.0 equiv of $4c$ in 5.6 M <i>n</i> -BuOMe/pentane at -30 °C.	S19
Figure 13	⁶ Li and ¹⁵ N NMR spectra of 0.40 M [⁶ Li, ¹⁵ N]LDA with 0.25 equiv of 4b in 5.6 M <i>n</i> -BuOMe/pentane at -90 °C.	S20
Figure 14	⁶ Li and ¹⁵ N NMR spectra of 0.40 M [⁶ Li, ¹⁵ N]LDA with 0.25 equiv of 5b in 5.6 M <i>n</i> -BuOMe/pentane at -90 °C.	S21
Figure 15	¹³ C NMR spectra of 7d in <i>n</i> -BuOMe, 7f in DME, and 6g in <i>R</i> , <i>R</i> -TMCDA.	S22
Figure 16	⁶ Li and ¹⁵ N NMR spectra of 0.25 M [⁶ Li, ¹⁵ N]LDA with 0.40 equiv of 4e in 2.0 M DME/pentane at -70 °C.	S23
Figure 17	⁶ Li and ¹⁵ N NMR spectra of 0.25 M [⁶ Li, ¹⁵ N]LDA with 0.40 equiv of 4e in 5.0 M DME/pentane at -70 °C.	S24
Figure 18	⁶ Li and ¹⁵ N NMR spectra of 0.25 M [⁶ Li, ¹⁵ N]LDA with 0.40 equiv of 4e in 8.0 M DME/pentane at -70 °C.	S25
Figure 19	⁶ Li and ¹⁵ N NMR spectra of 0.25 M [⁶ Li, ¹⁵ N]LDA with 0.30 equiv of 4e in 5.0 M DME/pentane at -70 °C.	S26
Figure 20	⁶ Li and ¹⁵ N NMR spectra of 0.25 M [⁶ Li, ¹⁵ N]LDA with 0.50 equiv of 4e in 5.0 M DME/pentane at -70 °C.	S27
Figure 21	⁶ Li NMR spectrum of 0.10 M [⁶ Li, ¹⁵ N]LDA with 1.0 equiv of 4e in 6.4 M DME/pentane at -90 °C.	S28
Figure 22	⁶ Li and ¹⁵ N NMR spectra of 0.40 M [⁶ Li, ¹⁵ N]LDA with 0.25 equiv of 4d in 6.0 M DME/pentane at -85 °C.	S29
Figure 23	1 <i>J</i> (6 Li, 15 N)-resolved NMR spectrum of 0.40 M [6 Li, 15 N]LDA with 0.25 equiv of 4d in 6.0 M DME/pentane at -85 °C.	S30
Figure 24	⁶ Li and ¹⁵ N NMR spectra of 0.40 M [⁶ Li, ¹⁵ N]LDA with 0.25 equiv of 5c in 6.0 M DME/pentane at -85 °C.	S31
Figure 25	⁶ Li NMR spectra of 0.25 M [⁶ Li, ¹⁵ N]LDA with 0.40 equiv of 4b in 1.0 M <i>R</i> , <i>R</i> -TMCDA/toluene/pentane at -70 °C.	S32

Figure 26	⁶ Li NMR spectra of 0.15 M [⁶ Li, ¹⁵ N]LDA with 0.60 equiv of 4b in 1.0 M <i>trans</i> -TMCDA/toluene/pentane at -70 °C.	S33
Figure 27	⁶ Li NMR spectra of 0.15 M [⁶ Li, ¹⁵ N]LDA with 1.0 equiv of 4b in 1.0 M <i>trans</i> -TMCDA/toluene/pentane at -70 °C.	S34
Figure 28	⁶ Li NMR spectra of 0.30 M [⁶ Li, ¹⁵ N]LDA with 0.30 equiv of 4b in 1.0 M <i>trans</i> -TMCDA/toluene/pentane at -70 °C.	S35
Figure 29	⁶ Li NMR spectra of 0.15 M [⁶ Li, ¹⁵ N]LDA with 0.60 equiv of 4b in 0.10 M <i>trans</i> -TMCDA/toluene/pentane at -70 °C.	S36
Figure 30	⁶ Li NMR spectra of 0.40 M [⁶ Li, ¹⁵ N]LDA with 0.25 equiv of 4b in 1.4 M <i>R</i> , <i>R</i> -TMCDA/toluene/pentane at variable temperatures.	S37
Figure 31	⁶ Li NMR spectra of 0.10 M [⁶ Li, ¹⁵ N]LDA with 1.0 equiv of 5b in 1.4 M <i>R</i> , <i>R</i> -TMCDA/toluene/pentane at -80 °C.	S38
Figure 32	⁶ Li NMR spectra of 0.10 M [⁶ Li, ¹⁵ N]LDA with 0.25 equiv of 4c in 0.10 M HMPA/10.0 M THF/pentane at -90 °C.	S39
Figure 33	⁶ Li NMR spectra of 0.10 M [⁶ Li, ¹⁵ N]LDA with 0.25 equiv of 4c in 0.40 M HMPA/10.0 M THF/pentane at -90 °C.	S40
Figure 34	⁶ Li NMR spectra of 0.40 M [⁶ Li, ¹⁵ N]LDA with 0.25 equiv of 4b in 1.0 M HMPA/8.2 M THF/pentane at -90 °C.	S41
Figure 35	¹ <i>J</i> (⁶ Li, ¹⁵ N)-resolved NMR spectrum of 0.40 M [⁶ Li, ¹⁵ N]LDA with 0.25 equiv of 4b in 1.0 M HMPA/8.2 M THF/pentane at -90 °C.	S42
Figure 36	(⁶ Li, ¹⁵ N)-HSQC NMR spectrum of 0.40 M [⁶ Li, ¹⁵ N]LDA with 0.25 equiv of 4b in 1.0 M HMPA/8.2 M THF/pentane at -90 $^{\circ}$ C.	S43
Figure 37	⁶ Li NMR spectra of 0.40 M [⁶ Li, ¹⁵ N]LDA with 0.25 equiv of 5b in 1.0 M HMPA/8.2 M THF/pentane at -90 °C.	S44
Figure 38	⁶ Li NMR spectra of 0.10 M [⁶ Li, ¹⁵ N]LDA with 1.0 equiv of 4e in 0.40 M HMPA/10.0 M THF/pentane at -90 °C.	S45
Figure 39	⁶ Li NMR spectra of 0.10 M [⁶ Li, ¹⁵ N]LDA with 0.25 equiv of 4e in 0.40 M HMPA/10.0 M THF/pentane at -90 °C.	S46
Figure 40	⁶ Li NMR spectra of 0.40 M [⁶ Li, ¹⁵ N]LDA with 0.25 equiv of 4d in 1.0 M HMPA/8.2 M THF/pentane at -90 °C.	S47

Figure 41	⁶ Li NMR spectra of 0.40 M [⁶ Li, ¹⁵ N]LDA with 0.25 equiv of 5c in 1.0 M HMPA/8.2 M THF/pentane at -90 °C.	S48
Figure 42	⁶ Li and ¹⁵ N NMR spectra of 0.40 M [⁶ Li, ¹⁵ N]LDA with 0.25 equiv of 4b in 3.0 M Me ₂ NEt/pentane at -100 °C.	S49
Figure 43	1 J(⁶ Li, ¹⁵ N)-resolved NMR spectrum of 0.40 M [⁶ Li, ¹⁵ N]LDA with 0.25 equiv of 4b in 3.0 M Me ₂ NEt/pentane at -100 °C.	S50
Figure 44	(⁶ Li, ¹⁵ N)-HSQC NMR spectrum of 0.40 M [⁶ Li, ¹⁵ N]LDA with 0.25 equiv of 4b in 3.0 M Me ₂ NEt/pentane at -100 °C.	S51
Figure 45	⁶ Li and ¹⁵ N NMR spectra of 0.40 M [⁶ Li, ¹⁵ N] LDA with 0.25 equiv of 4b in 3.0 M Me ₂ NEt/pentane at -100 °C.	S52
Figure 46	1 J(⁶ Li, ¹⁵ N)-resolved NMR spectrum of 0.40 M [⁶ Li, ¹⁵ N]LDA with 0.25 equiv of 4b in 3.0 M Me ₂ NEt/pentane at -100 °C.	S53
Figure 47	⁶ Li and ¹⁵ N NMR spectra of 0.40 M [⁶ Li, ¹⁵ N]LDA with 0.25 equiv of 5b in 7.7 M Me ₂ NEt/pentane at -100 °C.	S54
Figure 48	⁶ Li and ¹⁵ N NMR spectra of 0.10 M [⁶ Li, ¹⁵ N]LDA with 0.50 equiv of 4b in 7.7 M Me ₂ NEt/pentane at -100 °C.	S55
T.1.1. 1		
l able 1	Summary of NMR spectroscopic data.	550
Table 1	Part II: Rate Studies	500
Figure 49	Summary of NMR spectroscopic data. Part II: Rate Studies Plot of k_{obsd} versus [<i>n</i> -BuOMe] for the Fries rearrangement of 7d .	556 S57
Figure 49 Figure 50	Summary of NMR spectroscopic data. Part II: Rate Studies Plot of k_{obsd} versus [<i>n</i> -BuOMe] for the Fries rearrangement of 7d . Plot of k_{obsd} versus [LDA] for the Fries rearrangement of 7d in 7.0 M <i>n</i> -BuOMe.	S50 S57 S58
Figure 49 Figure 50 Figure 51	Summary of NMR spectroscopic data. Part II: Rate Studies Plot of k_{obsd} versus [<i>n</i> -BuOMe] for the Fries rearrangement of 7d . Plot of k_{obsd} versus [LDA] for the Fries rearrangement of 7d in 7.0 M <i>n</i> -BuOMe. Plot of k_{obsd} versus [LDA] for the Fries rearrangement of 7d in 1.3 M <i>n</i> -BuOMe.	S50 S57 S58 S59
Figure 49 Figure 50 Figure 51 Table 2	Summary of NMR spectroscopic data.Part II: Rate StudiesPlot of k_{obsd} versus [n-BuOMe] for the Fries rearrangement of 7d.Plot of k_{obsd} versus [LDA] for the Fries rearrangement of 7d in 7.0 M n-BuOMe.Plot of k_{obsd} versus [LDA] for the Fries rearrangement of 7d in 1.3 M n-BuOMe.Fit of data from Figures 49, 50, and 51 to the non-linear Noyes equation.	S50 S57 S58 S59 S60
Figure 49 Figure 50 Figure 51 Table 2 Figure 52	Summary of NMR spectroscopic data.Part II: Rate StudiesPlot of k_{obsd} versus [n -BuOMe] for the Fries rearrangement of 7d.Plot of k_{obsd} versus [LDA] for the Fries rearrangement of 7d in 7.0 M n -BuOMe.Plot of k_{obsd} versus [LDA] for the Fries rearrangement of 7d in 1.3 M n -BuOMe.Fit of data from Figures 49, 50, and 51 to the non-linear Noyes equation.Plot of k_{obsd} versus [DME] for the Fries rearrangement of 7d.	S50 S57 S58 S59 S60 S61
Figure 49 Figure 50 Figure 51 Table 2 Figure 52 Figure 53	Summary of NMR spectroscopic data.Part II: Rate StudiesPlot of k_{obsd} versus [n -BuOMe] for the Fries rearrangement of 7d.Plot of k_{obsd} versus [LDA] for the Fries rearrangement of 7d in 7.0 M n -BuOMe.Plot of k_{obsd} versus [LDA] for the Fries rearrangement of 7d in 1.3 M n -BuOMe.Fit of data from Figures 49, 50, and 51 to the non-linear Noyes equation.Plot of k_{obsd} versus [DME] for the Fries rearrangement of 7e.Plot of k_{obsd} versus [LDA] for the Fries rearrangement of 7e.	S50 S57 S58 S59 S60 S61 S62

Figure 54	Plot of k_{obsd} versus DME mole fraction in 5.0 M DME/ <i>n</i> -BuOMe for the Fries rearrangement of 7e .	S64
Figure 55	Plot of k_{obsd} versus [HMPA] for the Fries rearrangement of 6b in 10.0 M THF.	S65
Figure 56	Plot of k_{obsd} versus [THF] for the Fries rearrangement of 6b in 0.40 M HMPA.	S66
Figure 57	Plot of k_{obsd} versus [LDA] for the Fries rearrangement of 6b in 0.40 M HMPA/10.0 M THF.	S67
Figure 58	Plot of k_{obsd} versus [HMPA] for the Fries rearrangement of 6d in 10.0 M THF.	S68
Figure 59	Plot of k_{obsd} versus [THF] for the Fries rearrangement of 6d in 0.40 M HMPA.	S69
Figure 60	Plot of k_{obsd} versus [LDA] for the Fries rearrangement of 6d in 0.40 M HMPA/10.0 M THF.	S70
Figure 61	Plot of k_{obsd} versus [<i>R</i> , <i>R</i> -TMCDA] for the Fries rearrangement of 6g .	S71
Figure 62	Plot of k_{obsd} versus [LDA] for the Fries rearrangement of 6g in 1.5 M <i>R</i> , <i>R</i> -TMCDA.	S72
Table 4	Fit of data from Figures 61 and 62 to the non-linear Noyes equation.	S73
	Part III: Computational Studies	
Figure 63	Relative free energies (ΔG° , kcal/mol) of mixed dimer reactant structures modeled with Me ₂ O and X = OMe.	S75
Figure 64	Relative free energies (ΔG° , kcal/mol) of mixed trimer reactant structures modeled with Me ₂ O and X = OMe.	S76
Figure 65	Relative free energies (ΔG° , kcal/mol) of mixed trimer reactant structures modeled with Me ₂ O and X = F.	S77
Figure 66	Relative free energies (ΔG° , kcal/mol) of mixed trimer reactant structures modeled with Me ₂ O and X = H.	S77

Figure 67Relative free energies (ΔG° , kcal/mol) of transitionS78structures modeled with Me₂O and X = OMe.S78

	References	S164
Figure 79	X-ray crystal structure of 5b .	S158
Table 5	Cartesian coordinates and free energies (G° , Hartrees) of DFT optimized geometries.	S87
Figure 78	Relative free energies (ΔG° , kcal/mol) of reactant and transition structures modeled with TMEDA and X = H.	S86
Figure 77	Relative free energies (ΔG° , kcal/mol) of reactant and transition structures modeled with TMEDA and X = F.	S86
Figure 76	Relative free energies (ΔG° , kcal/mol) of reactant and transition structures modeled with TMEDA and X = OMe.	S85
Figure 75	Relative free energies (ΔG° , kcal/mol) of transition structures modeled with DME and X = H.	S84
Figure 74	Relative free energies (ΔG° , kcal/mol) of reactant structures modeled with DME and X = H.	S84
Figure 73	Relative free energies (ΔG° , kcal/mol) of transition structures modeled with DME and X = OMe.	S83
Figure 72	Relative free energies (ΔG° , kcal/mol) of reactant structures modeled with DME and X = OMe.	S83
Figure 71	Relative free energies (ΔG° , kcal/mol) of transition structures modeled with DME and X = F.	S82
Figure 70	Relative free energies (ΔG° , kcal/mol) of reactant structures modeled with DME and X = F.	S81
Figure 69	Relative free energies (ΔG° , kcal/mol) of transition structures modeled with Me ₂ O and X = H.	S80
Figure 68	Relative free energies (ΔG° , kcal/mol) of transition structures modeled with Me ₂ O and X = F.	S79

10e; $S = Me_2NEt$, R = Et, X = OMe

Figure 1. ¹³C NMR and ¹H NMR spectra of **4b**. (A) ¹³C NMR spectrum, 75 MHz, DMSO- d_6 : δ 160.0, 153.2, 152.3, 129.6, 114.0, 110.9, 107.8, 55.3, 41.7, 41.5, 14.2, 13.3; (B) ¹H NMR spectrum, 400 MHz, DMSO- d_6 : δ 7.28 (t, J = 7.7 Hz, 1H), 6.78 (d, J = 8.5 Hz, 1H), 6.69 (s, 1H), 6.68 (d, J = 7.1 Hz, 1H), 3.75 (s, 3H), 3.4-3.2 (m, 4H), 1.21 (t, J = 7.3 Hz, 3H), 1.11 (t, J = 6.7 Hz, 3H).

Figure 2. ¹³C NMR and ¹H NMR spectra of **5b**. (A) ¹³C NMR spectrum, 75 MHz, DMSO- d_6 : δ 165.2, 156.4, 154.2, 129.4, 114.2, 108.4, 102.0, 55.4, 42.1, 38.1, 13.9, 12.9; (B) ¹H NMR spectrum, 400 MHz, DMSO- d_6 : δ 9.53 (s, 1H), 7.09 (t, *J* = 8.2 Hz, 1H), 6.48 (d, *J* = 8.3 Hz, 1H), 6.47 (d, *J* = 8.1 Hz, 1H), 3.69 (s, 3H), 3.38 (10-m, 2H), 3.05 (q, *J* = 6.5 Hz, 2H), 1.09 (t, *J* = 6.8 Hz, 3H), 0.94 (t, *J* = 6.3 Hz, 3H).

Figure 3. ¹³C NMR spectra at 75 MHz of 0.21 M (+)-taddol in toluene- d_8 and (A) 0.10 M *R*,*R*-1,2-cyclohexanediamine; (B) 0.05 M *R*,*R*-1,2-cyclohexanediamine and 0.05 M *S*,*S*-1,2-cyclohexanediamine; (C) 0.10 M *S*,*S*-1,2-cyclohexanediamine.

Figure 4. ¹³C NMR spectra at 75 MHz of 0.21 M (+)-taddol in toluene- d_8 and (A) 0.10 M *R*,*R*-TMCDA; (B) 0.05 M *R*,*R*-TMCDA and 0.05 M *S*,*S*-TMCDA; (C) 0.10 M *S*,*S*-TMCDA.

Figure 5. ¹³C NMR spectra at 75 MHz of (A) neat *R*,*R*-TMCDA; (B) neat *S*,*S*-TMCDA.

Figure 6. ⁶Li and ¹⁵N NMR spectra of 0.20 M [⁶Li,¹⁵N]LDA with 0.40 equiv **4b** in 1.0 M *n*-BuOMe/pentane at -70 °C: (A) ⁶Li spectrum; (B) ¹⁵N spectrum; (C) ${}^{6}Li{}^{15}N$ spectrum; (D) ${}^{15}N{}^{6}Li$ spectrum.

Figure 7. ⁶Li and ¹⁵N NMR spectra of 0.20 M [⁶Li,¹⁵N]LDA with 0.40 equiv **4b** in 4.0 M *n*-BuOMe/pentane at -70 °C: (A) ⁶Li spectrum; (B) ¹⁵N spectrum; (C) ${}^{6}Li{}^{15}N$ spectrum; (D) ${}^{15}N{}^{6}Li$ spectrum.

Figure 8. ⁶Li and ¹⁵N NMR spectra of 0.20 M [⁶Li,¹⁵N]LDA with 0.40 equiv **4b** in 7.0 M *n*-BuOMe/pentane at -70 °C: (A) ⁶Li spectrum; (B) ¹⁵N spectrum; (C) ${}^{6}Li{}^{15}N$ spectrum; (D) ${}^{15}N{}^{6}Li$ spectrum.

Figure 9. ⁶Li and ¹⁵N NMR spectra of 0.20 M [${}^{6}Li$, ¹⁵N]LDA with 0.20 equiv **4b** in 7.0 M *n*-BuOMe/pentane at -70 °C: (A) ${}^{6}Li$ spectrum; (B) ${}^{15}N$ spectrum; (C) ${}^{6}Li$ { $}^{15}N$ } spectrum; (D) ${}^{15}N$ { ${}^{6}Li$ } spectrum.

Figure 10. ⁶Li NMR spectra of 0.20 M [⁶Li, ¹⁵N]LDA with 0.40 equiv **4b** in 4.0 M *n*-BuOMe/pentane at various temperatures: (A) -70 °C; (B) -80 °C; (C) -90 °C; (D) -100 °C; (E) -110 °C; (F) -120 °C.

Figure 11. ⁶Li and ¹⁵N NMR spectra of 0.10 M [⁶Li,¹⁵N]LDA with 1.0 equiv **4c** in 5.6 M *n*-BuOMe/pentane at -30 °C: (A) ⁶Li spectrum; (B) ¹⁵N spectrum; (C) 6 Li{¹⁵N} spectrum; (D) 15 N{⁶Li} spectrum.

Figure 12. ⁶Li spectra of 0.10 M [⁶Li, ¹⁵N]LDA and with 1.0 equiv 4c in 5.6 M *n*-BuOMe/pentane (A) at -30 °C; (B) at -30 °C after 1 minute of aging at -10 °C; (C) at -30 °C after 15 minutes of aging at -10 °C.

Figure 13. ⁶Li and ¹⁵N NMR spectra of 0.40 M [⁶Li, ¹⁵N]LDA with 0.25 equiv **4b** in 5.6 M *n*-BuOMe/pentane at -90 °C after aging at 0 °C for 2 hr: (A) ⁶Li spectrum; (B) ¹⁵N spectrum; (C) ⁶Li{¹⁵N} spectrum; (D) ¹⁵N{⁶Li} spectrum.

Figure 14. ⁶Li and ¹⁵N NMR spectra of 0.40 M [⁶Li,¹⁵N]LDA with 0.25 equiv **5b** in 5.6 M *n*-BuOMe/pentane at -90 °C: (A) ⁶Li spectrum; (B) ¹⁵N spectrum; (C) ${}^{6}Li{}^{15}N$ spectrum; (D) ${}^{15}N{}^{6}Li$ spectrum.

Figure 15. ¹³C NMR spectra of: (A) 0.35 M [⁶Li]LDA and with 0.30 equiv **4b** in 5.6 M *n*-BuOMe/pentane at -70 °C. Inset shows ${}^{1}J_{CLi} = 5.7$ Hz; (B) 0.80 M [⁶Li, ¹⁵N]LDA and with 0.30 equiv **4e** in 2.0 M DME/pentane/toluene- d_{8} at -90 °C. ${}^{2}J_{CF} = 123.1$ Hz, ${}^{1}J_{CLi} = 5.9$ Hz; (C) 0.80 M [⁶Li, ¹⁵N]LDA and with 0.30 equiv **4b** in 0.5 M *R*,*R*-TMCDA/toluene- d_{8} at -80 °C. ${}^{1}J_{CLi} = 7.7$ Hz.

Figure 16. ⁶Li and ¹⁵N NMR spectra of 0.25 M [⁶Li, ¹⁵N]LDA with 0.40 equiv **4e** in 2.0 M DME/pentane at -70 °C: (A) ⁶Li spectrum; (B) ¹⁵N spectrum; (C) ⁶Li{¹⁵N} spectrum; (D) ¹⁵N{⁶Li} spectrum.

Figure 17. ⁶Li and ¹⁵N NMR spectra of 0.25 M [⁶Li, ¹⁵N]LDA with 0.40 equiv **4e** in 5.0 M DME/pentane at -70 °C: (A) ⁶Li spectrum; (B) ¹⁵N spectrum; (C) ⁶Li{¹⁵N} spectrum; (D) ¹⁵N{⁶Li} spectrum.

Figure 18. ⁶Li and ¹⁵N NMR spectra of 0.25 M [⁶Li,¹⁵N]LDA with 0.40 equiv **4e** in 8.0 M DME/pentane at -70 °C: (A) ⁶Li spectrum; (B) ¹⁵N spectrum; (C) ⁶Li{¹⁵N} spectrum; (D) ¹⁵N{⁶Li} spectrum.

Figure 19. ⁶Li and ¹⁵N NMR spectra of 0.35 M [⁶Li, ¹⁵N]LDA with 0.30 equiv **4e** in 5.0 M DME/pentane at -70 °C: (A) ⁶Li spectrum; (B) ¹⁵N spectrum; (C) ⁶Li{¹⁵N} spectrum; (D) ¹⁵N{⁶Li} spectrum.

Figure 20. ⁶Li and ¹⁵N NMR spectra of 0.20 M [⁶Li,¹⁵N]LDA with 0.50 equiv **4e** in 5.0 M DME/pentane at -70 °C: (A) ⁶Li spectrum; (B) ¹⁵N spectrum; (C) ⁶Li{¹⁵N} spectrum; (D) ¹⁵N{⁶Li} spectrum.

Figure 21. ⁶Li NMR spectrum of 0.10 M [⁶Li,¹⁵N]LDA with 1.0 equiv **4e** in 6.4 M DME/pentane at -90 °C.

Figure 22. ⁶Li and ¹⁵N NMR spectra of 0.40 M [⁶Li, ¹⁵N]LDA with 0.25 equiv **4d** in 6.0 M DME/pentane at -85 °C after aging at -50 °C for 30 min: (A) ⁶Li spectrum; (B) ¹⁵N spectrum; (C) ⁶Li{¹⁵N} spectrum; (D) ¹⁵N{⁶Li} spectrum.

Figure 23. ¹*J*(⁶Li, ¹⁵N)-resolved NMR spectrum of 0.40 M [⁶Li, ¹⁵N]LDA with 0.25 equiv of **4d** in 6.0 M DME/pentane at -85 °C after aging at -50 °C for 30 min.

Figure 24. ⁶Li and ¹⁵N NMR spectra of 0.40 M [⁶Li, ¹⁵N]LDA with 0.25 equiv **5c** in 6.0 M DME/pentane at -85 °C: (A) ⁶Li spectrum; (B) ¹⁵N spectrum; (C) ⁶Li{¹⁵N} spectrum; (D) ¹⁵N{⁶Li} spectrum.

Figure 25. ⁶Li NMR spectra of 0.25 M [⁶Li, ¹⁵N]LDA with 0.40 equiv **4b** in 1.0 M *R*,*R*-TMCDA/toluene/pentane at -70 °C: (A) ⁶Li spectrum; (B) ⁶Li{¹⁵N} spectrum.

Figure 26. ⁶Li NMR spectra of 0.15 M [⁶Li, ¹⁵N]LDA with 0.60 equiv **4b** in 1.0 M *trans*-TMCDA/toluene/pentane at -70 °C: (A) ⁶Li spectrum; (B) ⁶Li{¹⁵N} spectrum.

Figure 27. ⁶Li NMR spectra of 0.10 M [⁶Li, ¹⁵N]LDA with 1.0 equiv **4b** in 1.0 M *trans*-TMCDA/toluene/pentane at -70 °C: (A) ⁶Li spectrum; (B) ⁶Li{¹⁵N} spectrum.

Figure 28. ⁶Li NMR spectra of 0.30 M [⁶Li, ¹⁵N]LDA with 0.30 equiv **4b** in 1.0 M *trans*-TMCDA/toluene/pentane at -70 °C: (A) ⁶Li spectrum; (B) ⁶Li{¹⁵N} spectrum.

Figure 29. ⁶Li NMR spectra of 0.15 M [⁶Li,¹⁵N]LDA with 0.60 equiv **4b** in 0.10 M *trans*-TMCDA/toluene/pentane at -70 °C: (A) ⁶Li spectrum; (B) ⁶Li{¹⁵N} spectrum.

Figure 30. ⁶Li and ⁶Li{¹⁵N} NMR spectra of 0.40 M [⁶Li,¹⁵N]LDA with 0.25 equiv of **4b** in 1.4 M *R*,*R*-TMCDA/toluene/pentane at various temperatures. ⁶Li: (A) -50 °C; (B) -70 °C; (C) -90 °C. ⁶Li{¹⁵N}: (D) -50 °C; (E) -70 °C; (F) -90 °C.

Figure 31. ⁶Li NMR spectra of 0.10 M [⁶Li,¹⁵N]LDA and with 1.0 equiv **5b** in 1.4 M *R*,*R*-TMCDA/toluene/pentane at -80 °C: (A) ⁶Li spectrum; (B) ⁶Li{¹⁵N} spectrum.

Figure 32. ⁶Li NMR spectra of 0.10 M [⁶Li, ¹⁵N]LDA with 0.25 equiv **4c** in 0.10 M HMPA/10.0 M THF/pentane at -90 °C: (A) ⁶Li spectrum; (B) ⁶Li{¹⁵N} spectrum.

Figure 33. ⁶Li NMR spectra of 0.10 M [⁶Li, ¹⁵N]LDA with 0.25 equiv **4c** in 0.40 M HMPA/10.0 M THF/pentane at -90 °C: (A) ⁶Li spectrum; (B) ⁶Li 15 N} spectrum.

Figure 34. ⁶Li and ¹⁵N NMR spectra of 0.40 M [⁶Li,¹⁵N]LDA with 0.25 equiv **4b** in 1.0 M HMPA/8.2 M THF/pentane at -90 °C: (A) ⁶Li spectrum; (B) ¹⁵N spectrum; (C) ⁶Li{¹⁵N} spectrum; (D) ¹⁵N{⁶Li} spectrum.

Figure 35. ¹*J*(⁶Li, ¹⁵N)-resolved NMR spectrum of 0.40 M [⁶Li, ¹⁵N]LDA with 0.25 equiv of **4b** in 1.0 M HMPA/8.2 M THF/pentane at -90 °C.

Figure 36. (⁶Li, ¹⁵N)-HSQC NMR spectrum of 0.40 M [⁶Li, ¹⁵N]LDA with 0.25 equiv of **4b** in 1.0 M HMPA/8.2 M THF/pentane at -90 °C.

Figure 37. ⁶Li and ¹⁵N NMR spectra of 0.40 M [⁶Li, ¹⁵N]LDA with 0.25 equiv **5b** in 1.0 M HMPA/8.2 M THF/pentane at -90 °C: (A) ⁶Li spectrum; (B) ¹⁵N spectrum; (C) ⁶Li{¹⁵N} spectrum; (D) ¹⁵N{⁶Li} spectrum.

Figure 38. ⁶Li NMR spectra of 0.10 M [⁶Li, ¹⁵N]LDA with 1.0 equiv **4e** in 0.40 M HMPA/10.0 M THF/ pentane at -90 °C: (A) ⁶Li spectrum; (B) ⁶Li{¹⁵N} spectrum.

Figure 39. ⁶Li NMR spectra of 0.10 M [⁶Li,¹⁵N]LDA with 0.25 equiv **4e** in 0.40 M HMPA/10.0 M THF/pentane at -90 °C: (A) ⁶Li spectrum; (B) ⁶Li{¹⁵N} spectrum.

Figure 40. ⁶Li and ¹⁵N NMR spectra of 0.40 M [⁶Li, ¹⁵N]LDA with 0.25 equiv **4d** in 1.0 M HMPA/8.2 M THF/pentane at -90 °C: (A) ⁶Li spectrum; (B) ¹⁵N spectrum; (C) ⁶Li{¹⁵N} spectrum; (D) ¹⁵N{⁶Li} spectrum.

Figure 41. ⁶Li and ¹⁵N NMR spectra of 0.40 M [⁶Li, ¹⁵N]LDA with 0.25 equiv **5c** in 1.0 M HMPA/8.2 M THF/pentane at -90 °C: (A) ⁶Li spectrum; (B) ¹⁵N spectrum; (C) ⁶Li{¹⁵N} spectrum; (D) ¹⁵N{⁶Li} spectrum.

Figure 42. ⁶Li and ¹⁵N NMR spectra of 0.40 M [⁶Li,¹⁵N]LDA with 0.25 equiv **4b** in 3.0 M Me₂NEt/toluene/pentane at -100 °C: (A) ⁶Li spectrum; (B) ¹⁵N spectrum; (C) ⁶Li{¹⁵N} spectrum; (D) ¹⁵N{⁶Li} spectrum. *Unassigned ⁶Li doublet and ¹⁵N quintet.

Figure 43. ¹*J*(⁶Li, ¹⁵N)-resolved NMR spectrum of 0.40 M [⁶Li, ¹⁵N]LDA with 0.25 equiv of **4b** in 3.0 M Me₂NEt/toluene/pentane at -100 °C. * Unassigned ⁶Li doublet and ¹⁵N quintet.

Figure 44. (⁶Li, ¹⁵N)-HSQC NMR spectrum of 0.40 M [⁶Li, ¹⁵N]LDA with 0.25 equiv of **4b** in 3.0 M Me₂NEt/toluene/pentane at -100 °C. *Unassigned ⁶Li doublet and ¹⁵N quintet.

Figure 45. ⁶Li and ¹⁵N NMR spectra of 0.40 M [⁶Li, ¹⁵N]LDA with 0.25 equiv **4b** in 3.0 M Me₂NEt/toluene/pentane at -100 °C after aging at 0 °C for 2 hr: (A) ⁶Li spectrum; (B) ¹⁵N spectrum; (C) ⁶Li{¹⁵N} spectrum; (D) ¹⁵N{⁶Li} spectrum.

Figure 46. ${}^{1}J({}^{6}\text{Li}, {}^{15}\text{N})$ -resolved NMR spectrum of 0.40 M [${}^{6}\text{Li}, {}^{15}\text{N}$]LDA with 0.25 equiv of **4b** in 3.0 M Me₂NEt/toluene/pentane at -100 °C after aging at 0 °C for 2 hr.

Figure 47. ⁶Li and ¹⁵N NMR spectra of 0.40 M [⁶Li, ¹⁵N]LDA with 0.25 equiv **5b** in 7.7 M Me₂NEt/pentane at -100 °C: (A) ⁶Li spectrum; (B) ¹⁵N spectrum; (C) ⁶Li{¹⁵N} spectrum; (D) ¹⁵N{⁶Li} spectrum.

Figure 48. ⁶Li and ¹⁵N NMR spectra of 0.10 M [⁶Li,¹⁵N]LDA with 0.50 equiv **4b** in 7.7 M Me₂NEt/pentane at -100 °C: (A) ⁶Li spectrum; (B) ¹⁵N spectrum; (C) ⁶Li{¹⁵N} spectrum; (D) ¹⁵N{⁶Li} spectrum. * Unassigned ⁶Li doublet and ¹⁵N quintet.

Table 1. ⁶ Li and	¹⁵ N NMR	spectroscopic	data. ^{a,b}

ArLi	Solvent	R	Х	⁶ Li, δ (mult, I_{LiN})	¹⁵ N,
					δ(mult)
6a ^c	THF	<i>i</i> -Pr	F	1.23 (s)	
6c ^b	HMPA	<i>i</i> -Pr	OMe	0.91 (s)	
6e	HMPA	<i>i</i> -Pr	F	0.75 (s)	
6f ^{c,b}	DME	<i>i</i> -Pr	F	1.65 (s)	
$\mathbf{6g}^{b}$	TMCDA	Et	OMe	2.18 (s)	
$7\mathbf{b}^{b}$	THF	<i>i</i> -Pr	F	1.71 (d, 5.3)	76.3 (q)
$\mathbf{7d}^{b}$	<i>n</i> -BuOMe	Et	OMe	1.85 (d, 5.8)	75.8 (q)
$\mathbf{7f}^{b}$	DME	<i>i</i> -Pr	F	1.60 (d, 5.4)	75.2 (q)
7g	TMEDA	<i>i</i> -Pr	OMe	2.01 (d, 4.9)	75.3 (q)
7 h	Me ₂ NEt	Et	OMe	1.93 (d,5.2)	75.3 (q)
8a	TMEDA	<i>i</i> -Pr	OMe	0.78 (d, 5.7) 2.49	73.8 (tt)
				(t, 4.7) 2.50 (d,	75.3 (q)
				5.7)	
8b	Me ₂ NEt	Et	OMe	0.81 (d, 6.3) 2.24	74.2 (tt)
				(d, 6.0)	74.3 (q)
				2.80 (t, 4.9)	
9a	THF	Me	F	0.40 (d, 4.8)	79.1 (q)
9b	<i>n</i> -BuOMe	Et	OMe	0.93 (d, 4.9)	75.1 (q)
9c	HMPA	Et	OMe	0.54 (d, 5.3)	76.5 (q)
9d	HMPA	Me	F	0.66 (d, 4.6)	76.3 (q)
10a	<i>n</i> -BuOMe	Et	OMe	1.49 (d, 5.5) 1.55	$74.4 ()^d$
				(d, 6.2) 1.89 (t,	$74.1 ()^d$
				5.2)	
10b	HMPA	Et	OMe	1.09 (d, 5.3) 1.12	$73.2 ()^d$
				(d, 5.3) 1.58 (t,	74.7 (tt)
				4.6)	
10c	DME	Me	F	0.95 (d, 4.7) 0.98	72.9 (q)
				(d, 5.1) 1.82 (t,	74.3 (q)
				5.1)	_
10d	TMEDA	Me	OMe	1.21 (d, 5.0) 1.67	74.9 (q)
				(t, 4.9)	75.1 (q)
10e	Me ₂ NEt	Et	OMe	1.79 (d, 6.2) 1.79	73.8 (tť)
				(t, 5.1) 1.84 (d,	74.3 (tt)
				6.1)	

^{*a*}Multiplicities are denoted as follows: s, singlet; d, doublet; t, triplet; q, quintet. The chemical shifts are reported relative to 0.30 M ⁶LiCl/MeOH (δ 0.0 ppm) and neat Me₂NEt (δ 25.7 ppm) at -90 °C. ¹³C NMR spectra are referenced to toluene-*d*₈ (δ 137.9 ppm), pentane (δ 14.1 ppm), or THF (δ 67.6 ppm). Chemical shifts are reported in ppm, and *J* values are reported in Hz. ^{*b*}Carbon-13 resonances of the carbanionic carbons: **6c**, δ 158.7 (br s); **6f**, δ 150.1 (br d, *J*_{FC}=120.7); **6g**, δ 155.1 (t, *J*_{CLi}=7.7); **7b**, δ 150.5 (br d, *J*_{FC}=123); **7d**, δ 155.2 (q, *J*_{CLi}=5.7); **7f**, δ 154.6 (dq, *J*_{FC}=123, *J*_{CLi}=5.9). ^c1.0 equiv [⁶Li,¹⁵N]LDA. ^dObscured by another resonance.

Figure 49. Plot of k_{obsd} versus [*n*-BuOMe] in pentane cosolvent for the Fries rearrangement of **7d** (0.004 M) by LDA (0.075 M) at 15 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = k[n-BuOMe]^n + k'$ ($k = (3.0 \pm 0.1) \times 10^{-3}$, $n = -1.10 \pm 0.05$, $k' = (4.1 \pm 0.1) \times 10^{-4}$).

[*n*-BuOMe] (M) $k_{obsd} \ 1 \ge 10^3 (s^{-1}) \ k_{obsd} \ 2 \ge 10^3 (s^{-1}) \ k_{obsd} \ avg \ge 10^3 (s^{-1})$

0.50	6.94 ± 0.05	6.71 ± 0.05	6.8 ± 0.2
0.75	4.79 ± 0.04	4.67 ± 0.04	4.74 ± 0.08
1.0	3.5 ± 0.1	3.65 ± 0.08	3.5 ± 0.2
1.3	2.53 ± 0.06	2.60 ± 0.06	2.56 ± 0.05
2.0	1.99 ± 0.04	1.93 ± 0.03	1.96 ± 0.04
2.5	1.33 ± 0.02	1.33 ± 0.02	1.33 ± 0.01
3.0	1.15 ± 0.02	1.17 ± 0.02	1.16 ± 0.02
4.0	0.97 ± 0.01	0.95 ± 0.01	0.96 ± 0.01
6.0	0.89 ± 0.02	0.84 ± 0.01	0.86 ± 0.03
7.0	0.80 ± 0.02	0.90 ± 0.01	0.85 ± 0.07
8.0	0.89 ± 0.02	0.84 ± 0.01	0.87 ± 0.04

Figure 50. Plot of k_{obsd} versus [LDA] in 7.0 M *n*-BuOMe/pentane for the Fries rearrangement of **7d** (0.004 M) at 15 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = k[LDA] + k'$ ($k = (5.7 \pm 0.8) \times 10^4$, $k' = (7.9 \pm 0.2) \times 10^{-4}$).

[LDA] (M) $k_{obsd} \ 1 \ x \ 10^3 (s^{-1})$ $k_{obsd} \ 2 \ x \ 10^3 (s^{-1})$ $k_{obsd} \ avg \ x \ 10^3 (s^{-1})$

0.050	0.80 ± 0.01	0.80 ± 0.01	0.80 ± 0.01
0.075	0.80 ± 0.02	0.90 ± 0.01	0.85 ± 0.07
0.20	0.92 ± 0.01	0.90 ± 0.01	0.91 ± 0.01
0.30	0.93 ± 0.01	0.99 ± 0.02	0.96 ± 0.05
0.40	1.01 ± 0.01	1.02 ± 0.02	1.01 ± 0.01

Figure 51. Plot of k_{obsd} versus [LDA] in 1.3 M *n*-BuOMe / pentane for the Fries rearrangement of **7d** (0.004 M) at 15 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = k[LDA]^n + k'$ ($k = (6.3 \pm 0.2) \times 10^{-3}$, $n = 0.49 \pm 0.09$, $k' = (7.9 \pm 0.2) \times 10^{-4}$). k' (see Δ) was set to equal k' in Figure 50.

[LDA] (M)	$k_{\rm obsd} \ 1 \ {\rm x} \ 10^3 ({\rm s}^{-1})$	$k_{\rm obsd} \ 2 \ {\rm x} \ 10^3 ({\rm s}^{-1})$	$k_{\rm obsd} {\rm avg} {\rm x} 10^3 ({\rm s}^{-1})$
0.025	1.83 ± 0.06	1.78 ± 0.04	1.80 ± 0.04
0.050	2.23 ± 0.07	2.17 ± 0.05	2.20 ± 0.04
0.075	2.53 ± 0.06	2.60 ± 0.06	2.56 ± 0.05
0.13	3.29 ± 0.03	3.17 ± 0.02	3.23 ± 0.08
0.20	3.82 ± 0.04	3.74 ± 0.03	3.78 ± 0.06
0.30	4.26 ± 0.04	4.20 ± 0.03	4.23 ± 0.05

Table 2. Data from Figures 49, 50, and 51 fit to $[7d] = \{(\alpha-1)k_{obsd}t + [7d]_0^{-(1-\alpha)}\}^{-1/(\alpha-1)}$
¹⁾ to determine the order of the decay. The adjustable parameter α
corresponds to the reaction order in 7d . ¹

[<i>n</i> -BuOMe] (M)	[LDA] (M)	α1	α2
0.50	0.075	1.15 ± 0.01	1.01 ± 0.02
0.75	0.075	0.99 ± 0.03	0.99 ± 0.01
1.0	0.075	0.99 ± 0.12	1.05 ± 0.03
1.3	0.075	0.98 ± 0.08	0.96 ± 0.06
2.0	0.075	1.07 ± 0.03	0.99 ± 0.03
2.5	0.075	1.00 ± 0.05	1.06 ± 0.02
3.0	0.075	0.99 ± 0.07	0.91 ± 0.02
4.0	0.075	0.98 ± 0.06	0.98 ± 0.03
6.0	0.075	1.09 ± 0.02	1.01 ± 0.01
7.0	0.075	1.01 ± 0.02	0.94 ± 0.09
8.0	0.075	1.01 ± 0.03	1.02 ± 0.01
7.0	0.050	0.97 ± 0.06	1.04 ± 0.01
7.0	0.20	1.00 ± 0.03	0.97 ± 0.06
7.0	0.30	0.91 ± 0.02	1.01 ± 0.06
7.0	0.40	0.99 ± 0.01	0.96 ± 0.07
1.3	0.025	0.95 ± 0.09	0.95 ± 0.09
1.3	0.050	0.94 ± 0.09	1.040 ± 0.04
1.3	0.13	1.03 ± 0.01	1.00 ± 0.01
1.3	0.20	1.04 ± 0.01	1.02 ± 0.01
1.3	0.30	1.00 ± 0.04	1.1 ± 0.1

Average $\alpha = 1.00 \pm 0.05$

Figure 52. Plot of k_{obsd} versus [DME] in pentane cosolvent for the Fries rearrangement of **7e** (0.004 M) by LDA (0.40 M) at -60 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = k[DME] + k'$ ($k = (3.3 \pm 0.1) \times 10^{-5}$, $k' = (7.1 \pm 0.5) \times 10^{-4}$).

[DME] (M)	$k_{\rm obsd} \ 1 \ge 10^3 ({\rm s}^{-1})$	$k_{\rm obsd} 2 \mathrm{x} 10^3 \mathrm{(s^{-1})}$	$k_{\rm obsd} {\rm avg} {\rm x} 10^3 ({\rm s}^{-1})$
3.0	0.73 ± 0.01	0.82 ± 0.01	0.77 ± 0.03
4.0	0.87 ± 0.01	0.89 ± 0.07	0.88 ± 0.01
5.0	0.90 ± 0.01	0.93 ± 0.01	0.93 ± 0.02
6.5	0.94 ± 0.01	0.93 ± 0.01	0.93 ± 0.01
8.0	0.96 ± 0.01	0.97 ± 0.01	0.96 ± 0.06

Figure 53. Plot of k_{obsd} versus [LDA] in 5.0 M DME/pentane for the Fries rearrangement of **7e** (0.004 M) at -60 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = k[LDA] + k'$ ($k = (-8.1 \pm 17.2) \times 10^{-5}$, $k' = (9.2 \pm 0.4) \times 10^{-4}$).

[LDA] (M) $k_{obsd} \ 1 \ x \ 10^3 \ (s^{-1})$ $k_{obsd} \ 2 \ x \ 10^3 \ (s^{-1})$ $k_{obsd} \ avg \ x \ 10^3 \ (s^{-1})$

0.05	0.85 ± 0.01	0.91 ± 0.01	0.88 ± 0.04
0.10	0.92 ± 0.01	1.03 ± 0.01	0.97 ± 0.08
0.20	0.88 ± 0.01	0.92 ± 0.01	0.90 ± 0.03
0.30	0.86 ± 0.01	0.85 ± 0.01	0.86 ± 0.01
0.40	0.90 ± 0.01	0.93 ± 0.01	0.93 ± 0.02

Table 3. Data from Figures 52 and 53 fit to $[\mathbf{7e}] = \{(\alpha-1)k_{obsd}\mathbf{t} + [\mathbf{7e}]_0^{-(1-\alpha)}\}^{-1/(\alpha-1)}$ to determine the order of the decay. The adjustable parameter α corresponds to the reaction order in $\mathbf{7e}$.¹

[DME] (M)	[LDA] (M)	α1	α2
3.0	0.40	1.00 ± 0.04	1.1 ± 0.1
4.0	0.40	1.01 ± 0.03	1.00 ± 0.02
5.0	0.40	1.00 ± 0.04	1.04 ± 0.01
6.5	0.40	0.96 ± 0.08	1.00 ± 0.02
8.0	0.40	1.01 ± 0.02	0.95 ± 0.09
5.0	0.05	0.99 ± 0.03	1.00 ± 0.02
5.0	0.10	1.02 ± 0.05	1.03 ± 0.04
5.0	0.20	1.01 ± 0.03	0.97 ± 0.06
5.0	0.30	1.02 ± 0.05	1.02 ± 0.03

Average $\alpha = 1.01 \pm 0.03$

Figure 54. Plot of k_{obsd} versus mole fraction of DME (X_{DME}) for the rearrangement of **7e** (0.004 M) by LDA (0.05 M) at -60 °C. The donor solvent concentration is held constant ([DME]+[*n*-BuOMe]=5.0 M) using pentane as cosolvent. The curve depicts an unweighted least-squares fit to $k_{obsd} = (a + bx)/(1 + cx)$ ($a = (0.0 \pm 0.1) \times 10^{-3}$, $b = 1.6 \pm 0.5$, $c = 0.5 \pm 0.4$) such that $1 + c = K_{eq}$.² At low DME concentrations the lithium phenolate precipitated during the reaction; the value of k_{obsd} (shown as Δ) was not included in the fit.

 $k_{\text{obsd}} \ 1 \ \text{x} \ 10^3 (\text{s}^{-1}) \ k_{\text{obsd}} \ 2 \ \text{x} \ 10^3 (\text{s}^{-1}) \ k_{\text{obsd}} \ \text{avg} \ \text{x} \ 10^3 (\text{s}^{-1})$ X_{DME} 0.06 0.09 ± 0.01 0.03 ± 0.01 0.06 ± 0.04 0.18 0.28 ± 0.01 0.24 ± 0.01 0.26 ± 0.03 0.30 0.43 ± 0.01 0.42 ± 0.01 0.43 ± 0.01 0.45 0.53 ± 0.01 0.59 ± 0.01 0.56 ± 0.04 0.60 0.72 ± 0.01 0.82 ± 0.01 0.77 ± 0.07 0.70 0.83 ± 0.02 0.79 ± 0.01 0.81 ± 0.03 0.80 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

 0.93 ± 0.01

 0.99 ± 0.01

 1.03 ± 0.13

 1.05 ± 0.08

0.90

1.0

 1.12 ± 0.01

 1.10 ± 0.01

S64

Figure 55. Plot of k_{obsd} versus [HMPA] in 10.0 M THF/hexanes cosolvent for the Fries rearrangement of **6b** (0.004 M) by LDA (0.10 M) at -65 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = k[\text{HMPA}]^n + k'$ ($k = (4.8 \pm 0.2) \times 10^{-3}$, $n = 0.8 \pm 0.1$, $k' = (0.5 \pm 0.2) \times 10^{-3}$). Pseudo-first-order conditions not maintained at 0.05 M HMPA (Δ); data was omitted from the fit.

[HMPA] (M)	$k_{\rm obsd} \ 1 \ge 10^3 ({\rm s}^{-1})$	$k_{\rm obsd} \ 2 \ge 10^3 ({\rm s}^{-1})$	$k_{\rm obsd} {\rm avg} {\rm x} 10^3 ({\rm s}^{-1})$
0.0	0.40 ± 0.03	0.36 ± 0.02	0.38 ± 0.03
0.05	0.87 ± 0.03	0.84 ± 0.02	0.86 ± 0.02
0.10	1.25 ± 0.02	1.40 ± 0.04	1.3 ± 0.1
0.20	1.74 ± 0.01	1.84 ± 0.02	1.79 ± 0.07
0.40	2.76 ± 0.01	2.68 ± 0.02	2.72 ± 0.06
0.50	3.10 ± 0.02	3.20 ± 0.05	3.15 ± 0.07
0.60	3.68 ± 0.05	3.73 ± 0.01	3.71 ± 0.04

Figure 56. Plot of k_{obsd} versus [THF] in 0.40 M HMPA/hexanes cosolvent for the Fries rearrangement of **6b** (0.004 M) by LDA (0.10 M) at -65 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = k[HMPA] + k'$ ($k = (7 \pm 3) \times 10^{-5}$, $k' = (2.1 \pm 0.3) \times 10^{-3}$).

[THF] (M)	$k_{\rm obsd} \ 1 \ge 10^3 ({\rm s}^{-1})$	$k_{\rm obsd} \ 2 \ {\rm x} \ 10^3 \ {\rm (s^{-1})}$	$k_{\rm obsd} {\rm avg} {\rm x} 10^3 ({\rm s}^{-1})$
4.0	2.06 ± 0.02	2.23 ± 0.04	2.1 ± 0.1
6.0	2.76 ± 0.01	2.56 ± 0.01	2.7 ± 0.1
8.0	2.80 ± 0.01	2.58 ± 0.01	2.7 ± 0.2
10.0	2.76 ± 0.02	2.68 ± 0.01	2.72 ± 0.06
11.0	2.66 ± 0.02	2.70 ± 0.02	2.68 ± 0.03

Figure 57. Plot of k_{obsd} versus [LDA] in 0.40 M HMPA/10.0 M THF/hexanes for the Fries rearrangement of **6b** (0.004 M) at -65 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = k[LDA] + k'$ ($k = (2.5 \pm 0.7) \times 10^{-3}$, $k' = (2.1 \pm 0.1) \times 10^{-3}$).

[LDA] (M) $k_{obsd} \ 1 \ x \ 10^3 (s^{-1})$ $k_{obsd} \ 2 \ x \ 10^3 (s^{-1})$ $k_{obsd} \ avg \ x \ 10^3 (s^{-1})$

0.05	2.17 ± 0.01	2.33 ± 0.02	2.24 ± 0.09
0.10	2.33 ± 0.04	2.30 ± 0.02	2.32 ± 0.02
0.15	2.59 ± 0.01	2.71 ± 0.01	2.65 ± 0.08
0.20	2.75 ± 0.01	2.80 ± 0.03	2.78 ± 0.04
0.25	2.47 ± 0.01	2.68 ± 0.05	2.6 ± 0.1
0.30	2.89 ± 0.02	2.99 ± 0.01	2.94 ± 0.07

Figure 58. Plot of k_{obsd} versus [HMPA] in 10.0 M THF/hexanes cosolvent for the Fries rearrangement of **6d** (0.004 M) by LDA (0.10 M) at -78 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = k[HMPA]^n + k'$ ($k = (1.8 \pm 0.3) \times 10^3$, $n = 1.2 \pm 0.3$, $k' = (0.7 \pm 10) \times 10^4$). Pseudo-first-order conditions not maintained at 0.05 M HMPA (Δ); data was omitted from the fit.

[HMPA] (M)	$k_{\rm obsd} \ 1 \ {\rm x} \ 10^3 ({\rm s}^{-1})$	$k_{\rm obsd} \ 2 \ {\rm x} \ 10^3 ({\rm s}^{-1})$	$k_{\rm obsd} {\rm avg} {\rm x} 10^3 ({\rm s}^{-1})$
0.0	0.04 ± 0.01	0.06 ± 0.01	0.05 ± 0.01
0.10	0.21 ± 0.01	0.21 ± 0.01	0.21 ± 0.01
0.20	0.31 ± 0.01	0.31 ± 0.01	0.31 ± 0.01
0.30	0.51 ± 0.01	0.59 ± 0.01	0.55 ± 0.06
0.40	0.68 ± 0.01	0.68 ± 0.01	0.68 ± 0.01
0.50	0.87 ± 0.01	0.87 ± 0.01	0.87 ± 0.01

Figure 59. Plot of k_{obsd} versus [THF] in 0.40 M HMPA/hexanes cosolvent for the Fries rearrangement of **6d** (0.004 M) by LDA (0.10 M) at -78 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = k[HMPA] + k'$ ($k = (-1.6 \pm 0.7) \times 10^{-5}$, $k' = (0.70 \pm 0.06) \times 10^{-3}$).

[LDA] (M) $k_{obsd} \ 1 \ x \ 10^3 (s^{-1})$ $k_{obsd} \ 2 \ x \ 10^3 (s^{-1})$ $k_{obsd} \ avg \ x \ 10^3 (s^{-1})$

3.0	0.61 ± 0.01	0.63 ± 0.01	0.62 ± 0.01
4.0	0.55 ± 0.02	0.65 ± 0.01	0.60 ± 0.07
6.0	0.70 ± 0.01	0.67 ± 0.01	0.69 ± 0.02
8.0	0.59 ± 0.01	0.57 ± 0.01	0.58 ± 0.01
10.0	0.51 ± 0.01	0.59 ± 0.01	0.55 ± 0.06
11.1	0.47 ± 0.02	0.49 ± 0.01	0.48 ± 0.01

Figure 60. Plot of k_{obsd} versus [LDA] in 0.40 M HMPA/10.0 M THF/hexanes for the Fries rearrangement of **6d** (0.004 M) at -78 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = k[LDA] + k'$ ($k = (-0.9 \pm 0.1) \times 10^{-3}$, $k' = (0.67 \pm 0.02) \times 10^{-3}$).

0.013	0.63 ± 0.01	0.63 ± 0.01	0.63 ± 0.01
0.025	0.68 ± 0.01	0.68 ± 0.01	0.68 ± 0.01
0.050	0.66 ± 0.01	0.68 ± 0.01	0.67 ± 0.01
0.10	0.60 ± 0.01	0.51 ± 0.01	0.56 ± 0.06
0.15	0.49 ± 0.01	0.51 ± 0.01	0.50 ± 0.01
0.20	0.47 ± 0.01	0.44 ± 0.01	0.46 ± 0.02
0.25	0.43 ± 0.01	0.46 ± 0.01	0.45 ± 0.02
0.30	0.40 ± 0.01	0.42 ± 0.01	0.41 ± 0.01

Figure 61. Plot of k_{obsd} versus [*R*,*R*-TMCDA] in toluene cosolvent for the Fries rearrangement of **6g** (0.004 M) by LDA (0.10 M) at -25 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = k[R,R-TMCDA] + k'$ ($k = (2.0 \pm 0.4) \times 10^{-4}$, $k' = (9.0 \pm 0.8) \times 10^{-4}$).

[*R*,*R*-TMCDA] (M) $k_{obsd} 1 \ge 10^3 (s^{-1})$ $k_{obsd} 2 \ge 10^3 (s^{-1})$ $k_{obsd} avg \ge 10^3 (s^{-1})$

0.5	1.12 ± 0.02	1.13 ± 0.02	1.13 ± 0.01
1.0	1.04 ± 0.01	0.96 ± 0.01	1.00 ± 0.06
1.5	1.08 ± 0.01	1.09 ± 0.01	1.09 ± 0.01
2.0	1.41 ± 0.01	1.36 ± 0.02	1.39 ± 0.04
3.0	1.59 ± 0.02	1.46 ± 0.02	1.53 ± 0.09

Figure 62. Plot of k_{obsd} versus [LDA] in 1.5 M *R*,*R*-TMCDA / toluene for the Fries rearrangement of **6g** (0.004 M) at -25 °C. The curve depicts an unweighted least-squares fit to $k_{obsd} = k[LDA] + k'$ ($k = (1 \pm 4) \times 10^{-4}$, $k' = (9.8 \pm 0.7) \times 10^{-4}$).

[LDA] (M)	$k_{\rm obsd} \ 1 \ {\rm x} \ 10^3 ({\rm s}^{-1})$	$k_{\rm obsd} \ 2 \ {\rm x} \ 10^3 \ ({\rm s}^{-1})$	$k_{\rm obsd}$ avg x 10 ³ (s ⁻¹)
0.05	0.96 ± 0.01	0.85 ± 0.01	0.91 ± 0.08
0.10	1.08 ± 0.01	1.09 ± 0.01	1.09 ± 0.01
0.20	1.06 ± 0.01	0.98 ± 0.01	1.02 ± 0.06

 0.90 ± 0.01

 1.08 ± 0.01

0.30

 0.99 ± 0.12
Table 4. Data from Figures 61 and 62 fit to $[\mathbf{6g}] = \{(\alpha-1)k_{obsd}\mathbf{t} + [\mathbf{6g}]_0^{-(1-\alpha)}\}^{-1/(\alpha-1)}$ to determine the order of the decay. The adjustable parameter α corresponds to the reaction order in $\mathbf{6g}$.¹

[<i>R</i> , <i>R</i> -TMCDA] (M)	[LDA] (M)	$\alpha 1$	α2
0.5	0.10	1.09 ± 0.02	1.00 ± 0.02
1.0	0.10	1.01 ± 0.01	0.87 ± 0.01
1.5	0.10	1.02 ± 0.01	1.05 ± 0.01
2.0	0.10	1.06 ± 0.01	1.24 ± 0.01
3.0	0.10	0.91 ± 0.01	0.93 ± 0.01
1.5	0.05	0.93 ± 0.01	1.00 ± 0.01
1.5	0.20	0.95 ± 0.01	0.95 ± 0.01
1.5	0.30	1.10 ± 0.02	0.96 ± 0.01

Average $\alpha = 1.01 \pm 0.10$

Computational Studies. Calculations based on density functional theory (DFT) were performed at the B3LYP/6-31G(d) level of theory using Gaussian 03 and visualized with GaussView 3.09.^{3,4} Gibbs free energies (ΔG° , kcal/mol) include thermal corrections at 298 K. Calculated transition structures were shown to be legitimate saddle points by the existence of a single imaginary frequency. The alkyl groups on the carbamate were modeled as methyl groups and LDA was modeled as lithium dimethylamide. THF and *n*-BuOMe were modeled as dimethylether. TMCDA was modeled as TMEDA. The following equilibrium equations have been balanced, so the energies can be compared.

Figure 63. Relative free energies (ΔG° , kcal/mol). S = Me₂O

Figure 64. Relative free energies (ΔG° , kcal/mol). S = Me₂O

Figure 65. Relative free energies (ΔG° , kcal/mol). S = Me₂O

Figure 66. Relative free energies (ΔG° , kcal/mol). S = Me₂O

Figure 67. Relative free energies (ΔG° , kcal/mol). S = Me₂O.

Figure 68. Relative free energies (ΔG° , kcal/mol). S = Me₂O.

Figure 69. Relative free energies (ΔG° , kcal/mol). S = Me₂O.

Figure 70. Relative free energies (ΔG° , kcal/mol). S = OMe.

Figure 71. Relative free energies (ΔG° , kcal/mol). S = OMe.

Figure 72. Relative free energies (ΔG° , kcal/mol). S = OMe.

Figure 73. Relative free energies (ΔG° , kcal/mol). S = OMe.

Figure 74. Relative free energies (ΔG° , kcal/mol). S = OMe.

Figure 75. Relative free energies (ΔG° , kcal/mol). S = OMe.

Figure 76. Relative free energies (ΔG° , kcal/mol). S = NMe₂

Figure 77. Relative free energies (ΔG° , kcal/mol). S = NMe₂

Figure 78. Relative free energies (ΔG° , kcal/mol). S = NMe₂

Table 5. Optimized geometry, free energy (G° , Hartrees), and cartesian coordinates (X,Y,Z).

Me ^{-O-} Me				$G^{\circ} = -154.970104$		
	Atom	Х	Y	Ζ		
	0	0.000000	-0.590089	0.000004		
	С	1.170987	0.195371	0.000000		
	Н	2.021836	-0.491272	-0.000151		
	Н	1.232054	0.839804	-0.892910		
	Н	1.232210	0.839598	0.893048		
	С	-1.170987	0.195371	0.000000		
	Η	-1.231991	0.839904	-0.892842		
	Н	-2.021836	-0.491272	-0.000291		
	Н	-1.232273	0.839498	0.893116		

 $G^{\circ} = -272.837541$

Atom	Х	Y	Z	
С	-0.718160	0.391824	0.000007	
С	0.596507	-0.377710	-0.000006	
Η	-0.781230	1.046943	0.887608	
Η	-0.781197	1.047033	-0.887529	
С	1.826039	0.539091	-0.000020	
Η	0.616898	-1.034219	0.879944	
Η	0.616872	-1.034215	-0.879960	
Η	1.790202	1.199235	-0.878403	
Η	1.790190	1.199285	0.878325	
С	3.147212	-0.235672	0.000010	
Η	4.007874	0.442764	0.000069	
Η	3.229139	-0.878979	0.884609	
Η	3.229215	-0.878919	-0.884626	
0	-1.788791	-0.535788	-0.000060	
С	-3.052409	0.089182	0.000047	
Η	-3.806358	-0.702842	-0.000044	
Η	-3.198185	0.719847	0.892862	
Η	-3.198222	0.720083	-0.892596	

$$G^{\circ} = -594.095732$$

 $S = Me_2O$

Atom	Х	Y	Ζ	Atom	Х	Y	Z
С	-0.136511	-2.431283	1.173404	Ο	-3.111067	0.000030	-0.087085
Н	-1.020755	-3.109124	1.137695	0	3.111459	-0.000164	0.087764
Н	0.732546	-3.107438	1.343485	Ν	0.000005	-1.588870	0.002534
Η	-0.243398	-1.821323	2.084300	С	-3.884200	-1.192867	-0.019656
С	0.136331	-2.431260	-1.168356	Η	-4.450405	-1.235823	0.921141
Η	-0.732822	-3.107320	-1.338380	Η	-4.583949	-1.250871	-0.864779
Η	0.243193	-1.821290	-2.079255	Н	-3.181010	-2.026301	-0.063773
Η	1.020486	-3.109225	-1.132764	С	-3.884891	1.192437	-0.019084
С	-0.136240	2.431889	1.173197	Η	-4.584677	1.250446	-0.864176
Η	-0.243018	1.822120	2.084233	Η	-4.451120	1.234618	0.921734
Η	0.732794	3.108127	1.343054	Η	-3.182197	2.026311	-0.062810
Η	-1.020526	3.109669	1.137406	С	3.884396	1.192366	0.012017
С	0.136543	2.431376	-1.168571	Η	4.592508	1.250489	0.850131
Н	0.243360	1.821213	-2.079350	Η	4.441276	1.234591	-0.934371
Η	-0.732597	3.107418	-1.338708	Η	3.182070	2.026159	0.062599
Η	1.020721	3.109319	-1.133145	С	3.884107	-1.192891	0.012183
Li	-1.176805	0.000271	-0.097749	Η	4.441018	-1.235357	-0.934176
Li	1.177040	0.000115	0.102833	Η	4.592169	-1.251090	0.850334
Ν	0.000237	1.589228	0.002502	Η	3.181577	-2.026507	0.062827

A1 G° = -818.192237 See pp S75 and S83

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	2.270501	-2.533822	-0.182127	Н	1.305036	-4.413541	-0.613829
С	1.159825	-3.363728	-0.374591	Н	3.270839	-2.945209	-0.265146
С	-0.123650	-2.846909	-0.249645	Η	-1.001026	-3.472898	-0.381585
С	-0.263244	-1.488758	0.063712	Η	2.626820	2.803936	-1.521787
С	0.772645	-0.583725	0.253390	Η	1.498924	4.175230	-1.552338
С	2.032776	-1.192836	0.117127	Η	2.851269	4.174900	-0.413689
Li	1.965263	1.194949	0.841356	Η	-3.606565	-1.863559	1.025763
Ο	-1.663274	0.801906	-0.926709	Н	-4.651942	-0.610571	1.735841
Li	0.054816	1.378698	-0.528572	Н	-5.124333	-1.403235	0.215174
Ν	1.267670	2.809818	0.092768	Η	-5.149281	0.777752	-1.093390
С	0.576787	3.781726	0.924286	Η	-4.816987	1.620526	0.439122
С	2.087019	3.515682	-0.878213	Η	-3.709624	1.819006	-0.945664
С	-2.231915	-0.066535	-0.246313	Н	-0.057204	3.275843	1.669918
Ο	-1.636691	-1.141825	0.284424	Н	1.264843	4.446939	1.488454
Ν	-3.560169	-0.016356	0.034904	Н	-0.085907	4.462972	0.347644
С	-4.353079	1.117380	-0.418777	0	3.100987	-0.291252	0.345884
С	-4.270710	-1.034065	0.797514	С	4.441026	-0.734356	0.186691
Η	5.076604	0.133321	0.374408	Н	4.684801	-1.527484	0.904272
Η	4.614921	-1.100061	-0.832333				

Atom	Х	Y	Z	Atom	Х	Y	Z
С	-1.029163	3.217527	-0.494364	Н	4.851929	-0.780213	2.168090
С	0.237888	3.775051	-0.282558	Н	5.563331	0.325874	0.971084
С	1.328182	2.951946	-0.026765	Н	5.440690	-1.687711	-0.720260
С	1.110852	1.568497	0.012214	Н	4.669052	-2.672538	0.545760
С	-0.100074	0.923270	-0.186387	Н	3.814988	-2.367489	-0.991137
С	-1.145448	1.826484	-0.446262	Н	-0.457650	-3.453153	0.107831
Li	-1.792823	-0.652031	-0.005018	Η	-1.997563	-4.023054	-0.573698
Ο	2.128882	-0.833335	-1.153409	Н	-0.531238	-4.072998	-1.555758
Li	0.260446	-0.936160	-1.252080	0	-2.380768	1.181443	-0.643980
Ν	-1.320883	-2.094293	-1.253395	С	-3.536128	1.954677	-0.922311
С	-1.070137	-3.450012	-0.807883	Н	-4.356411	1.245216	-1.048784
С	-2.125136	-2.136461	-2.461038	Н	-3.770423	2.639835	-0.096731
С	2.708239	-0.267777	-0.214375	Η	-3.412134	2.534347	-1.845601
Ο	2.300054	0.857596	0.385414	0	-2.583747	-0.967609	1.772165
Ν	3.866215	-0.745537	0.318751	С	-2.328792	-0.123477	2.888486
С	4.481654	-1.937223	-0.246445	Н	-1.867874	0.786627	2.501100
С	4.617328	-0.068817	1.366805	Η	-3.263576	0.124122	3.410668
Η	0.365552	4.853664	-0.318529	Η	-1.640067	-0.609133	3.593948
Η	-1.875635	3.867422	-0.691130	С	-3.134908	-2.229618	2.131117
Η	2.320319	3.360288	0.141794	Н	-2.465165	-2.766263	2.817365
Η	-2.329256	-1.117862	-2.825095	Η	-4.115364	-2.101909	2.610967
Η	-1.642597	-2.687392	-3.298550	Н	-3.242908	-2.802353	1.208894
Η	-3.112548	-2.631560	-2.318865	Н	4.032855	0.750457	1.777517

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	-2.131016	-2.786077	0.184986	Н	3.762067	-2.221612	-0.951753
С	-1.090786	-3.486031	0.810703	Η	5.083910	-1.167492	-1.504581
С	0.211999	-3.003590	0.752578	Η	5.062997	-1.758824	0.172874
С	0.443624	-1.806350	0.062177	Η	5.123816	0.901226	0.734788
С	-0.521137	-1.033202	-0.564076	Η	4.989127	1.217308	-1.011995
С	-1.802148	-1.597927	-0.469333	Н	3.727929	1.811187	0.099357
Li	-1.398631	0.487454	-1.791492	Н	0.903269	2.167787	-2.441837
Ο	1.733416	0.725699	0.453063	Н	-0.234529	3.370679	-3.088792
Li	-0.087528	1.159914	0.136568	Н	0.668903	3.720357	-1.610023
Ν	-0.904673	2.272571	-1.361959	0	-2.776388	-0.821259	-1.143447
С	0.138079	2.904015	-2.150774	С	-4.109037	-1.300157	-1.230749
С	-1.890518	3.271260	-1.002722	Н	-4.664501	-0.564483	-1.816087
С	2.347932	-0.273804	0.063790	Н	-4.148518	-2.274699	-1.733855
Ο	1.837697	-1.510150	-0.040433	Н	-4.565577	-1.390611	-0.236841
Ν	3.664385	-0.236243	-0.286073	0	-0.820139	1.509430	1.988818
С	4.418328	0.994749	-0.102887	С	-2.157598	1.187322	2.342752
С	4.431863	-1.416411	-0.659582	Н	-2.848302	1.992271	2.054215
Η	-1.304564	-4.414367	1.333587	Н	-2.415173	0.271361	1.807922
Η	-3.142316	-3.178688	0.218599	Н	-2.238871	1.012890	3.425156
Η	1.035324	-3.540202	1.214848	С	-0.339551	2.678935	2.638057
Η	-2.705924	2.820467	-0.416069	Н	-0.930347	3.560481	2.352528
Η	-1.475274	4.103944	-0.389083	Н	-0.373844	2.557189	3.730060
Н	-2 363227	3 767196	-1 878684	Н	0 697238	2 814076	2 323137

Atom	Х	Y	Ζ	Atom	X	Y	Ζ
С	1.476647	3.102685	-0.565074	Н	-0.446619	-3.128025	-0.059299
С	0.267918	3.784336	-0.762476	Η	0.973204	-4.122531	0.341798
С	-0.930261	3.081551	-0.830257	Η	-0.192236	-3.706114	1.601601
С	-0.881536	1.687400	-0.695324	0	2.576984	0.934918	-0.225017
С	0.257628	0.929003	-0.485408	С	3.848912	1.555134	-0.291138
С	1.421507	1.712340	-0.430009	Η	4.585933	0.758772	-0.168228
Li	1.521938	-0.884765	-0.514391	Η	4.004367	2.050837	-1.258793
Ο	-2.081312	-0.428842	0.812277	Η	3.978708	2.293377	0.511562
Li	-0.208018	-0.501769	1.218661	0	2.111831	-1.594740	-2.278170
Ν	1.046159	-2.061958	0.973652	С	1.669201	-1.004703	-3.494136
С	0.327057	-3.289470	0.707487	Η	1.475741	0.048635	-3.285138
С	2.046389	-2.316307	1.986708	Η	2.439431	-1.096651	-4.272978
С	-2.603481	0.026816	-0.209777	Η	0.743270	-1.481745	-3.845710
Ο	-2.160582	1.081758	-0.911550	С	2.360223	-2.991920	-2.390610
Ν	-3.745664	-0.495337	-0.745372	Η	1.456714	-3.525362	-2.716878
С	-4.443750	-1.557660	-0.037973	Η	3.171880	-3.183426	-3.106685
С	-4.437526	0.085379	-1.886753	Η	2.646156	-3.343414	-1.398301
Η	0.270845	4.866160	-0.867848	Ο	-0.089671	0.423619	3.034617
Η	2.407715	3.659371	-0.523354	С	0.982814	1.295496	3.361216
Η	-1.876903	3.588977	-0.992464	Η	1.877999	0.728355	3.654145
Η	2.615225	-1.400427	2.210340	Η	1.196582	1.884604	2.467796
Η	1.624952	-2.677742	2.954576	Η	0.697386	1.967366	4.183732
Η	2.793101	-3.092514	1.697594	С	-0.492756	-0.389506	4.128072
Η	-3.767826	0.744430	-2.434203	Η	0.327822	-1.039996	4.460763
Η	-4.774136	-0.718559	-2.551881	Η	-0.829014	0.232862	4.969982
Η	-5.320455	0.657713	-1.567228	Η	-1.325267	-1.003985	3.778875
Η	-5.369429	-1.182624	0.421544	Η	-3.794934	-1.956980	0.739179
Н	-4.707355	-2.357842	-0.739803				

С	0.050006	3.370377	-0.646994	Н	3.777656	-3.111196	-0.494132
С	1.400765	3.738332	-0.600133	Н	-1.449960	-3.356418	0.422003
С	2.376594	2.775747	-0.378629	Н	-2.586119	-3.555670	-0.927269
С	1.954931	1.449803	-0.210419	Η	-0.882707	-3.969195	-1.143792
С	0.648759	0.990004	-0.239763	0	-1.622286	1.595757	-0.503024
С	-0.273175	2.021355	-0.469839	С	-2.634130	2.571428	-0.707759
Li	-1.954351	-0.346951	0.040473	Η	-3.585779	2.041000	-0.649975
Ο	2.325526	-1.376388	-0.812568	Η	-2.606213	3.346252	0.069890
Li	0.481312	-1.021664	-0.766043	Η	-2.534884	3.050232	-1.690196
Ν	-1.272256	-1.855173	-1.049101	Ο	-4.059093	-0.392604	0.126733
С	-1.554313	-3.221077	-0.665897	С	-4.624322	-1.172375	1.176695
С	-1.414503	-1.742355	-2.491028	Η	-4.110920	-0.890860	2.096167
С	3.174292	-0.697978	-0.218047	Η	-5.701323	-0.972370	1.269326
0	3.077110	0.598617	0.089680	Η	-4.470852	-2.244128	0.989721
Ν	4.355511	-1.235844	0.209643	С	-4.605772	-0.742454	-1.143217
С	4.674854	-2.614236	-0.130372	Η	-4.395877	-1.792207	-1.380787
С	5.434353	-0.450044	0.791208	Η	-5.691240	-0.567808	-1.154994
Η	1.681060	4.779332	-0.737948	Η	-4.126120	-0.107570	-1.890143
Η	-0.698776	4.135055	-0.824084	0	-1.629549	-0.322952	2.095008
Η	3.430885	3.033967	-0.335880	С	-0.526328	-1.101678	2.553394
Η	-1.199011	-0.714662	-2.824083	Η	0.420483	-0.599082	2.320024
Η	-0.734095	-2.415578	-3.059954	Η	-0.602538	-1.271845	3.637151
Η	-2.435266	-1.989013	-2.863195	Η	-0.569973	-2.058370	2.029791
Η	5.053960	0.505283	1.144163	С	-1.656809	0.963075	2.707871
Η	5.866111	-0.999078	1.636267	Η	-1.741401	0.864898	3.799789
Η	6.232531	-0.268943	0.056893	Н	-0.753230	1.531754	2.457258
Η	5.449784	-2.657315	-0.908761	Н	-2.534310	1.486114	2.322581
Н	5.049568	-3.136593	0.758025				

Atom

Y

Ζ

Y

С	0.669624	3.221493	1.235059	Ο	1.891273	1.104910	1.321496
С	-0.520778	3.896578	0.936033	Η	-3.648173	-1.857321	-2.089695
С	-1.629005	3.183818	0.494908	Η	0.753867	-2.262415	-2.283009
С	-1.506881	1.791782	0.381944	Η	1.970620	-3.402669	-1.665842
С	-0.380213	1.036113	0.667766	Η	0.255971	-3.695070	-1.361157
С	0.696120	1.830209	1.079840	С	2.955707	1.781090	1.972260
Li	2.028576	-0.342097	-0.194134	Η	3.721900	1.033052	2.182600
Ο	-1.981553	-0.630912	-1.136353	Η	3.391983	2.567578	1.341665
Li	-0.576377	-1.034787	0.190671	Η	2.618220	2.227483	2.915896
Ν	1.090827	-2.079373	-0.211151	0	4.162002	-0.673422	-0.296286
С	1.016539	-2.880965	-1.412490	С	4.499786	-1.219367	-1.570879
С	1.438185	-2.945242	0.893815	Η	3.975696	-0.624644	-2.318957
С	-2.897070	0.102046	-0.748210	Η	5.585240	-1.162866	-1.737918
0	-2.764593	1.201258	0.006907	Η	4.171019	-2.264164	-1.642722
Ν	-4.207108	-0.131065	-1.071083	С	4.776057	-1.405191	0.758203
С	-4.559625	-1.340993	-1.794277	Η	4.486793	-2.463120	0.722188
С	-5.316707	0.693186	-0.618423	Η	5.871380	-1.323478	0.700367
Η	-0.572908	4.976533	1.048059	Η	4.432353	-0.975708	1.701105
Η	1.528227	3.790601	1.577397	0	2.024208	0.854568	-1.880337
Η	-2.564155	3.682126	0.254099	С	0.822502	0.967227	-2.643933
Η	1.515960	-2.373247	1.832093	Η	0.183602	1.763553	-2.244946
Η	0.700505	-3.761780	1.077524	Η	1.063680	1.174211	-3.696850
Η	2.410307	-3.478410	0.760477	Η	0.293867	0.018331	-2.558533
Η	-4.943984	1.625476	-0.201952	С	2.752599	2.075108	-1.842868
Η	-5.978322	0.915490	-1.465330	Η	3.020883	2.397645	-2.859673
Η	-5.907241	0.171297	0.148175	Η	2.166254	2.864686	-1.354688
Η	-5.168059	-2.006875	-1.165799	Η	3.663597	1.886603	-1.270726
Η	-5.141980	-1.090076	-2.690268	0	-1.824605	-1.889724	1.637409
С	-2.295798	-3.221259	1.511634	Н	-1.575998	-3.938916	1.929355
Η	-3.263277	-3.344170	2.021677	Н	-2.420550	-3.416622	0.444477
С	-1.610540	-1.500896	2.987536	Н	-1.242239	-0.474147	2.957811
Н	-2.549596	-1.547560	3.558897	Н	-0.864947	-2.149523	3.470011

Atom	Х	Y	Ζ	Atom	X	Y	Ζ
С	-0.907700	3.409275	0.386237	Ν	-1.204538	-1.966426	1.787872
С	0.408370	3.879664	0.459958	Ν	-2.495636	-1.696198	-1.620509
С	1.473929	3.025277	0.196954	Li	-2.117228	-2.358124	0.154814
С	1.187363	1.695471	-0.131644	С	-2.037665	-1.286114	2.773588
С	-0.080169	1.131721	-0.207258	Η	-1.457740	-0.871832	3.627233
С	-1.097447	2.065130	0.060443	Н	-2.570482	-0.441850	2.311118
Ο	1.968627	-0.767626	0.951664	Н	-2.804618	-1.944706	3.234186
С	2.631339	-0.237063	0.048806	С	-0.511223	-3.071090	2.438741
Ο	2.352110	0.956787	-0.498623	Н	-1.199571	-3.818326	2.888012
Ν	3.741876	-0.807785	-0.483156	Н	0.123208	-3.608772	1.718681
С	4.229489	-2.072117	0.050278	Н	0.152841	-2.744924	3.267980
С	4.562966	-0.180447	-1.510606	С	-3.909764	-1.568576	-1.948394
Η	0.595005	4.918679	0.716952	Η	-4.444187	-1.019573	-1.157942
Η	-1.734205	4.084927	0.579271	Η	-4.092578	-1.024180	-2.899751
Η	2.501734	3.373291	0.232327	Н	-4.424930	-2.545642	-2.065356
Η	4.057283	0.693354	-1.913670	С	-1.830292	-2.434306	-2.687328
Η	5.534046	0.122905	-1.096602	Η	-0.757009	-2.546241	-2.471187
Η	4.743184	-0.896646	-2.321054	Η	-2.239308	-3.456059	-2.837057
Η	4.313147	-2.811675	-0.755416	Η	-1.907977	-1.938168	-3.678128
Η	5.221006	-1.937908	0.502174	Li	-1.650953	-0.018505	-1.140237
Η	3.535952	-2.434959	0.806273	Li	0.101548	-0.672573	1.065200
Ο	-2.382247	1.503390	-0.074423	Н	-3.592668	2.745959	1.078272
С	-3.527247	2.334698	0.064057	Н	-4.391719	1.696049	-0.125023
Η	-3.512039	3.157235	-0.662020				

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	0.731778	-1.704939	2.800471	Ν	0.410792	3.134734	0.839332
С	-0.528379	-2.267752	3.035881	Ν	2.440676	1.167326	-1.644711
С	-1.584781	-2.012892	2.166752	Li	1.738539	2.353931	-0.287740
С	-1.339727	-1.180363	1.068205	С	0.803325	3.309256	2.230640
С	-0.132348	-0.569623	0.757014	Η	-0.054546	3.510549	2.909409
С	0.880356	-0.880225	1.680945	Η	1.302011	2.403277	2.607162
Ο	-2.511015	1.205201	0.206309	Η	1.505479	4.156439	2.388113
С	-2.920039	0.116163	-0.218453	С	-0.241403	4.350178	0.375819
Ο	-2.461825	-1.080254	0.186341	Η	0.407756	5.249573	0.442335
Ν	-3.909664	0.010948	-1.142871	Η	-0.544365	4.250938	-0.677211
С	-4.588687	1.212685	-1.607615	Η	-1.158394	4.603553	0.951072
С	-4.462238	-1.259295	-1.593053	С	3.893105	1.181522	-1.675267
Η	-0.678250	-2.907940	3.901042	Η	4.306478	0.955200	-0.680269
Η	1.549411	-1.916396	3.481433	Η	4.336378	0.438621	-2.377097
Η	-2.568007	-2.445684	2.325335	Η	4.323511	2.158337	-1.989269
Η	-3.808924	-2.077330	-1.299630	С	1.939452	1.470311	-2.976092
Η	-5.460506	-1.424586	-1.164564	Η	0.839154	1.470833	-2.985089
Η	-4.555059	-1.247196	-2.685270	Η	2.266546	2.460829	-3.361104
Η	-4.594554	1.235789	-2.703791	Η	2.264233	0.738612	-3.749358
Η	-5.628520	1.228805	-1.254302	Ο	1.777529	-2.158458	-1.548440
Η	-4.067235	2.089142	-1.228051	С	1.055494	-3.341414	-1.225912
Ο	2.114401	-0.305607	1.337198	Η	0.448424	-3.668787	-2.081976
С	3.257073	-0.602038	2.129190	Η	1.743741	-4.151499	-0.945775
Η	3.459932	-1.680563	2.152985	Η	0.404167	-3.100014	-0.385826
Η	4.095332	-0.085171	1.658587	С	2.643057	-2.325477	-2.665823
Η	3.132242	-0.234286	3.154996	Η	3.125078	-1.363621	-2.840366
Li	-0.715918	1.536067	0.655811	Н	3.402893	-3.092390	-2.457997
Li	1.561214	-0.353417	-0.720461	Η	2.072517	-2.619480	-3.558079

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	-2.270820	3.409187	-0.448941	Li	0.549807	1.193804	0.919048
С	-3.591172	2.945966	-0.483293	Ν	1.480679	-0.591933	-1.582832
С	-3.870558	1.608445	-0.225469	Ν	2.151721	0.505616	1.736495
С	-2.799110	0.753918	0.060082	Li	2.624866	-0.411851	0.027900
С	-1.458777	1.114686	0.097426	С	1.739026	0.432230	-2.584968
С	-1.266103	2.482402	-0.166093	Η	1.036276	0.398431	-3.448107
Ο	-1.795628	-1.682116	-0.951273	Η	1.651670	1.435666	-2.144133
С	-2.682098	-1.666823	-0.085726	Η	2.752739	0.365549	-3.042198
Ο	-3.235605	-0.556634	0.424548	С	1.582277	-1.899491	-2.216764
Ν	-3.213593	-2.801094	0.440897	Η	2.577211	-2.100371	-2.673294
С	-2.770956	-4.098978	-0.047635	Η	1.401349	-2.700718	-1.484997
С	-4.290878	-2.813894	1.421347	Η	0.852787	-2.049980	-3.043733
Η	-4.399018	3.637410	-0.706694	С	3.085883	1.542446	2.141139
Η	-2.061102	4.456320	-0.639789	Η	3.314308	2.211750	1.297279
Η	-4.888201	1.229977	-0.233197	Η	2.707725	2.183374	2.968650
Η	-4.483088	-1.806182	1.780643	Η	4.061039	1.148992	2.505797
Η	-5.209881	-3.220761	0.978001	С	1.885835	-0.358208	2.874405
Η	-4.007911	-3.449592	2.269113	Η	1.172243	-1.150745	2.602929
Η	-2.416203	-4.713593	0.788937	Η	2.793453	-0.868299	3.271573
Η	-3.600458	-4.626119	-0.537336	Η	1.454948	0.177630	3.748747
Η	-1.962930	-3.957582	-0.762653	0	4.488867	-1.076119	-0.086668
Ο	0.089765	2.855027	-0.082601	С	5.270810	-1.337010	1.072803
С	0.446274	4.225365	-0.198325	Η	5.621873	-2.378802	1.076926
Η	-0.058302	4.833356	0.563180	Η	6.139290	-0.665056	1.116597
Η	1.526080	4.273008	-0.047283	Η	4.629499	-1.157748	1.936222
Η	0.200263	4.612683	-1.194350	С	5.215396	-1.241183	-1.298067
Li	-0.390695	-0.441641	-1.002547	Η	6.075917	-0.557606	-1.329805
Η	5.574273	-2.274869	-1.400409	Η	4.531222	-1.010798	-2.115298

	NMe ₂		Q	y ^O			
	$ \begin{array}{c} 0 & 0 \\ Li & S \\ Li & N \\ 0 & N \\ 0 & N \\ Me & Me \end{array} $	Me -Me >Li Me)	A10 $G^{\circ} = -1115.$ See pg $S^{\circ} = Me$	240119 576 ₂₂ O
Atom	Х	Y	Z	Atom	х	Y	Ζ
С	1.319547	-3.043859	-1.246822	Ν	0.711351	1.882435	2.021701
С	0.054746	-3.616533	-1.431669	Ν	2.114642	2.649260	-1.294754
С	-1.087826	-2.821902	-1.392084	Li	1.357305	2.781886	0.474770
С	-0.928215	-1.450838	-1.158733	С	1.784893	1.564239	2.952108
С	0.275807	-0.800413	-0.935776	Н	1.478192	0.854780	3.751160
С	1.375913	-1.668510	-1.006033	Н	2.634944	1.103147	2.424396
Ο	-2.007095	0.274729	0.766844	Н	2.184936	2.452974	3.487587
С	-2.521857	0.173302	-0.353033	С	-0.364899	2.520520	2.767162
0	-2.144467	-0.716026	-1.287646	Н	-0.047446	3.448121	3.291672
Ν	-3.569702	0.938252	-0.758777	Н	-1.192179	2.793231	2.096579
С	-4.181293	1.873995	0.173659	Н	-0.797335	1.869408	3.559200
С	-4.220188	0.799115	-2.054815	С	3.538503	2.941346	-1.379852
Η	-0.030847	-4.683457	-1.619579	Н	4.094203	2.399971	-0.599101
Η	2.207430	-3.665633	-1.301590	Η	3.988394	2.653137	-2.354765
Η	-2.075542	-3.241809	-1.558586	Н	3.775874	4.019352	-1.254426
Η	-3.621479	0.169840	-2.708691	С	1.418014	3.389661	-2.338145
Η	-5.219103	0.355256	-1.943126	Η	0.337141	3.185034	-2.303973
Η	-4.333738	1.788653	-2.513210	Η	1.542390	4.490621	-2.255436
Η	-4.225263	2.873248	-0.276076	Η	1.760957	3.131330	-3.363244
Η	-5.204920	1.559933	0.419195	0	0.011028	-1.399750	2.468171
Η	-3.588011	1.913004	1.085236	С	1.237780	-2.089640	2.662489
Ο	2.600187	-0.985632	-0.836219	Н	1.302588	-2.483318	3.686955
С	3.818479	-1.673278	-1.086420	Н	1.337629	-2.917412	1.946915
Η	3.838272	-2.093518	-2.100060	Н	2.040853	-1.368562	2.502997
Η	4.614486	-0.933970	-0.980436	С	-1.122159	-2.235200	2.674033
Η	3.974339	-2.479493	-0.358857	Η	-1.140948	-2.608489	3.707976
Li	-0.133748	0.210279	1.228619	Η	-2.004143	-1.623414	2.483342
Li	1.651368	0.766692	-1.261608	Η	-1.111169	-3.086763	1.979797

Atom	Х	Y	Ζ	Atom	X	Y	Z
С	1.936956	-2.259988	-2.440031	Н	-1.662997	-0.113248	-2.740092
Ċ	3.215454	-1.699748	-2.553461	Н	-2.798019	1.153139	-3.262467
С	3.584783	-0.627697	-1.748544	С	-1.884382	2.983331	-1.526577
С	2.638447	-0.137773	-0.839892	Η	-2.864261	3.288938	-1.958237
С	1.347302	-0.613645	-0.665174	Η	-1.819529	3.443995	-0.529557
С	1.056298	-1.698305	-1.511538	Η	-1.121532	3.486765	-2.161831
Ο	1.458130	2.354649	-0.273224	С	-3.099478	-1.862873	1.279560
С	2.519243	2.018234	0.266189	Η	-3.216780	-2.250190	0.255640
Ο	3.179254	0.876008	0.016186	Η	-2.865586	-2.739932	1.927791
Ν	3.158207	2.796928	1.181253	Η	-4.110516	-1.536491	1.613296
С	2.627798	4.115015	1.497624	С	-1.966345	-0.341480	2.684883
С	4.445579	2.461344	1.772548	Η	-1.211207	0.456619	2.747872
Η	3.920705	-2.109457	-3.271649	Η	-2.906852	0.077076	3.113280
Η	1.663092	-3.102003	-3.067148	Η	-1.657448	-1.132604	3.405980
Η	4.574360	-0.184703	-1.809950	0	0.692756	-2.671198	1.861926
Η	4.697828	1.425610	1.559170	С	2.073889	-2.540943	2.177502
Η	5.237315	3.112669	1.376824	Η	2.206007	-2.303483	3.243229
Η	4.396373	2.603294	2.858903	Η	2.614275	-3.470697	1.948750
Η	2.504385	4.217987	2.582685	Η	2.464003	-1.730618	1.561962
Η	3.314482	4.899203	1.151158	С	0.060167	-3.700535	2.608947
Η	1.663867	4.240886	1.008476	Η	-0.989402	-3.717598	2.313149
Ο	-0.233429	-2.206903	-1.305971	Η	0.521910	-4.676036	2.396459
С	-0.652888	-3.348804	-2.036352	Η	0.127419	-3.500927	3.687830
Н	-0.003451	-4.212480	-1.841130	0	-4.573749	1.157706	0.147830
Η	-1.666447	-3.571162	-1.697119	С	-5.407371	1.155956	1.297264
Η	-0.668222	-3.145284	-3.114311	Η	-5.745508	2.175469	1.533669
Li	0.099583	1.151592	-0.795844	Η	-6.286843	0.514277	1.143696
Li	-0.329169	-1.397671	0.625584	Η	-4.814279	0.764057	2.124355
Ν	-1.706827	1.544038	-1.439885	С	-5.232063	1.647162	-1.014313
Ν	-2.096876	-0.814455	1.318902	Η	-4.501043	1.625662	-1.822194
Li	-2.648485	0.586012	0.001694	Η	-6.094038	1.012608	-1.267348
С	-1.811706	0.975640	-2.773286	Η	-5.578554	2.678837	-0.861082
Η	-1.064606	1.383000	-3.492322				

Me_{2} $O O$ $C O$ C		A12 $G^{\circ} = -1270.212974$ See pg S76 $S = Me_2O$
Me Me Me	¢ ¢	

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	-2.194676	-3.179667	-0.889861	Н	1.921139	-1.371644	2.255732
С	-3.416135	-2.643362	-1.317700	Η	2.943640	-0.010030	2.760944
С	-3.596581	-1.264706	-1.373997	С	1.450024	1.859071	1.564635
С	-2.522411	-0.449839	-0.994718	Η	2.453317	2.257185	1.844687
С	-1.286990	-0.886848	-0.548754	Η	1.106411	2.436849	0.695213
С	-1.187014	-2.285305	-0.517713	Η	0.790612	2.139156	2.416263
Ο	-1.821352	1.748290	0.695108	С	3.214880	-1.937020	-1.845814
С	-2.328974	1.911995	-0.422460	Н	3.419281	-2.453758	-0.894240
Ο	-2.794387	0.938477	-1.216120	Н	2.622771	-2.641298	-2.472796
Ν	-2.505999	3.146918	-0.972309	Н	4.195617	-1.842307	-2.368969
С	-2.191661	4.334168	-0.193207	С	2.308060	-0.025184	-2.885845
С	-3.150349	3.371884	-2.258949	Н	1.796514	0.939169	-2.742525
Η	-4.223188	-3.309455	-1.611597	Н	3.237110	0.189793	-3.465070
Η	-2.061324	-4.256427	-0.857012	Η	1.671293	-0.624904	-3.572800
Η	-4.530636	-0.827619	-1.715114	0	-1.501772	-0.441453	2.865516
Η	-3.189269	2.444568	-2.825196	С	-2.728022	0.126333	3.309612
Η	-4.171960	3.755667	-2.126710	Н	-3.581238	-0.336054	2.793836
Η	-2.575610	4.114266	-2.824959	Н	-2.843734	-0.009513	4.394494
Η	-1.532945	4.995620	-0.769035	Η	-2.694715	1.188809	3.067804
Η	-3.107111	4.889735	0.054077	С	-1.439710	-1.845011	3.092699
Η	-1.691733	4.037607	0.726821	Η	-0.483156	-2.192089	2.700786
Ο	0.068398	-2.722046	-0.058158	Η	-1.502382	-2.064127	4.168221
С	0.432589	-4.079603	-0.261107	Н	-2.253985	-2.361204	2.566299
Η	0.323522	-4.366646	-1.314334	0	4.817109	1.062269	0.141706
Η	1.481176	-4.163170	0.030122	С	5.624546	0.889457	-1.023369
Η	-0.171328	-4.753968	0.360724	Н	5.966033	1.862956	-1.401503
Li	-0.645033	0.291474	1.172741	Н	6.497751	0.262737	-0.795969
Li	0.911728	-0.773280	-0.462660	Н	4.992227	0.395713	-1.762055
Ν	1.447061	0.430997	1.265256	С	5.512076	1.672530	1.220696
Ν	2.552167	-0.671594	-1.611748	Η	6.373950	1.061294	1.523147
Li	3.002695	0.347232	-0.032892	Н	5.863611	2.675364	0.940642
С	1.910912	-0.288499	2.445706	Н	4.811206	1.752448	2.053499
Н	1.279020	-0.121907	3.343085				

Me	$ \begin{array}{c} \text{NMe} \\ \text{O} \\ \text{O} \\ \text{Li} \\ \text{V} \\ \text{Li} \\ \text{N} \\ \text{O} \\ \text{S} \\ \text{N} \\ \text{N}$	2 -Me -Li -Me Ie				A13 $G^{\circ} = -1270.20$ See pg S2 $S = Me_20$	09295 76 Э
Atom	Х	Y	Z	Atom	Х	Y	Ζ

С	0.229621	-1.944379	-2.494973	Н	-0.696164	-3.241994	1.215646
С	-0.650851	-1.156924	-3.250484	Н	-0.593039	-3.238250	2.989269
С	-0.994457	0.121585	-2.819551	С	-1.852384	-0.911860	3.298346
С	-0.437627	0.575494	-1.617245	Н	-1.298326	-1.194405	4.220992
С	0.428698	-0.128960	-0.795628	Н	-1.919960	0.186201	3.289718
С	0.732730	-1.404574	-1.305631	Н	-2.887405	-1.296877	3.451367
Ο	-2.140062	1.360671	0.390765	С	3.169358	-1.034906	2.875484
С	-1.497604	2.213851	-0.235083	Η	3.107662	-2.028923	2.406735
Ο	-0.736797	1.943506	-1.308700	Η	4.253576	-0.779179	2.941547
Ν	-1.516096	3.534231	0.081231	Н	2.838077	-1.155978	3.930528
С	-2.356416	4.005326	1.172000	С	2.479693	1.220736	2.781365
С	-0.780173	4.551650	-0.655962	Η	1.891780	1.974856	2.233837
Η	-1.057611	-1.545614	-4.180403	Н	2.105047	1.219238	3.829239
Η	0.507165	-2.931844	-2.850763	Н	3.520279	1.617387	2.848412
Η	-1.663862	0.753848	-3.395387	0	3.914829	0.573833	-0.837321
Η	-0.110591	4.081674	-1.371995	С	3.948418	0.958846	-2.204152
Η	-1.471158	5.217246	-1.191257	Н	4.095815	2.044003	-2.299711
Η	-0.191768	5.157704	0.043616	Н	4.757308	0.439251	-2.737118
Η	-1.749787	4.558124	1.899510	Н	2.985415	0.682235	-2.637211
Η	-3.139418	4.675578	0.792516	С	5.101449	0.899219	-0.119500
Η	-2.817449	3.151182	1.663976	Η	4.930171	0.598025	0.915053
Ο	1.659635	-2.081369	-0.503564	Η	5.964958	0.359651	-0.533226
С	2.105736	-3.370947	-0.895297	Η	5.296260	1.979803	-0.162831
Η	2.601136	-3.344936	-1.875102	0	-3.528969	-1.284109	-0.480005
Η	2.820358	-3.688455	-0.134038	С	-4.768217	-0.850053	0.069852
Η	1.272891	-4.084682	-0.930931	Η	-5.578359	-0.972903	-0.662597
Li	-1.933317	-0.537631	0.479698	Η	-5.014121	-1.413302	0.980864
Li	2.389592	-0.076876	0.195153	Η	-4.652330	0.208065	0.311548
Ν	-1.230481	-1.395378	2.078742	С	-3.541576	-2.656876	-0.856219
Ν	2.388091	-0.070070	2.129415	Н	-2.566270	-2.875058	-1.294855
Li	0.531199	-0.614627	1.701612	Η	-3.708658	-3.302856	0.016171
С	-1.172171	-2.842748	2.124872	Η	-4.325778	-2.841853	-1.603773
Η	-2.173309	-3.328180	2.202990				

Atom	Х	Y	Ζ	Atom	X	Y	Ζ
С	1.614050	-2.335510	-1.242218	Н	2.654885	3.462665	-1.381485
С	2.904934	-2.449544	-0.710876	Η	3.405882	1.958052	-0.821141
С	3.449968	-1.481716	0.139873	Η	1.955508	1.891976	-1.858468
С	2.617649	-0.402353	0.422991	Η	-0.272773	2.861387	-0.707873
С	1.321319	-0.238541	-0.056556	Η	-0.059119	3.370554	0.991913
С	0.828761	-1.214595	-0.912609	Η	0.704824	4.298945	-0.323657
Ο	2.868658	0.714336	1.156989	Η	-3.802387	-0.996271	2.410959
С	1.497028	1.333315	0.937841	Η	-2.622212	-0.993368	3.721722
Ο	0.748948	1.384899	1.963387	Η	-2.816982	0.455502	2.716215
Li	-0.039670	-0.227032	2.073230	Η	-0.927161	-2.921262	1.090528
Ν	-1.751143	-1.094243	1.756843	Η	-1.500631	-2.979045	2.768566
Li	-1.729529	-0.391260	-0.045565	Η	-2.668879	-3.019777	1.444817
Ο	-3.056433	0.672515	-0.976577	Η	-1.792041	1.196823	-2.481235
С	-2.781959	1.480119	-2.119856	Η	-3.530184	1.303337	-2.904170
С	-4.325608	0.955966	-0.385197	Η	-2.783459	2.544379	-1.850884
С	-2.780992	-0.643321	2.680217	Η	-4.377427	2.006425	-0.070737
С	-1.712562	-2.551255	1.766141	Η	-4.425346	0.308102	0.486564
Ν	1.644585	2.501862	0.164208	Η	-5.134315	0.749371	-1.098534
С	2.454011	2.441551	-1.040111	0	-0.478060	-1.045927	-1.408825
С	0.436745	3.295703	0.024880	С	-0.950129	-1.973915	-2.386769
Η	1.244859	-3.118211	-1.895246	Η	-1.942188	-1.625482	-2.682142
Η	4.457095	-1.563846	0.535204	Η	-0.289469	-1.984286	-3.260179
Η	3.498473	-3.321127	-0.975434	Η	-1.027645	-2.985305	-1.971954

С	-0.199747	-2.300179	2.451583	Ν	-3.409306	1.277884	-0.319043
С	-1.316982	-3.039992	2.047620	Ν	0.149885	2.393275	0.735659
С	-1.835515	-2.933770	0.752527	Li	-1.416241	1.611630	-0.192468
С	-1.161124	-2.055137	-0.085763	С	-4.099993	1.002030	0.929090
С	-0.043201	-1.306853	0.227060	Η	-3.644722	0.141597	1.441310
С	0.422827	-1.438791	1.532736	Η	-4.072077	1.854524	1.641689
Ο	-0.877865	0.426859	-1.791371	Η	-5.177089	0.765317	0.793380
С	-0.442918	-0.756837	-1.702161	С	-4.047253	2.411680	-0.970919
0	-1.506771	-1.760752	-1.408685	Η	-5.119631	2.241116	-1.206265
Ν	0.478092	-1.244423	-2.606075	Η	-4.023628	3.340081	-0.359008
С	1.404548	-0.267777	-3.166760	Η	-3.547022	2.646258	-1.924564
С	1.021421	-2.580402	-2.416166	С	-0.109466	2.682932	2.137523
Η	-1.792756	-3.706224	2.762018	Η	-0.364672	1.761793	2.682644
Η	0.162447	-2.402626	3.468823	Η	0.757565	3.143718	2.662973
Η	-2.705958	-3.498420	0.433723	Η	-0.955180	3.386762	2.293529
Η	1.757779	-2.608783	-1.597512	С	0.448984	3.640702	0.054210
Η	0.217566	-3.280140	-2.188983	Η	0.624541	3.467318	-1.019313
Η	1.506484	-2.895940	-3.344663	Η	-0.369318	4.391345	0.124722
Η	1.846133	-0.686085	-4.076273	Η	1.349378	4.164164	0.450974
Η	0.860484	0.642884	-3.415282	0	3.182616	0.938300	-0.159857
Η	2.214198	-0.016747	-2.463270	С	4.115991	-0.134533	-0.086132
0	1.526221	-0.645708	1.862720	Η	4.477229	-0.405635	-1.087898
С	1.929701	-0.567019	3.228108	Η	4.975165	0.143245	0.540168
Η	2.301683	-1.534999	3.583651	Η	3.593522	-0.980065	0.362005
Η	2.735869	0.167924	3.263174	С	3.754052	2.131380	-0.693012
Η	1.102370	-0.233776	3.864300	Н	2.974897	2.893220	-0.681643
Li	-2.734034	-0.096516	-1.424814	Η	4.601033	2.461186	-0.076248
Li	1.296933	0.847720	0.504206	Н	4.101464	1.967141	-1.722423

Atom	Х	Y	Z	Atom	Х	Y	Z
С	-0.185534	2.960308	-1.759267	Н	-1.963512	1.275710	3.390669
С	0.110458	3.979943	-0.846688	Н	-2.199742	1.342131	1.628572
С	0.313342	3.719411	0.512822	Η	0.149801	-1.790173	3.107295
С	0.201261	2.384282	0.887762	Η	-0.614488	-0.715395	4.303651
С	-0.098127	1.327006	0.042055	Η	-1.614885	-1.835485	3.343412
С	-0.287495	1.629342	-1.305771	Η	-0.722078	-4.221367	0.153328
Ο	0.378047	1.864399	2.146241	Η	1.035567	-4.326451	0.237675
С	0.292638	0.442792	1.807014	Η	0.145356	-3.421797	1.480827
Ο	1.361611	-0.208668	1.847591	Н	0.475242	-1.818015	-2.372260
Li	1.736207	-1.261791	0.356878	Н	1.238054	-3.389478	-2.017678
Ν	0.301329	-2.391205	-0.355393	Η	-0.517365	-3.274964	-2.141096
Li	-0.944295	-0.889555	0.061070	Н	-2.667582	-3.079156	-0.257738
Ο	-2.893482	-1.062724	-0.371799	Н	-4.372768	-2.527507	-0.325661
С	-3.356473	-2.365918	-0.711803	Н	-3.356560	-2.507542	-1.801309
С	-3.674663	-0.029348	-0.958318	Н	-3.687497	-0.123847	-2.052771
С	0.186958	-3.624583	0.401485	Н	-4.706441	-0.063319	-0.581116
С	0.377584	-2.727218	-1.765062	Н	-3.212550	0.919860	-0.684363
Ο	3.550585	-0.911052	-0.223143	Н	3.645626	0.561361	1.167479
С	4.254920	0.196634	0.340025	Н	5.241561	-0.122088	0.702739
С	4.193751	-1.475077	-1.358404	Η	4.310230	-0.724141	-2.152277
Ν	-0.909067	-0.192584	2.249831	Н	5.183132	-1.869709	-1.088855
С	-2.067714	0.670842	2.479186	Н	3.559891	-2.288467	-1.717070
С	-0.732276	-1.188366	3.315975	0	-0.603475	0.565185	-2.134176
Η	4.381229	0.990242	-0.408841	С	-0.743847	0.808707	-3.523384
Η	-0.336299	3.213526	-2.803229	Η	-1.583205	1.485393	-3.735194
Η	0.550153	4.505809	1.222139	Н	0.172399	1.235971	-3.951673
Η	0.185310	5.001702	-1.211148	Η	-0.936931	-0.162550	-3.983394
Η	-2.958221	0.040637	2.569499				

A17
$$G^{\circ} = -986.010498$$

See pg S78
 $S = Me_2O$

Atom	Х	Y	Ζ	Atom	u X	Y	Ζ
С	0.430940	0.561780	1.877742	Н	3.741782	0.490232	-0.671172
С	0.829180	0.338171	0.560453	Η	3.556768	-0.668249	0.670555
С	1.151782	1.459094	-0.205869	Η	4.575376	-1.074223	-0.737492
С	1.086720	2.779744	0.220406	Η	-3.027102	1.669356	0.246174
С	0.656044	2.960566	1.547490	Н	-1.941909	2.878892	-0.493745
С	0.328628	1.884207	2.368547	Η	-3.528159	2.508773	-1.249107
Ο	1.533714	0.980842	-1.427606	Н	-2.431507	1.766409	-3.350518
С	1.305297	-0.481061	-1.131522	Η	-0.887416	2.290564	-2.596302
0	0.307807	-1.017290	-1.705009	Η	-1.063323	0.609910	-3.151363
Li	-1.003204	-0.397217	-0.578591	Н	-3.166804	-3.468436	-0.216938
Ο	-2.076150	1.028110	-1.437741	Н	-3.922465	-2.022672	-0.958047
С	-1.590446	1.457717	-2.714748	Η	-2.329523	-2.602620	-1.539009
С	-2.674603	2.088541	-0.699161	Η	-2.315001	-0.855633	2.125795
0	-2.266239	-1.654012	0.257154	Η	-3.906531	-0.877288	1.288143
С	-2.974842	-1.430682	1.473394	Η	-3.218578	-2.387595	1.954475
С	-2.970118	-2.484175	-0.662766	0	0.087308	-0.426237	2.775167
Ν	2.533746	-1.151109	-1.136817	С	0.511926	-1.747899	2.462772
С	3.656552	-0.567515	-0.423591	Η	0.239665	-2.361245	3.325726
С	2.463214	-2.601780	-1.060242	Η	0.016501	-2.134994	1.565055
Η	1.367643	3.616439	-0.411736	Η	1.597252	-1.786625	2.310804
Η	0.588493	3.968573	1.950727	Η	2.306387	-2.963154	-0.028205
Η	0.020652	2.040020	3.398740	Н	3.404737	-3.024888	-1.427374
Η	1.643286	-2.953679	-1.684851				

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	-0.862353	-1.000804	1.340371	Н	-1.676612	4.326281	0.289417
С	-0.932514	-0.174669	0.220081	Н	-0.814157	3.129883	1.290367
С	-1.624580	-0.639694	-0.891378	Η	-3.510769	1.398312	-0.731229
С	-2.221403	-1.893423	-1.003104	Н	-3.003519	1.609720	0.966246
С	-2.105564	-2.708462	0.130467	Н	-3.607004	2.999659	0.023446
С	-1.442859	-2.288241	1.290151	Н	2.371029	-2.436386	-0.155741
Ο	-1.616487	0.387489	-1.788388	Н	0.938772	-2.938457	-1.103117
С	-0.840659	1.351067	-0.913915	Н	2.583879	-3.095044	-1.803357
Ο	0.335384	1.630083	-1.301181	Η	2.041330	-1.538738	-3.682840
Li	1.206991	0.278515	-0.439342	Η	0.367683	-1.598825	-3.035497
Ο	1.856695	-1.149713	-1.646503	Н	1.185166	-0.026523	-3.204496
С	1.333185	-1.082305	-2.977794	Н	3.933544	2.043357	-0.292369
С	1.936943	-2.485621	-1.157125	Н	4.831000	0.829193	0.672824
Ο	2.758516	0.643467	0.713724	Н	4.020590	0.343849	-0.848514
С	2.537390	1.433952	1.882345	Н	1.599740	1.087978	2.318934
С	3.957361	0.992447	0.027058	Н	3.360547	1.293270	2.596468
Ν	-1.687889	2.401418	-0.516495	Н	2.461023	2.498074	1.621160
С	-3.020200	2.076616	-0.033341	Ο	-0.195760	-0.517050	2.449558
С	-1.026740	3.445520	0.251685	С	-0.154091	-1.325943	3.612995
Η	-2.763199	-2.211438	-1.888331	Н	0.381726	-0.745019	4.367177
Η	-2.552678	-3.700048	0.119708	Н	-1.162236	-1.553510	3.983325
Η	-1.394835	-2.961619	2.138978	Н	0.382463	-2.268518	3.437649
Η	-0.089517	3.712228	-0.235370				

С	-1.980240	3.037104	-0.108775	С	4.144269	0.244636	0.738974
С	-0.738046	3.641279	-0.318432	Н	-0.677950	4.703311	-0.537063
С	0.425203	2.875906	-0.238279	Η	-2.911365	3.592547	-0.150392
С	0.319313	1.511535	0.050122	Η	1.402459	3.324994	-0.387070
С	-0.875190	0.819638	0.259407	Η	-3.471727	-2.005417	-1.513292
С	-1.952904	1.678053	0.157254	Н	-2.700834	-3.604923	-1.547319
F	-3.231253	1.075476	0.382153	Н	-4.018923	-3.286991	-0.412395
Li	-2.478072	-0.614815	0.846838	Η	3.614480	1.092182	1.166123
0	1.178152	-1.052735	-0.890017	Η	4.646452	-0.306511	1.542375
Li	-0.623223	-1.264466	-0.501205	Η	4.909710	0.611254	0.041698
Ν	-2.158200	-2.341376	0.106100	Η	4.535182	-1.728153	-1.174389
С	-1.726586	-3.453079	0.939649	Η	4.199138	-2.458946	0.413991
С	-3.118874	-2.827923	-0.872371	Η	2.957422	-2.498237	-0.866257
С	1.931278	-0.305702	-0.247266	Н	-0.994405	-3.115947	1.690807
0	1.600685	0.908141	0.218701	Н	-2.557677	-3.933576	1.497529
Ν	3.210433	-0.642783	0.056612	Н	-1.244176	-4.271797	0.363648
С	3.755284	-1.906341	-0.422405				

Atom	Х	Y	Z	Atom	Х	Y	Ζ
С	0.955631	-2.158682	2.084912	Η	-1.922320	-3.564231	0.919340
С	-0.022199	-3.133119	1.866414	Η	0.471784	2.749845	2.896238
С	-1.149392	-2.824173	1.104406	Η	1.097156	4.184876	2.056286
С	-1.266709	-1.535563	0.574429	Η	-0.587807	4.142956	2.589853
С	-0.346459	-0.501575	0.739823	Η	-1.334565	4.583214	0.256645
С	0.720764	-0.915714	1.513805	Η	0.346479	4.625747	-0.279280
F	1.723378	0.059997	1.739289	Η	-0.792244	3.488077	-1.033687
Li	-1.413973	1.392561	0.942867	Η	-3.609928	-2.253321	-1.939840
Ο	-3.080922	0.655247	0.509048	Η	-5.365749	-2.105126	-1.678352
С	-3.215642	-0.320892	-0.242686	Η	-4.592159	-1.250844	-3.032913
Ο	-2.417264	-1.399808	-0.260953	Η	-5.311316	1.002526	-2.257888
Ν	-4.223934	-0.410422	-1.149813	Η	-6.201046	0.278522	-0.896459
С	-5.220403	0.648956	-1.223786	Η	-4.916104	1.474005	-0.582985
С	-4.457111	-1.574440	-1.993952	Η	2.240766	3.401346	-1.137535
Li	0.960174	1.373957	0.372091	Η	2.907511	2.628187	-2.606079
Ο	2.274499	1.375024	-1.071540	Η	3.143923	0.290172	-2.607130
С	2.915676	0.175758	-1.536355	Η	2.155633	-0.602837	-1.432854
С	4.172328	-0.176455	-0.740385	Η	3.887983	-0.294034	0.312431
С	4.044678	-2.734740	-1.089775	Η	4.881602	0.659819	-0.789326
С	2.872865	2.592807	-1.508645	Η	3.156267	-2.731298	-1.731424
Η	3.887996	2.712811	-1.110907	Η	4.637619	-3.615764	-1.360129
Ν	-0.165991	2.890853	0.889886	Η	3.701445	-2.865192	-0.056396
С	-0.496826	3.927682	-0.067839	С	4.873791	-1.452301	-1.239760
С	0.214163	3.513277	2.146319	Η	5.811363	-1.565349	-0.680734
Η	0.094387	-4.127150	2.288499	Η	5.164419	-1.322812	-2.292397
Н	1.845945	-2.355341	2.674052				

A21
$G^{\circ} = -957.923830$
See pg S79
$S = Me_2O$

Atom	Х	Y	Ζ	Atom	X	Y	Ζ
С	-0.740073	3.274978	-0.926923	Н	-1.954606	-2.785007	-3.066967
С	0.569989	3.724294	-0.741461	Η	-3.439881	-2.345964	-2.215341
С	1.560499	2.825503	-0.344230	Η	3.930833	0.566074	1.884338
С	1.208162	1.488144	-0.138584	Η	4.623425	-0.974282	2.442581
С	-0.067578	0.949544	-0.300110	Η	5.423709	-0.061703	1.142542
С	-0.962470	1.923886	-0.701427	Η	5.110606	-2.303096	-0.283306
Li	-1.958417	-0.336977	-0.058412	Η	4.244151	-3.008462	1.102841
Ο	1.961632	-1.139813	-0.939548	Η	3.422163	-2.842418	-0.472000
Li	0.101117	-1.070642	-1.126281	Η	-1.097489	-3.225883	0.493774
Ν	-1.638178	-1.959122	-1.104086	Η	-2.674776	-3.627331	-0.219673
С	-1.650577	-3.257484	-0.458213	Η	-1.191409	-4.063893	-1.071036
С	-2.376752	-2.045612	-2.351831	0	-3.015533	-0.281402	1.583604
С	2.579645	-0.527130	-0.057007	С	-3.073182	0.856434	2.436400
Ο	2.301214	0.716740	0.362298	Η	-2.159494	1.429021	2.266889
Ν	3.645383	-1.063226	0.594563	Η	-3.947416	1.479033	2.201302
С	4.132738	-2.380898	0.210749	Η	-3.122921	0.545809	3.489065
С	4.448825	-0.336031	1.568653	С	-4.150312	-1.134315	1.702244
Η	0.816665	4.769340	-0.905453	Η	-4.240047	-1.514947	2.728806
Η	-1.541256	3.939645	-1.234396	Η	-5.071037	-0.597542	1.433853
Η	2.585417	3.150517	-0.191833	Η	-3.993707	-1.966851	1.014444
Η	-2.386244	-1.072818	-2.866714	F	-2.296356	1.484220	-0.888152

S111

	NMe	2					
	$ \begin{array}{c} 0 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	∑Me ∑Me ⁱⁱ ∼S			€ ⁰	$A24$ $G^{\circ} = -1100$ See pg $S = Me$	l .002591 S77 e ₂ O
Atom	X	Y	Z	Atom	Х	Y	Z
С	-1.583192	3.585892	-0.797299	С	1.598100	-0.574296	-2.474944
Ċ	-2.970281	3.477920	-0.665507	H	0.845637	-1.040312	-3.151644
С	-3.542059	2.253756	-0.318196	Н	1.555983	0.509787	-2.645587
С	-2.698916	1.159305	-0.103440	Η	2.579800	-0.926233	-2.859872
С	-1.309703	1.173459	-0.210874	С	1.462513	-2.323309	-0.868901
С	-0.853118	2.428393	-0.570982	Η	0.700634	-2.895921	-1.443704
0	-2.226282	-1.575138	-0.816158	Η	2.437118	-2.761409	-1.178644
С	-3.118440	-1.248117	-0.016569	Н	1.317341	-2.579821	0.190829
Ο	-3.420823	0.007875	0.337202	С	3.041856	2.114572	1.721912
Ν	-3.918012	-2.161436	0.593585	Н	3.217007	2.630076	0.766064
С	-3.775577	-3.574470	0.272823	Н	2.406366	2.787035	2.338215
С	-5.013142	-1.812253	1.489626	Η	4.022637	2.078054	2.250763
Η	-3.602444	4.345273	-0.832420	С	2.217354	0.173908	2.784980
Η	-1.098200	4.519804	-1.062578	Η	1.759799	-0.819972	2.653255
Η	-4.617041	2.146140	-0.208986	Η	3.145284	0.019563	3.383092
Η	-4.960298	-0.759779	1.755815	Η	1.538087	0.752219	3.448609
Η	-5.981793	-2.016446	1.013629	F	0.546175	2.542246	-0.713876
Η	-4.943727	-2.417012	2.401457	0	4.849093	-0.929468	-0.149137
Η	-3.637327	-4.153585	1.193829	С	5.723963	-0.522687	0.904243
Η	-4.674540	-3.944645	-0.237761	Η	5.105264	-0.000354	1.635067
Η	-2.912375	-3.711400	-0.375209	Η	6.200860	-1.397900	1.365927
Li	-0.609794	-0.667531	-0.953382	Η	6.499435	0.153344	0.519576
Li	0.918355	0.798728	0.257125	С	5.517663	-1.605275	-1.206617
Ν	1.383072	-0.875627	-1.061806	Η	6.272570	-0.953382	-1.667380
Ν	2.450579	0.808967	1.501169	Η	6.006209	-2.517693	-0.838012
Li	3.001913	-0.372606	0.067016	Н	4.763196	-1.871688	-1.949156

Atom	Х	Y	Z	Atom	Х	Y	Z
С	0.938724	-2.254905	-1.681127	Н	4.028884	-2.451581	-0.186822
С	2.199659	-2.750480	-1.331889	Н	2.526463	-3.695002	-1.758538
С	3.049842	-2.064762	-0.449516	Н	3.349947	3.144241	-1.204054
С	2.563782	-0.863274	0.055944	Η	3.815366	1.460134	-0.907039
С	1.315048	-0.315630	-0.249216	Η	2.319642	1.822139	-1.812490
С	0.546263	-1.037754	-1.119472	Η	0.396950	3.012083	-0.344441
Ο	3.130237	0.039268	0.894458	Η	0.836587	3.262972	1.369488
С	1.907544	0.969210	0.904058	Н	1.672359	4.177620	0.090129
Ο	1.261788	1.010924	1.997337	Н	-3.837473	-0.634763	2.506791
Li	-0.048800	-0.210864	1.888367	Η	-2.530850	-0.574563	3.689325
Ν	-1.868290	-0.886628	1.664524	Н	-2.772263	0.789685	2.580803
Li	-2.077919	-0.334810	-0.168520	Н	-1.214265	-2.809368	1.070388
Ο	-3.474161	0.598416	-1.101892	Η	-1.614980	-2.704116	2.796508
С	-3.338205	1.192634	-2.392936	Η	-2.911540	-2.773335	1.599579
С	-4.749849	0.837646	-0.505540	Η	-2.334533	0.957307	-2.749451
С	-2.781871	-0.308606	2.641401	Η	-4.083118	0.780636	-3.085927
С	-1.904836	-2.341952	1.787983	Η	-3.463083	2.281379	-2.329122
Ν	2.264041	2.187344	0.292301	Η	-4.921021	1.915283	-0.385876
С	2.968898	2.142934	-0.978364	Η	-4.742237	0.357290	0.474127
С	1.232406	3.210848	0.355955	Н	-5.548608	0.408151	-1.123956
Η	0.286208	-2.788187	-2.364762	F	-0.741764	-0.565590	-1.480543

Atom	Х	Y	Z	Atom	Х	Y	Z
С	0.548279	-2.597506	-1.114210	Н	-3.159934	0.653645	2.966829
С	1.628119	-3.371361	-0.675649	Η	-1.685967	0.773576	3.930914
С	2.713180	-2.809059	0.014556	Η	-1.974229	1.927585	2.615609
С	2.651765	-1.435477	0.227243	Η	-1.009115	-2.053444	1.681269
С	1.607704	-0.607441	-0.191178	Η	-1.119697	-1.565792	3.385687
С	0.577576	-1.224182	-0.850632	Η	-2.588768	-1.704998	2.419670
Ο	3.528717	-0.599119	0.836045	F	-0.537808	-0.476690	-1.271465
С	2.668940	0.654666	0.628925	0	-3.539397	-0.712186	-0.656026
Ο	2.145016	1.148540	1.674273	С	-3.510846	-1.800775	-1.574052
Li	0.539357	0.321701	1.772217	Н	-3.449918	-2.759092	-1.040554
Ν	-1.376410	0.014857	1.939633	Н	-4.409099	-1.797270	-2.206778
Li	-1.901527	0.231165	0.053334	С	-1.331141	3.144946	-0.208147
С	-2.069764	0.867878	2.892866	Н	-1.911189	4.072523	-0.109429
С	-1.528113	-1.371240	2.370496	Н	-0.502855	3.305654	-0.910418
Ν	3.352607	1.514409	-0.252417	0	-2.168392	2.078758	-0.649807
С	3.910643	0.960535	-1.475019	С	-2.735721	2.322885	-1.931821
С	2.742220	2.821644	-0.424966	Н	-1.951698	2.425226	-2.694975
Η	-0.286981	-3.043649	-1.644403	Н	-3.369278	1.465834	-2.165129
Η	3.547496	-3.413475	0.354898	Н	-3.344791	3.237180	-1.917065
Η	1.620862	-4.439939	-0.874182	С	-4.651115	-0.773048	0.235800
Η	4.581939	1.701418	-1.921808	Η	-5.595177	-0.705223	-0.321998
Η	4.489683	0.066300	-1.245422	Н	-4.634692	-1.705479	0.814410
Η	3.133905	0.703447	-2.216765	Н	-4.563739	0.074083	0.918208
Η	1.861926	2.789158	-1.095997	Н	-2.622601	-1.671500	-2.193394
Η	2.433818	3.205940	0.546669	Η	-0.931036	2.858342	0.765226
Η	3.476631	3.503965	-0.866211				

Atom	Х	Y	Ζ	Atom	Х	Y	Z
С	-0.767815	2.566473	-2.277980	Н	-0.813043	4.700167	-2.042660
С	-0.696688	3.746985	-1.533450	Η	-3.025677	-0.191060	2.429079
С	-0.478141	3.730221	-0.146641	Η	-2.290106	1.304668	3.069215
С	-0.335026	2.474714	0.430425	Н	-2.519451	1.097928	1.317949
С	-0.401993	1.261478	-0.248780	Н	0.362668	-1.322370	3.160463
С	-0.615013	1.346968	-1.607373	Η	-0.600736	-0.258870	4.214310
Ο	-0.092756	2.174918	1.745865	Н	-1.366208	-1.659947	3.421269
С	0.103515	0.722938	1.587142	Н	0.047966	-4.222358	0.400655
Ο	1.276547	0.304656	1.710047	Η	1.786114	-3.957954	0.528168
Li	1.893148	-0.842812	0.377603	Η	0.686025	-3.161338	1.674012
Ν	0.695402	-2.266257	-0.239615	Н	0.804476	-1.827589	-2.297299
Li	-0.834884	-1.041618	0.059758	Н	1.871948	-3.166425	-1.803345
Ο	-2.666251	-1.581007	-0.512123	Н	0.137545	-3.438446	-1.958760
С	-2.793015	-2.951887	-0.885864	Η	-2.051956	-3.511761	-0.314147
С	-3.558447	-0.736972	-1.234441	Η	-3.801981	-3.320068	-0.654083
С	0.807243	-3.435011	0.615788	Н	-2.594261	-3.080672	-1.957951
С	0.883800	-2.685659	-1.617780	Η	-3.382324	-0.819311	-2.314532
0	3.651191	-0.281505	-0.194709	Η	-4.601232	-1.001813	-1.012051
С	4.165386	0.973940	0.250892	Η	-3.363960	0.287880	-0.915917
С	4.438910	-0.889750	-1.211094	Η	3.460702	1.351203	0.992836
Ν	-0.964666	-0.073364	2.112775	Н	5.158752	0.843059	0.701002
С	-2.269485	0.578538	2.245056	Η	4.510544	-0.234796	-2.090294
С	-0.617668	-0.870745	3.299056	Н	5.449975	-1.107600	-0.840483
Η	4.236887	1.677771	-0.589348	Н	3.941587	-1.820540	-1.490205
Η	-0.938415	2.580673	-3.350040	F	-0.724585	0.190592	-2.346484
Η	-0.417743	4.645001	0.433931				

Atom	Х	Y	Z	Atom	Х	Y	Z
С	-0.759649	-0.778526	1.669241	Н	-1.096027	-2.501439	2.927355
С	-0.968478	-0.164561	0.454076	Н	-0.130075	3.502368	-0.844901
С	-1.751428	-0.854729	-0.471563	Н	-1.659029	4.256851	-0.332638
С	-2.315804	-2.108658	-0.263215	Η	-0.723513	3.280563	0.826695
С	-2.058778	-2.690522	0.990071	Н	-3.604898	1.234290	-0.547333
С	-1.284864	-2.047037	1.959652	Н	-2.949800	1.784065	1.019413
Ο	-1.829680	-0.027349	-1.547834	Н	-3.616695	2.960050	-0.144149
С	-0.959084	1.069518	-0.932245	Н	2.843010	-2.129914	0.491939
0	0.184129	1.227886	-1.463230	Η	1.454685	-3.157324	0.023295
Li	1.183143	0.168407	-0.370739	Н	2.981368	-3.225943	-0.914300
Ο	1.853723	-1.493576	-1.165838	Н	1.832953	-2.467108	-3.006184
С	1.149694	-1.932098	-2.333036	Н	0.316669	-2.588374	-2.052328
С	2.304102	-2.570287	-0.349997	Н	0.755905	-1.036671	-2.814797
0	2.748389	0.851285	0.605900	Н	3.659212	2.235012	-0.662299
С	2.575335	1.733404	1.716014	Н	4.774595	1.229138	0.316721
С	3.828978	1.234737	-0.241979	Н	3.876034	0.501083	-1.049117
Ν	-1.758713	2.205970	-0.703511	Н	1.726862	1.356598	2.286439
С	-3.047270	2.029240	-0.052366	Н	3.476900	1.735317	2.343240
С	-1.023047	3.370741	-0.234943	Н	2.370377	2.755590	1.370551
Η	-2.930416	-2.604035	-1.008116	F	0.009882	-0.179094	2.633393
Η	-2.476234	-3.668589	1.216531				

Atom	Х	Y	Ζ	Atom	X	Y	Ζ
С	-2.354312	3.020300	-0.153635	Н	-1.072430	4.682686	-0.676292
С	-1.123486	3.642079	-0.366564	Η	-3.278118	3.576747	-0.297260
С	0.050564	2.910605	-0.183756	Η	1.026582	3.360611	-0.344891
С	-0.053207	1.580494	0.219388	Н	-3.857039	-1.746685	-0.510626
С	-1.237093	0.882696	0.467528	Н	-3.270219	-3.230162	-1.288623
С	-2.390413	1.677894	0.242378	Η	-3.916715	-3.297221	0.354817
Li	-1.858718	-0.891703	1.384683	Η	3.272314	1.119906	1.305407
Ο	0.892985	-0.701207	-1.079103	Н	4.076294	-0.410194	1.730305
Li	-0.924383	-1.003573	-0.763557	Η	4.683583	0.563664	0.371528
Ν	-1.972003	-2.384359	0.204160	Η	4.320996	-1.341341	-1.287292
С	-1.270839	-3.637257	0.435777	Н	3.795424	-2.365833	0.070267
С	-3.296626	-2.676843	-0.325716	Η	2.701460	-2.086755	-1.311536
С	1.612706	-0.099285	-0.264516	Η	-0.262680	-3.450167	0.836137
Ο	1.225065	0.965185	0.452085	Η	-1.786389	-4.302800	1.159482
Ν	2.894203	-0.467364	-0.010908	Н	-1.144047	-4.243465	-0.486342
С	3.458691	-1.633943	-0.674731	Н	-3.379322	1.232239	0.382567
С	3.777318	0.245732	0.902573				

Atom	Х	Y	Ζ	Atom	X	Y	Ζ
С	0.482676	3.555467	-1.124155	Н	-1.253595	4.823733	-0.877700
С	-0.837079	3.826497	-0.760346	Н	1.108768	4.346621	-1.532213
С	-1.626125	2.796849	-0.246506	Н	-2.659367	2.969123	0.043828
С	-1.056011	1.532008	-0.105676	Η	2.830762	-0.618098	-2.624795
С	0.253031	1.172576	-0.430647	Η	3.740348	-1.978586	-1.930618
С	0.990397	2.259854	-0.965697	Η	2.516312	-2.278722	-3.168799
Li	0.043625	-0.761698	-1.513756	Η	1.337095	-3.836030	-1.634997
Ο	-1.783242	-0.975829	-1.139770	Η	2.550229	-3.541874	-0.384943
С	-2.273815	-0.562664	-0.077182	Η	0.832810	-3.245188	-0.037484
Ο	-1.949822	0.592629	0.519009	Η	-3.515299	0.225508	2.057170
Ν	-3.220221	-1.258308	0.607507	Η	-4.935032	-0.797233	1.725439
С	-3.643189	-2.566515	0.130020	Η	-3.578046	-1.442382	2.676650
С	-3.843252	-0.787061	1.836362	Η	-3.441073	-3.331854	0.890555
Li	1.750777	-0.295332	0.061281	Η	-4.720511	-2.563289	-0.079620
Ο	3.016764	-0.030490	1.484240	Η	-3.099010	-2.808750	-0.780628
С	2.991192	1.038991	2.424214	Η	4.001158	-1.710699	0.912214
С	4.089376	-0.946368	1.686177	Η	4.018656	-1.412473	2.678478
Η	5.056981	-0.434402	1.595052	Η	2.861099	0.653994	3.444940
Ν	1.709942	-1.754505	-1.243376	Η	2.145318	1.674460	2.156544
С	1.605263	-3.135791	-0.814416	Η	2.025323	2.094004	-1.279247
С	2.730006	-1.656942	-2.272537	Η	3.921411	1.621037	2.373192

A32 G° = -845.768828 See pg S77

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	0.479457	3.893332	-0.194105	Li	-1.208247	0.249050	-1.603558
С	1.859369	3.710877	-0.093490	Ν	-2.231850	-0.266524	1.909685
С	2.391022	2.425810	-0.212952	Ν	-2.792145	-0.839554	-1.701648
С	1.513489	1.367250	-0.439796	Li	-3.000866	-0.776473	0.230933
С	0.125498	1.460054	-0.568943	С	-2.871398	0.886588	2.534586
С	-0.350406	2.787788	-0.420236	Η	-2.302517	1.286391	3.401457
Ο	1.133048	-0.809402	1.198549	Η	-2.973615	1.712635	1.814930
С	1.933425	-0.889038	0.254493	Η	-3.887691	0.668940	2.926300
Ο	2.169275	0.104620	-0.620280	С	-2.118041	-1.332227	2.898890
Ν	2.667830	-2.000896	0.001511	Η	-3.097904	-1.660559	3.306147
С	2.523502	-3.173944	0.852619	Η	-1.636779	-2.218904	2.460552
С	3.638212	-2.104096	-1.080861	Η	-1.511732	-1.044595	3.784429
Η	2.519590	4.556611	0.079922	С	-3.894249	-0.229746	-2.439538
Η	0.053637	4.889653	-0.098238	Η	-4.083896	0.793622	-2.081878
Η	3.460375	2.247462	-0.138984	Η	-3.705045	-0.159927	-3.531149
Η	3.686560	-1.168126	-1.631489	Η	-4.849060	-0.787517	-2.340426
Η	4.630394	-2.334631	-0.672345	С	-2.576456	-2.190182	-2.210828
Η	3.352840	-2.911608	-1.766974	Η	-1.750905	-2.681919	-1.673605
Η	2.203753	-4.037351	0.255688	Η	-3.465651	-2.846271	-2.103971
Η	3.483197	-3.416577	1.326182	Η	-2.319182	-2.215808	-3.290510
Η	1.782753	-2.971033	1.623541	Η	-1.424242	2.976249	-0.485755
Li	-0.461170	0.205932	1.194005				

С	0.226655	-0.014404	3.700017	С	1.728343	3.877467	0.814100
С	-1.151556	-0.176365	3.850369	Н	0.894348	4.574190	1.049179
С	-1.952998	-0.293133	2.713589	Н	1.917539	3.290297	1.725311
С	-1.334175	-0.252016	1.464839	Н	2.616479	4.525723	0.655271
С	0.032398	-0.106332	1.218494	С	1.193755	3.818160	-1.493414
С	0.782912	0.026566	2.414529	Н	2.051167	4.469293	-1.767169
Ο	-1.795198	1.552649	-0.571100	Н	0.980598	3.185057	-2.368218
С	-2.404832	0.474278	-0.563035	Н	0.326710	4.503410	-1.375676
0	-2.244548	-0.478508	0.372394	С	4.257476	-0.770380	-0.098855
Ν	-3.324121	0.141438	-1.505092	Н	4.076676	-0.636390	0.978225
С	-3.579161	1.047292	-2.616779	Н	4.507168	-1.844508	-0.248462
С	-4.079127	-1.103636	-1.498662	Н	5.193933	-0.221762	-0.340162
Η	-1.603010	-0.207449	4.838592	С	3.390342	-0.524984	-2.288405
Η	0.862202	0.081789	4.577825	Н	2.539902	-0.198067	-2.905848
Η	-3.029831	-0.418546	2.791846	Н	4.282803	0.033895	-2.644996
Η	-3.906578	-1.642069	-0.569955	Н	3.589865	-1.585402	-2.560261
Η	-5.149799	-0.883804	-1.591963	Ο	0.910421	-2.893966	-0.589053
Η	-3.784810	-1.738958	-2.344706	С	-0.293883	-3.534217	-0.179208
Η	-3.334869	0.559070	-3.569013	Н	-0.690831	-4.159263	-0.991601
Η	-4.638544	1.332174	-2.634782	Н	-0.118598	-4.162787	0.704832
Η	-2.967521	1.939743	-2.500183	Н	-1.006650	-2.747246	0.066763
Li	-0.045070	1.791592	0.098214	С	1.933456	-3.817762	-0.948640
Li	1.375554	-1.016952	-0.202982	Н	2.809551	-3.230967	-1.224866
Ν	1.444155	3.000698	-0.314534	Н	2.178265	-4.474526	-0.102069
Ν	3.107515	-0.327163	-0.873981	Н	1.615273	-4.433735	-1.801100
Li	2.625336	1.518385	-0.551781	Н	1.865218	0.162349	2.346505

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	-2.452356	-2.366032	-0.796544	Н	-4.578447	0.115686	0.258368
С	-3.635681	-1.737914	-0.402048	Н	-4.561223	-2.307977	-0.378368
С	-3.660646	-0.380886	-0.041144	Η	0.357146	1.237737	2.982596
С	-2.444810	0.283184	-0.101674	Η	-1.177570	2.071001	2.613947
С	-1.233082	-0.297408	-0.476623	Η	-0.963692	0.361249	2.180735
С	-1.238698	-1.648801	-0.836635	Η	1.289952	3.176736	0.038765
Ο	-2.184370	1.596391	0.180829	Η	0.278604	3.786737	1.369914
С	-0.758727	1.601677	-0.185853	Η	1.721497	2.803149	1.729023
Ο	-0.431676	2.212026	-1.232147	Η	3.889638	0.735994	-1.311438
Li	0.162529	0.712268	-2.131273	Η	3.270968	1.095845	-2.924750
Ν	1.903847	-0.016329	-1.689512	Н	2.620251	1.964372	-1.520765
Li	1.078654	-0.069828	0.123891	Η	1.621712	-2.067454	-2.122332
Ο	1.811327	-1.287607	1.482294	Η	2.659600	-1.232907	-3.292015
С	3.217153	-1.526983	1.430975	Η	3.297630	-1.657391	-1.702139
С	1.113745	-2.243492	2.275153	Η	3.643958	-0.785681	0.753563
С	2.954432	0.976517	-1.867094	Η	3.661584	-1.422932	2.430068
С	2.384947	-1.281713	-2.217256	Η	3.424369	-2.532405	1.042202
Ν	0.120767	1.690903	0.955824	Η	1.279916	-3.259106	1.891293
С	-0.455948	1.325491	2.254739	Η	1.443723	-2.194468	3.321646
С	0.894699	2.942772	1.025278	Н	0.051447	-2.003361	2.211445
Η	-2.467764	-3.415998	-1.078550	Η	-0.331556	-2.163112	-1.150711

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	-1.592875	-1.929156	-2.843391	С	4.291567	-0.618814	-0.958901
С	-0.802639	-3.055434	-2.605984	Н	3.572556	-0.901539	-1.741845
С	-0.122561	-3.206959	-1.388125	Н	4.890763	0.224746	-1.361792
С	-0.286646	-2.176005	-0.478076	Н	5.001964	-1.464811	-0.850565
С	-1.051036	-1.030221	-0.641176	С	4.584383	0.077070	1.288364
С	-1.724157	-0.925062	-1.866461	Н	5.310340	-0.733556	1.508947
Ο	0.653482	0.045243	1.361135	Н	5.200843	0.956116	1.001298
С	-0.199570	-0.895359	1.330362	Н	4.092166	0.331119	2.240860
Ο	0.304205	-2.156801	0.805246	С	1.139774	2.732097	-2.048963
Ν	-1.110127	-1.071284	2.335663	Н	0.974089	1.846259	-2.678522
С	-1.484140	0.101558	3.118796	Н	0.441400	3.519764	-2.412138
С	-2.119127	-2.116447	2.226523	Н	2.155850	3.113697	-2.288815
Η	-0.713055	-3.826457	-3.366583	С	1.210498	3.590492	0.155907
Η	-2.111690	-1.829410	-3.794119	Н	1.088873	3.371598	1.229033
Η	0.485801	-4.082313	-1.177583	Н	2.233277	4.010073	0.023856
Η	-2.938572	-1.818553	1.556077	Н	0.527217	4.440700	-0.068323
Η	-1.667431	-3.030124	1.842487	0	-2.315618	2.024377	-0.158290
Η	-2.524769	-2.314970	3.222495	С	-3.604970	1.481610	0.089702
Η	-1.845960	-0.230557	4.096236	Н	-4.102161	2.012308	0.914640
Η	-0.610300	0.737497	3.255193	Н	-4.236117	1.551119	-0.807416
Η	-2.279393	0.685328	2.631817	Н	-3.466439	0.431770	0.351263
Li	2.115489	-1.291483	0.870939	С	-2.367298	3.375295	-0.615805
Li	-0.482937	1.163665	-0.135455	Н	-1.340353	3.669923	-0.825080
Ν	3.600018	-0.287765	0.278341	Н	-2.972210	3.446189	-1.530397
Ν	0.962076	2.402247	-0.645254	Н	-2.800856	4.028894	0.153935
Li	2.185537	1.088595	0.112263	Н	-2.347657	-0.060068	-2.090810

Atom	Х	Y	Ζ	Atom	X	Y	Ζ
С	-1.015283	-2.175790	-2.450551	Н	-1.915898	-4.121758	-2.262724
С	-1.475743	-3.280951	-1.731779	Н	3.096888	-1.435932	1.846314
С	-1.389484	-3.324892	-0.330725	Η	1.822712	-2.427434	2.606942
С	-0.819292	-2.216268	0.277798	Η	1.852603	-2.211129	0.842895
С	-0.324499	-1.096659	-0.388799	Η	0.890557	1.164403	3.131119
С	-0.439585	-1.075229	-1.781752	Η	1.323991	-0.312214	4.026058
Ο	-0.653372	-2.001966	1.623401	Η	2.570145	0.568059	3.104198
С	-0.163428	-0.623991	1.571916	Н	1.914408	3.752156	0.364329
Ο	-0.944441	0.279968	1.946371	Η	0.246838	4.259877	0.636964
Li	-1.182440	1.426124	0.472901	Η	0.968555	3.012791	1.674678
Ν	0.434561	2.302778	-0.240421	Н	-0.026325	2.069404	-2.287538
Li	1.275263	0.519917	-0.042414	Η	-0.342438	3.706669	-1.675031
Ο	2.943876	0.195619	-1.058037	Н	1.314768	3.196604	-1.994078
С	3.780683	1.323452	-1.299680	Н	3.330463	2.169464	-0.778486
С	3.367350	-0.974104	-1.748512	Η	4.795831	1.142010	-0.919705
С	0.905055	3.362802	0.634618	Н	3.830608	1.543847	-2.374435
С	0.343281	2.832966	-1.587418	Н	3.424128	-0.784897	-2.829286
Ο	-3.067221	1.628613	0.060654	Η	4.351726	-1.305397	-1.389370
С	-3.973988	0.651819	0.573736	Η	2.622338	-1.747749	-1.557615
С	-3.602274	2.385768	-1.017420	Н	-3.442856	0.122265	1.365395
Ν	1.229898	-0.499370	1.895993	Н	-4.871586	1.139565	0.977373
С	2.039535	-1.716512	1.798176	Н	-3.883653	1.729711	-1.852824
С	1.515685	0.273889	3.114215	Н	-4.485037	2.953108	-0.691751
Η	-4.264377	-0.053734	-0.216082	Η	-2.822992	3.077461	-1.343375
Η	-1.101288	-2.164775	-3.534868	Η	-0.091378	-0.226879	-2.370733
Н	-1.757234	-4.173149	0.239113				

A38 $G^{\circ} = -871.514409$ See pg S80 $S = Me_2O$

Atom	Х	Y	Ζ	Atom	X	Y	Ζ
С	-0.662526	-0.776277	1.949085	Н	-2.093812	-3.841253	1.454809
С	-0.877060	-0.225896	0.685685	Η	-0.931263	-2.531737	3.196211
С	-1.553072	-0.999886	-0.257794	Η	-0.487225	3.513455	-0.807125
С	-2.006065	-2.296510	-0.046541	Η	-2.115544	4.087885	-0.368966
С	-1.756385	-2.831868	1.229766	Н	-1.097178	3.294176	0.858116
С	-1.098685	-2.091933	2.215440	Н	-3.644949	0.826539	-0.478631
Ο	-1.690494	-0.219055	-1.370199	Н	-3.099592	1.509281	1.076006
С	-0.999303	1.000739	-0.826551	Н	-3.891173	2.549652	-0.139837
Ο	0.127397	1.284403	-1.334875	Η	2.416636	-2.277899	0.654205
Li	1.141326	0.255836	-0.214157	Н	1.050124	-3.009566	-0.233405
Ο	1.943606	-1.331246	-1.085900	Н	2.732239	-3.240404	-0.819348
С	1.472982	-1.549673	-2.420673	Н	2.207740	-2.138721	-2.986170
С	2.036609	-2.541137	-0.335235	Η	0.509125	-2.071867	-2.406242
Ο	2.595748	1.013296	0.878524	Н	1.335064	-0.567538	-2.872722
С	2.301231	2.086938	1.767974	Н	3.940668	2.072506	-0.313176
С	3.875536	1.139618	0.263509	Η	4.669623	1.125961	1.022295
Ν	-1.938817	2.025953	-0.637608	Н	3.988961	0.285405	-0.405926
С	-3.207760	1.704728	-0.004275	Н	1.301764	1.907633	2.167994
С	-1.374378	3.296793	-0.213178	Н	3.028216	2.113704	2.590979
Η	-2.541112	-2.859715	-0.806195	Η	2.314998	3.048332	1.237482
Η	-0.162366	-0.218005	2.741708				

Me ^O O	Me				$G^{\circ} = -308.745832$
	Atom	Х	Y	Z	
	С	-2.980716	-0.113688	0.000155	5
	0	-1.719840	0.519179	-0.000163	3
	С	-0.646509	-0.400872	-0.000111	l
	С	0.646509	0.400871	0.000009)
	0	1.719840	-0.519178	-0.000041	
	С	2.980716	0.113688	0.000070	
	Н	-3.121127	-0.744728	-0.892514	1
	Н	-3.120974	-0.744118	0.893279)
	Н	-3.738156	0.674708	-0.000058	3
	Н	-0.679961	-1.051702	-0.889275	5
	Н	-0.680084	-1.051755	0.889009)
	Η	0.679991	1.051643	0.889215	5
	Η	0.680053	1.051814	-0.889069)
	Η	3.121011	0.744346	0.893027	,
	Η	3.738156	-0.674708	0.000037	7
	Н	3.121091	0.744500	-0.892766)

Atom	Х	Y	Ζ	Atom	X	Y	Ζ
С	1.043457	-2.140472	2.066541	Н	0.210530	-4.122926	2.252874
С	0.077826	-3.125939	1.842698	Η	1.940415	-2.331625	2.647290
С	-1.058207	-2.823768	1.091184	Η	-1.821510	-3.572543	0.901508
С	-1.197585	-1.530642	0.577553	Η	0.447751	2.800134	2.941150
С	-0.291132	-0.485287	0.750497	Η	1.062781	4.238591	2.099701
С	0.786917	-0.894235	1.512099	Η	-0.630551	4.171317	2.603100
F	1.781459	0.090960	1.738074	Η	-1.339604	4.580267	0.252095
Li	-1.385969	1.397138	0.968644	Η	0.350120	4.643650	-0.254973
Ο	-3.042229	0.636369	0.536654	Η	-0.758138	3.481730	-1.017760
С	-3.167146	-0.336104	-0.221411	Η	-3.533302	-2.255359	-1.941904
Ο	-2.353175	-1.403643	-0.250885	Η	-5.287418	-2.152212	-1.649571
Ν	-4.177671	-0.434352	-1.124562	Η	-4.557553	-1.266491	-3.008238
С	-5.192683	0.608448	-1.184032	Η	-5.293907	0.970553	-2.214153
С	-4.397338	-1.596640	-1.975088	Η	-6.165213	0.217505	-0.856553
Li	0.990053	1.415716	0.410907	Η	-4.900217	1.432246	-0.536166
Ο	2.266713	1.392140	-1.063733	Η	2.308509	3.418275	-1.152489
С	2.770840	0.165406	-1.606023	Η	2.731087	2.606859	-2.688422
С	4.082686	-0.271111	-0.941526	Η	2.911270	0.267945	-2.690264
Ο	4.529805	-1.501566	-1.485669	Η	1.988024	-0.576783	-1.428345
С	4.021761	-2.644433	-0.817382	Η	3.936643	-0.339431	0.146136
С	2.849093	2.580929	-1.597144	Η	4.874058	0.462192	-1.133468
Η	3.913757	2.658064	-1.345841	Η	2.923352	-2.688935	-0.824083
Ν	-0.156085	2.912454	0.922420	Η	4.412707	-3.517057	-1.347166
С	-0.486162	3.935238	-0.051352	Η	4.361834	-2.679086	0.229032
С	0.190433	3.552408	2.179928				

Atom	Х	Y	Ζ	Atom	X	Y	Ζ
С	1.995063	-1.340418	2.615380	Н	3.304751	1.803302	2.792698
С	2.845447	-0.304099	3.011303	Η	-0.952681	-2.024084	-2.246986
С	2.657829	0.981480	2.499971	Η	-2.552452	-1.372816	-2.656800
С	1.604942	1.194763	1.606464	Η	-1.141292	-0.885426	-3.599265
С	0.709530	0.226561	1.159556	Η	-1.640046	1.504165	-3.083399
С	0.993020	-1.010014	1.709522	Η	-3.047221	0.995928	-2.143209
Li	0.683715	0.418890	-1.161099	Η	-1.785693	1.988936	-1.379809
Ο	1.422075	2.189837	-1.015555	Η	0.942022	4.634132	1.902637
С	1.306713	2.941881	-0.040641	Η	1.858586	5.850577	0.978952
Ο	1.447654	2.565512	1.243080	Η	0.082871	5.813184	0.884405
Ν	1.039070	4.270553	-0.159530	Η	0.013908	5.450780	-1.557993
С	0.938949	4.866877	-1.483366	Η	1.788373	5.537545	-1.672840
С	0.980760	5.189557	0.968946	Η	0.929064	4.077628	-2.232431
Li	-1.200777	-0.280225	0.298440	Η	-1.854964	-0.610218	3.137106
Ν	-1.222501	-0.027864	-1.628371	Η	-2.738037	-2.127985	2.802601
С	-1.472809	-1.106480	-2.559299	Η	-4.096916	-2.205035	0.869808
С	-1.944365	1.147825	-2.073017	Η	-3.588453	-1.125570	-0.452627
Ο	-2.804509	-0.641088	1.344339	Η	-4.980830	0.723763	0.524032
С	-2.768155	-1.034000	2.715521	Η	-5.494389	-0.349463	1.842757
С	-3.910781	-1.158847	0.590853	Η	-5.416163	-0.747117	-1.876264
С	-5.182026	-0.324983	0.792818	Η	-7.189202	-0.875664	-1.752697
Ο	-6.265030	-0.850509	0.046662	Η	-6.377482	0.670698	-1.378171
С	-6.298966	-0.425205	-1.306056	Η	2.788260	0.833225	-3.044423
Ο	2.152798	-0.716323	-1.904608	Η	3.956672	-0.507534	-2.947288
С	2.108460	-2.138494	-1.752706	Η	2.491430	-0.677147	-3.961047
С	3.393071	-2.705116	-1.135268	Η	1.913267	-2.616891	-2.722270
Ο	3.273859	-4.108042	-0.957508	Η	1.260755	-2.338662	-1.093582
С	2.721960	-4.483481	0.294008	Η	3.604238	-2.192137	-0.185695
С	2.892910	-0.253468	-3.029985	Η	4.248038	-2.548420	-1.802575
F	0.155580	-2.065590	1.305337	Η	1.745378	-4.018347	0.485546
Η	-3.634428	-0.648433	3.266015	Η	2.599619	-5.569769	0.269558
Η	3.649724	-0.497938	3.715503	Η	3.398351	-4.219437	1.122017
Н	2.105829	-2.351411	2.995682				

NMe ₂
0~
Me N ^L
F~Li
\rightarrow
$\langle S \rangle$
S

A42
$$G^{\circ} = -1420.429740$$

See pg S81
S = OMe

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	0.388916	-0.538848	3.078493	Н	3.761184	-0.246974	3.472367
С	1.624012	-0.477277	3.731654	Н	-0.084745	-2.762382	-1.482908
С	2.789790	-0.296849	2.988778	Н	-1.089713	-2.537608	-2.931772
С	2.682804	-0.177819	1.597735	Н	0.654808	-2.761327	-3.097568
С	1.499661	-0.224021	0.866875	Н	0.863037	-0.632277	-4.319054
С	0.419053	-0.413582	1.696733	Н	-0.882561	-0.390794	-4.196527
F	-0.861346	-0.494605	1.070903	Н	0.225899	0.853101	-3.585582
Li	1.665228	-0.599512	-1.177611	Н	5.956537	1.023378	1.376062
Ο	3.549404	-0.585366	-1.163397	Н	7.208711	-0.077963	0.751603
С	4.284246	-0.123005	-0.281475	Н	7.068387	1.571009	0.100754
Ο	3.962619	0.063457	1.006060	Н	6.614422	0.945556	-2.225252
Ν	5.567189	0.265104	-0.540135	Н	6.883764	-0.768606	-1.828180
С	6.130737	0.031111	-1.861573	Н	5.334979	-0.256552	-2.545721
С	6.498127	0.717159	0.484553	Н	0.594040	2.227256	-1.799249
Li	-1.018580	-0.052773	-0.882466	Н	0.727296	2.593935	-0.058487
Ν	0.084579	-0.832286	-2.323650	Н	-1.336588	2.827654	1.130341
С	-0.114449	-2.264445	-2.465526	Н	-2.578477	1.665389	0.622921
С	0.072870	-0.235341	-3.643990	Н	-3.441711	3.312280	-1.064918
Ο	-2.997470	-0.529308	-0.940984	Н	-2.208267	4.483812	-0.560163
С	-3.684190	-1.391720	-0.028466	Н	-4.637204	2.432433	1.438809
С	-3.484876	-2.883512	-0.329242	Н	-5.396166	3.996899	1.817338
Ο	-4.115419	-3.676763	0.663566	Н	-5.445548	3.365572	0.147992
С	-3.301961	-3.940141	1.793755	Н	-3.032558	0.314090	-2.788765
С	-3.565625	-0.470956	-2.250078	Н	-3.440503	-1.415476	-2.790745
Ο	-1.132982	1.972826	-0.760928	Н	-4.633458	-0.218568	-2.191112
С	0.091832	2.687490	-0.946906	Н	-4.757509	-1.153586	-0.030087
С	-1.956675	2.497463	0.286619	Н	-3.276442	-1.152057	0.955487
С	-2.832285	3.653675	-0.212917	Н	-2.411540	-3.110654	-0.406357
Ο	-3.646603	4.181284	0.820168	Н	-3.954009	-3.153555	-1.281071
С	-4.832389	3.446475	1.059614	Н	-3.008703	-3.025419	2.329673
Η	-0.094631	3.745502	-1.167829	Η	-3.893722	-4.565191	2.467698
Η	1.675263	-0.570054	4.812816	Η	-2.387406	-4.483530	1.511373
Η	-0.541040	-0.680885	3.621018				

$ \begin{array}{c} $		A43 $G^{\circ} = -1420.440459$ See pg S81 S = OMe
--	--	--

Atom X Y Z Atom X Y Z

С	-1.397971	-1.308186	-2.731742	Н	4.501653	-2.406671	0.606535
С	-1.732450	-0.079349	-3.307922	Η	-2.394016	-0.040983	-4.169198
С	-1.210938	1.099345	-2.771250	Η	-1.784699	-2.246654	-3.118496
С	-0.351246	0.997731	-1.674026	Η	-1.456020	2.069666	-3.193519
С	0.049956	-0.177322	-1.044463	Η	0.113494	-2.711877	2.120496
С	-0.539761	-1.286785	-1.634797	Η	1.660862	-2.746850	3.002592
F	-0.255811	-2.522632	-1.074628	Η	0.248679	-1.986687	3.736803
Li	-0.335628	0.087089	1.177541	Η	1.508674	0.140968	3.980723
0	-0.432578	2.029620	0.924856	Η	2.928696	-0.621765	3.255256
С	0.109903	2.662361	0.014479	Н	2.256763	0.858155	2.537176
Ο	0.184475	2.263831	-1.267277	Η	1.328927	4.128480	-1.774890
Ν	0.715783	3.870356	0.213501	Н	0.452878	5.518595	-1.090516
С	0.623317	4.495903	1.525504	Η	2.126756	5.189835	-0.589449
С	1.178367	4.720812	-0.875441	Η	1.585722	4.954356	1.778859
Li	1.707462	-1.000988	0.222591	Η	-0.148116	5.279147	1.538102
Ν	1.116002	-0.861373	2.117060	Н	0.374281	3.739423	2.267331
С	0.776028	-2.110754	2.761086	Н	3.216633	1.324752	-1.741393
С	1.976533	-0.101811	2.997638	Η	3.044885	1.856068	-0.045282
0	3.567993	-0.092614	-0.252761	Η	4.675225	1.601603	-0.732113
С	3.635092	1.244928	-0.729149	Η	1.354530	-4.080160	-0.112927
С	4.341075	-1.000527	-1.024820	Н	2.946528	-4.741135	-0.593031
С	4.146504	-2.381433	-0.435034	Н	2.708900	-4.074764	1.056804
0	2.758010	-2.671828	-0.486775	Η	-2.670779	0.937326	3.287105
С	2.432271	-3.971332	-0.000562	Η	-3.175511	-0.758699	3.563638
0	-2.202588	-0.385526	1.745141	Η	-1.445968	-0.326300	3.622464
С	-2.398299	-0.116146	3.132331	Н	-2.904323	0.020329	-0.104758
С	-3.312504	-0.056314	0.905657	Η	-3.724801	0.922771	1.187181
С	-4.413140	-1.123709	0.958696	Η	-4.832697	-1.193576	1.968279
Ο	-5.494934	-0.789217	0.104632	Н	-3.987120	-2.105764	0.701829
С	-5.319620	-1.204253	-1.239136	Η	-5.224111	-2.299387	-1.309672
Η	4.006890	-0.985455	-2.073682	Η	-6.215698	-0.891846	-1.782491
Η	5.406666	-0.725239	-0.992636	Η	-4.439886	-0.749563	-1.715472
Н	4.718670	-3.118688	-1.019131				

$ \begin{array}{c} $		A44 $G^{\circ} = -1420.439104$ See pg S81 S = OMe
--	--	--

Atom X Y Z Atom X Y

Ζ

С	-1.397971	-1.308186	-2.731742	Н	4.501653	-2.406671	0.606535
С	-1.732450	-0.079349	-3.307922	Н	-2.394016	-0.040983	-4.169198
С	-1.210938	1.099345	-2.771250	Н	-1.784699	-2.246654	-3.118496
С	-0.351246	0.997731	-1.674026	Н	-1.456020	2.069666	-3.193519
С	0.049956	-0.177322	-1.044463	Н	0.113494	-2.711877	2.120496
С	-0.539761	-1.286785	-1.634797	Н	1.660862	-2.746850	3.002592
F	-0.255811	-2.522632	-1.074628	Н	0.248679	-1.986687	3.736803
Li	-0.335628	0.087089	1.177541	Н	1.508674	0.140968	3.980723
Ο	-0.432578	2.029620	0.924856	Н	2.928696	-0.621765	3.255256
С	0.109903	2.662361	0.014479	Н	2.256763	0.858155	2.537176
Ο	0.184475	2.263831	-1.267277	Η	1.328927	4.128480	-1.774890
Ν	0.715783	3.870356	0.213501	Η	0.452878	5.518595	-1.090516
С	0.623317	4.495903	1.525504	Η	2.126756	5.189835	-0.589449
С	1.178367	4.720812	-0.875441	Η	1.585722	4.954356	1.778859
Li	1.707462	-1.000988	0.222591	Η	-0.148116	5.279147	1.538102
Ν	1.116002	-0.861373	2.117060	Н	0.374281	3.739423	2.267331
С	0.776028	-2.110754	2.761086	Н	3.216633	1.324752	-1.741393
С	1.976533	-0.101811	2.997638	Η	3.044885	1.856068	-0.045282
Ο	3.567993	-0.092614	-0.252761	Н	4.675225	1.601603	-0.732113
С	3.635092	1.244928	-0.729149	Η	1.354530	-4.080160	-0.112927
С	4.341075	-1.000527	-1.024820	Н	2.946528	-4.741135	-0.593031
С	4.146504	-2.381433	-0.435034	Н	2.708900	-4.074764	1.056804
Ο	2.758010	-2.671828	-0.486775	Η	-2.670779	0.937326	3.287105
С	2.432271	-3.971332	-0.000562	Η	-3.175511	-0.758699	3.563638
0	-2.202588	-0.385526	1.745141	Η	-1.445968	-0.326300	3.622464
С	-2.398299	-0.116146	3.132331	Η	-2.904323	0.020329	-0.104758
С	-3.312504	-0.056314	0.905657	Η	-3.724801	0.922771	1.187181
С	-4.413140	-1.123709	0.958696	Η	-4.832697	-1.193576	1.968279
0	-5.494934	-0.789217	0.104632	Η	-3.987120	-2.105764	0.701829
С	-5.319620	-1.204253	-1.239136	Η	-5.224111	-2.299387	-1.309672
Η	4.006890	-0.985455	-2.073682	Н	-6.215698	-0.891846	-1.782491
Η	5.406666	-0.725239	-0.992636	Η	-4.439886	-0.749563	-1.715472
Η	4.718670	-3.118688	-1.019131				

$ \begin{array}{c} $		A45 $G^{\circ} = -1420.437512$ See pg S81 S = OMe
--	--	--

Atom	Х	Y	Ζ	Atom	X	Y	Ζ
С	-0.761677	-1.735954	2.870188	Н	0.375839	4.677783	0.335043
С	0.416832	-2.451097	3.097135	Η	0.450157	-3.226549	3.857547
С	1.551088	-2.156851	2.337171	Η	-1.669034	-1.924585	3.436882
С	1.472164	-1.147935	1.374673	Η	2.482398	-2.694567	2.493327
С	0.346737	-0.377496	1.082896	Н	-2.703198	2.888754	-0.103472
С	-0.708526	-0.759048	1.883188	Н	-1.776310	3.581803	-1.454733
F	-1.953220	-0.079451	1.668385	Н	-3.296325	2.741633	-1.771257
Li	-2.274383	-0.142586	-0.281947	Н	-2.202412	1.161659	-3.298084
0	-2.203379	-2.075989	-1.002974	Н	-0.668250	2.003396	-3.055483
С	-1.126932	-3.007726	-0.837183	Н	-0.782803	0.255982	-2.730300
С	-3.481245	-2.683305	-0.899459	Н	4.806569	-0.068673	0.709739
Ο	-4.333769	-0.563196	-0.265333	Η	5.930401	-1.371239	0.252990
С	-5.233847	0.521739	-0.466757	Η	5.835411	0.104419	-0.732673
С	-4.524708	-1.625618	-1.192167	Н	5.199974	-1.142960	-2.796646
Li	-0.015108	1.429947	-0.074516	Н	5.291213	-2.705226	-1.949324
Ν	-1.666821	1.442761	-1.230998	Н	3.763882	-2.203781	-2.714914
С	-2.378805	2.697429	-1.138466	Н	3.094888	1.345899	-1.321168
С	-1.319419	1.210377	-2.619062	Н	1.833903	1.500093	-2.577207
0	0.198649	2.920135	1.421036	Н	3.006956	2.826592	-2.333520
С	-0.849249	3.315334	2.294203	Н	-1.401716	2.408319	2.543923
С	0.989894	3.993232	0.940354	Н	-0.442284	3.765768	3.211020
С	2.098986	3.392542	0.098755	Η	-1.522343	4.033949	1.806208
Ο	1.489379	2.619134	-0.924434	Η	-5.106586	0.956348	-1.466523
С	2.419944	2.042493	-1.833828	Н	-6.273446	0.189232	-0.337054
Ο	2.706824	-0.864488	0.709089	Η	-4.995930	1.275492	0.285117
С	2.936693	-1.473524	-0.479891	Н	-1.181324	-3.482618	0.150964
Ο	2.132053	-2.170315	-1.078147	Н	-1.180306	-3.778047	-1.618783
Ν	4.198352	-1.183375	-0.955749	Н	-0.191464	-2.456189	-0.920060
С	5.246057	-0.599453	-0.131936	Η	-5.533584	-2.053134	-1.086771
С	4.637968	-1.847734	-2.171806	Η	-4.407733	-1.249956	-2.220157
Η	2.745369	2.753795	0.719351	Η	-3.578611	-3.505510	-1.625162
Η	2.711410	4.197124	-0.337545	Η	-3.624735	-3.095951	0.111365
Η	1.426983	4.561546	1.776573				

Atom	Х	Y	Ζ	Atom	X	Y	Ζ
С	-1.600313	2.430939	-1.450158	Н	-3.321850	-1.474070	-2.078176
С	-2.834707	3.006811	-1.130302	Η	-1.607588	-2.958982	-0.629898
С	-3.802114	2.321564	-0.377828	Η	-2.174416	-3.330450	1.023798
С	-3.459937	1.036354	0.030419	Η	-2.997843	-4.045593	-0.384261
С	-2.245276	0.405967	-0.252092	Η	2.709881	-0.116636	2.816241
С	-1.356784	1.133351	-0.994229	Η	1.320357	-0.156787	3.902149
Ο	-4.159350	0.115201	0.737603	Η	1.488406	-1.400025	2.648063
С	-3.022978	-0.920187	0.729080	Η	0.463865	2.513611	1.507290
Ο	-2.459665	-1.121550	1.849687	Η	0.715500	2.159138	3.228134
Li	-1.040681	-0.024355	1.931872	Η	2.100433	2.210466	2.133985
Ν	0.849842	0.469508	1.895974	Η	1.442400	-0.921419	-2.643879
Li	1.136087	0.106508	0.029186	Η	3.186683	-0.692959	-2.939824
Ο	2.549436	-0.757755	-0.944990	Η	2.577386	-2.276764	-2.368586
С	2.444124	-1.189784	-2.305504	Η	4.180278	-2.018754	-0.659959
С	3.808821	-1.045500	-0.316915	Η	3.614940	-1.105901	0.756467
С	1.617921	-0.325762	2.846335	F	-0.093082	0.578883	-1.323565
С	1.039854	1.884788	2.202558	С	4.840132	0.045807	-0.595675
Ν	-3.438456	-2.038931	-0.020260	Η	4.991999	0.177643	-1.681085
С	-4.050094	-1.812548	-1.319511	Η	4.479470	1.007204	-0.192556
С	-2.499185	-3.149728	-0.000116	0	6.033930	-0.359190	0.033740
Η	-0.856750	2.964278	-2.033433	С	7.072714	0.594089	-0.081241
Η	-4.759782	2.771262	-0.137428	Η	6.794521	1.553189	0.382310
Η	-3.046637	4.014879	-1.476488	Η	7.338310	0.778326	-1.134259
Η	-4.496979	-2.750201	-1.665766	Η	7.941295	0.184287	0.439456
Η	-4.839939	-1.066794	-1.230629				

Atom	Х	Y	Ζ	Atom	Х	Y	Z
С	0.983124	-2.671379	-1.037359	Н	2.553756	3.900638	-1.087901
С	2.233627	-3.193846	-0.690139	Η	-3.056584	0.178020	3.042059
С	3.231532	-2.402459	-0.099575	Η	-1.647148	0.284888	4.102736
С	2.902110	-1.067566	0.113272	Η	-1.887572	1.503476	2.837979
С	1.675716	-0.485279	-0.212628	Η	-0.699267	-2.378673	1.765454
С	0.748448	-1.316971	-0.782319	Η	-0.944527	-1.984589	3.478360
Ο	3.637654	-0.052791	0.635851	Η	-2.342594	-2.146206	2.412128
С	2.527720	0.992139	0.507555	F	-0.526139	-0.823984	-1.116312
Ο	2.006951	1.389010	1.594597	0	-3.507465	-0.806379	-0.590937
Li	0.644170	0.226897	1.865115	С	-3.894654	0.130388	-1.592502
Ν	-1.191285	-0.348802	2.097934	Η	-3.257091	0.012869	-2.481517
Li	-1.782639	-0.122706	0.248592	Η	-4.941996	-0.030410	-1.886517
С	-1.971694	0.427334	3.050669	С	-3.733768	1.516906	-1.001477
С	-1.298258	-1.759773	2.450167	Η	-3.954383	2.276224	-1.765978
Ν	2.928105	1.953926	-0.438621	Η	-4.425425	1.657584	-0.157535
С	3.474456	1.498879	-1.706612	0	-2.388606	1.637783	-0.550941
С	2.034633	3.094018	-0.559311	С	-2.095479	2.906486	0.033686
Η	0.217054	-3.291149	-1.492596	Η	-2.744511	3.097226	0.898223
Η	4.200205	-2.812362	0.166868	Η	-1.054350	2.873754	0.357348
Η	2.433593	-4.244682	-0.882658	Η	-2.224973	3.707443	-0.705986
Η	3.933285	2.351698	-2.217830	С	-3.642767	-2.166601	-0.998014
Η	4.244913	0.749124	-1.528338	Η	-4.691784	-2.397396	-1.224918
Η	2.702973	1.069303	-2.369430	Η	-3.022409	-2.374939	-1.879844
Η	1.116006	2.850384	-1.127640	Η	-3.308123	-2.778986	-0.159244
Η	1.757133	3.439553	0.436227				

Atom	Х	Y	Ζ	Atom	X	Y	Ζ
С	1.085514	-1.838118	2.372796	Н	0.521308	3.185447	2.580925
С	0.098353	-2.826128	2.266571	Η	1.114146	4.534795	1.586672
С	-1.025788	-2.606452	1.479291	Η	-0.575943	4.499229	2.102068
С	-1.128506	-1.380007	0.809221	Η	-1.296538	4.639466	-0.275901
С	-0.209444	-0.342306	0.853295	Η	0.391328	4.666043	-0.795396
С	0.891469	-0.644308	1.674205	Η	-0.706933	3.414054	-1.419128
Li	-1.295143	1.549314	0.836780	Η	-3.587792	-2.446412	-1.453719
Ο	-2.974881	0.775194	0.532782	Η	-5.344993	-2.198161	-1.301683
С	-3.113226	-0.283091	-0.097985	Η	-4.477148	-1.566901	-2.719696
Ο	-2.284539	-1.334739	-0.038729	Η	-5.280839	0.770251	-2.185737
Ν	-4.159883	-0.496144	-0.940797	Η	-6.135308	0.208389	-0.728728
С	-5.164529	0.542007	-1.118996	Η	-4.853154	1.438912	-0.587325
С	-4.401183	-1.750198	-1.640455	Η	2.412950	3.210007	-1.718037
Li	1.036954	1.508878	0.213305	Η	2.212071	2.289622	-3.234506
0	2.055076	1.231906	-1.448553	Η	2.012258	-0.030456	-3.103145
С	2.139963	-0.082555	-2.013667	Η	1.298488	-0.635054	-1.588538
С	3.466575	-0.768831	-1.666508	Η	3.598300	-0.770796	-0.573171
0	3.525203	-2.081835	-2.193265	Η	4.308043	-0.222788	-2.107662
С	2.880597	-3.057486	-1.389372	Η	1.798358	-2.890547	-1.299194
С	2.644472	2.271592	-2.225450	Η	3.048705	-4.022140	-1.875277
Η	3.732801	2.154216	-2.300893	Η	3.308850	-3.086515	-0.375764
Ν	-0.089091	3.069825	0.566801	0	1.839975	0.394583	1.713939
С	-0.435841	3.975020	-0.510826	С	2.955120	0.290347	2.584482
С	0.251776	3.847905	1.743917	Η	3.609829	-0.545209	2.303296
Η	0.214300	-3.764570	2.802161	Η	3.506106	1.228317	2.490443
Н	1.961459	-2.017934	2.987589	Н	2.632881	0.159960	3.624914
Η	-1.804752	-3.356783	1.380634				

	NM	e ₂					
	O Li Me S	Me Me			P P	A49 G° = -1126. See pg S = ON	945642 583 Ле
Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	-0.207049	3.409903	-0.647079	Н	-1.877864	4.773487	-0.588460
С	-1.560216	3.738358	-0.494321	Н	0.509108	4.196790	-0.859510
С	-2.491745	2.744262	-0.223849	Η	-3.546563	2.971899	-0.099417
С	-2.025178	1.427428	-0.113248	Н	1.372365	-0.825981	-3.083845
С	-0.712004	1.005609	-0.246559	Н	2.537951	-2.149892	-2.866469
С	0.161952	2.067731	-0.522988	Η	0.848754	-2.519843	-3.218821
Li	-0.571659	-0.969025	-0.951170	Η	0.705797	-3.890764	-1.161794
Ο	-2.418672	-1.320465	-0.916940	Η	2.388816	-3.529485	-0.773278
С	-3.197463	-0.733922	-0.153009	Η	1.107906	-3.139091	0.397883
Ο	-3.090008	0.534592	0.257653	Н	-4.914475	0.284881	1.527432
Ν	-4.296186	-1.350580	0.372501	Н	-6.211979	-0.477303	0.575088
С	-4.614878	-2.709884	-0.037799	Н	-5.578343	-1.288980	2.024933
С	-5.304329	-0.663731	1.166858	Н	-4.854507	-3.314854	0.844779
Li	1.777413	-0.250322	-0.135895	Н	-5.482565	-2.723402	-0.712384
0	3.936737	-0.327390	0.142615	Н	-3.757483	-3.139563	-0.552119
С	4.632111	-0.944712	-0.939493	Н	1.294264	1.303847	3.032368
С	4.081587	-1.044466	1.363633	H	0.009164	0.316038	2.285322
С	3.219802	-0.363963	2.406448	Н	0.871438	-0.283108	3.749878
0	1.882304	-0.366711	1.931530	Н	4.450174	-0.333732	-1.825193
С	0.964318	0.279311	2.810269	H	5.711522	-0.978775	-0.733890
Η	3.559789	0.670620	2.569239	Н	4.252591	-1.957249	-1.118570
Н	3.295009	-0.906884	3.361351	0	1.509926	1.672436	-0.663401
Н	5.133144	-1.044559	1.690002	C	2.489032	2.656791	-0.957587
H	3.757141	-2.085968	1.224640	Н	2.286118	3.144606	-1.919372
N	1.190929	-1.794123	-1.220013	H	2.538539	3.421352	-0.171093
C	1.496341	-1.825153	-2.637626	Н	3.444196	2.131012	-1.005777
С	1.352257	-3.125869	-0.675452				

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	-0.387250	-2.374388	0.052222	Н	-4.298171	2.696618	0.521563
С	-0.924750	-2.982971	-1.085527	Н	-5.691449	1.937044	1.330609
С	-2.020433	-2.436241	-1.769978	Н	2.145861	3.269378	0.088572
С	-2.535124	-1.257534	-1.239380	Н	0.733859	3.891417	-0.769443
С	-2.047728	-0.604760	-0.106457	Η	0.543567	3.202566	0.854448
С	-0.961432	-1.179140	0.531221	Η	1.349908	0.623040	-2.364405
Ο	-3.560360	-0.486446	-1.681888	Η	1.208720	2.365283	-2.675973
С	-3.381009	0.613147	-0.640530	Н	2.623841	1.740901	-1.827096
Ο	-2.890870	1.704446	-1.064854	Η	2.016844	-1.598206	2.592798
Li	-1.101504	1.456421	-0.963937	Η	3.640665	-2.052992	2.002056
Ν	0.814076	1.741164	-0.650075	Η	3.467240	-0.778081	3.245434
Li	1.148096	0.279925	0.572786	Η	4.695797	0.593196	1.791093
Ο	2.841969	-0.234046	1.336107	Н	3.747448	1.392698	0.516403
С	3.013321	-1.224853	2.351600	С	4.795179	-0.374297	-0.144865
С	4.048508	0.423844	0.921497	Η	5.021867	-1.394186	0.211570
С	1.068573	3.068644	-0.103606	Η	4.166276	-0.468174	-1.045262
С	1.522489	1.614882	-1.919843	0	5.981499	0.336707	-0.418691
Ν	-4.525478	0.656255	0.167371	С	6.751595	-0.246556	-1.451634
С	-5.044731	-0.581828	0.718869	Η	6.194593	-0.283288	-2.400516
С	-4.640887	1.807119	1.048433	Н	7.068664	-1.269257	-1.192377
Η	0.441681	-2.829996	0.587808	Н	7.637808	0.379102	-1.581675
Η	-2.434385	-2.906559	-2.655920	0	-0.299979	-0.590504	1.629134
Η	-0.482692	-3.909611	-1.442993	С	-1.097115	0.262361	2.463285
Η	-6.059600	-0.405588	1.090677	Η	-1.430969	1.152870	1.921873
Η	-5.089587	-1.343086	-0.059770	Η	-1.970971	-0.283302	2.831937
Η	-4.430982	-0.963800	1.553925	Η	-0.456036	0.552393	3.298795
Η	-4.053060	1.692817	1.977944				

Atom	Х	Y	Ζ	Atom	X	Y	Ζ
С	1.280377	-1.898088	2.604000	Н	2.060412	-2.031930	3.351130
С	0.517531	-2.990362	2.187009	Η	-1.108391	-3.620974	0.897831
С	-0.488660	-2.796019	1.239827	Η	0.443073	3.002048	2.786520
С	-0.683878	-1.510411	0.734595	Н	0.659157	4.461530	1.795115
С	0.038923	-0.367119	1.078803	Η	-0.855586	4.207156	2.668765
С	1.027271	-0.631973	2.060986	Η	-2.122635	4.394096	0.536128
Li	-1.484854	1.226744	1.348404	Η	-0.612321	4.648690	-0.344472
Ο	-2.912886	0.198955	0.687217	Η	-1.693220	3.316759	-0.809223
С	-2.742853	-0.644487	-0.206744	Η	-2.613126	-2.449862	-2.063214
Ο	-1.689344	-1.469866	-0.293084	Η	-4.379066	-2.467660	-2.293289
Ν	-3.633840	-0.826817	-1.216838	Η	-3.370742	-1.350304	-3.240526
С	-4.813251	0.022228	-1.303212	Η	-4.825997	0.555088	-2.262617
С	-3.485235	-1.831737	-2.260382	Η	-5.724532	-0.585453	-1.232627
Li	0.585178	1.555117	0.243910	Η	-4.796961	0.743518	-0.488628
Ο	2.049299	1.605921	-1.006332	Η	2.098684	3.634019	-0.985297
С	2.577737	0.403415	-1.584992	Η	2.578112	2.904299	-2.546018
С	3.865018	-0.062222	-0.893625	Η	2.753779	0.555558	-2.658114
Ο	4.314100	-1.285349	-1.448502	Η	1.793825	-0.347358	-1.461309
С	3.737083	-2.436272	-0.848863	Η	3.685848	-0.153509	0.188136
С	2.653852	2.819243	-1.454098	Η	4.671393	0.664025	-1.046376
Η	3.707642	2.878061	-1.157500	Η	2.644034	-2.469936	-0.956386
Ν	-0.602768	2.931083	0.953863	Η	4.168954	-3.301648	-1.358162
С	-1.277743	3.851788	0.058895	Η	3.977412	-2.491216	0.222998
С	-0.073970	3.675077	2.084149	Η	1.639793	0.195430	2.431005
Η	0.693177	-3.981517	2.597523				

	NMe	2	©-¢	P			
	0~0			~₹		A53	
/=	$= \langle Li \rangle$, Me	2-4	\wedge		$G^{\circ} = -1012.$	440900
ĺ	_/_Li_N	■Me				See pg $S = ON$	504 Ло
	s´`S			×		$\mathbf{J} = \mathbf{O}\mathbf{I}$	vic
	\bigvee		¢				
	V	V	7	A 1	V	N	7
Atom	Х	Ŷ	Z	Atom	Х	Ŷ	Z
С	0.521290	3.415230	-1.393676	С	2.056642	-2.229893	-2.436419
Ċ	-0.755301	3.837827	-1.018522	Ċ	0.966452	-3.352291	-0.674071
С	-1.647483	2.906395	-0.488255	Η	-1.058640	4.874706	-1.140353
С	-1.218384	1.586293	-0.345284	Η	1.227802	4.127575	-1.816142
С	0.036938	1.075431	-0.678341	Η	-2.652539	3.193920	-0.189586
С	0.882802	2.072438	-1.229663	Η	2.227824	-1.266518	-2.944361
Li	-0.342259	-0.879484	-1.572533	Η	3.060244	-2.637740	-2.172881
0	-2.210854	-0.873082	-1.303970	Η	1.657958	-2.927043	-3.206654
С	-2.683069	-0.352553	-0.282876	Η	0.507656	-4.104394	-1.353622
0	-2.217693	0.762159	0.297613	Η	1.903934	-3.825752	-0.303558
Ν	-3.748094	-0.882890	0.379445	Η	0.295649	-3.261050	0.195013
С	-4.356202	-2.114754	-0.101696	Н	-3.868006	0.664472	1.786201
С	-4.386204	-0.255392	1.527344	Η	-5.435392	-0.025828	1.298030
Li	1.514568	-0.541037	-0.062000	Η	-4.366627	-0.935257	2.389121
Ο	3.424988	0.166269	0.275438	Н	-4.383290	-2.860351	0.703008
С	4.556359	-0.226095	-0.494573	Η	-5.385693	-1.928767	-0.435412
С	3.689832	0.236194	1.670872	Η	-3.772970	-2.500926	-0.935301
С	2.379375	0.519119	2.375508	Η	-0.300046	0.493575	2.370436
0	1.484096	-0.535989	2.040074	Η	-0.368333	-1.289856	2.380199
С	0.217508	-0.420478	2.683862	Н	0.341408	-0.428426	3.775963
Η	1.963605	1.482965	2.047360	Н	4.228543	-0.289205	-1.532416
Η	2.543408	0.554645	3.463193	Н	5.361693	0.515896	-0.403630
Η	4.414653	1.035465	1.887686	Η	4.927348	-1.208409	-0.172269
Η	4.107279	-0.720549	2.019662	Η	1.889731	1.790784	-1.546049
Ν	1.177847	-2.060260	-1.296379				

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	0.609726	2.665393	1.855775	Н	-3.274332	-1.711418	-1.476906
С	0.094826	3.779341	1.189044	Η	-3.330738	-0.712185	-2.948300
С	-0.914063	3.652910	0.220412	Η	-2.092445	-1.984770	-2.784725
С	-1.357380	2.362060	-0.026094	Η	-1.487209	-4.046891	1.024253
С	-0.871213	1.215284	0.601622	Η	-2.679531	-3.477982	2.193820
С	0.129645	1.371279	1.565805	Η	-2.784532	-2.948044	0.503335
Ο	-2.327506	1.953990	-0.900557	Η	0.241151	-1.428252	2.984274
С	-2.312921	0.521227	-0.562678	Η	-0.954040	-2.561236	3.641167
Ο	-3.298646	0.063339	0.063978	Η	0.291006	-3.144936	2.536613
Li	-2.335655	-0.362907	1.577950	Η	0.714038	-3.479356	0.206459
Ν	-1.256636	-1.978151	1.594851	Η	1.850923	-3.654450	-1.170164
Li	-0.452967	-1.090554	-0.006217	Η	2.446803	-3.135985	0.437363
Ο	1.314744	-1.719967	-0.614827	Η	2.961284	-1.691004	-1.884559
С	1.610113	-3.077669	-0.267815	Η	1.964776	-0.224189	-1.835521
С	2.402948	-1.015874	-1.223596	Η	0.544954	0.520684	2.103979
С	-2.077679	-3.149825	1.320083	С	3.341950	-0.404114	-0.185697
С	-0.393433	-2.287019	2.722621	Η	2.797393	0.342728	0.413788
Ν	-1.722434	-0.298657	-1.594663	Η	3.719062	-1.177613	0.505143
С	-0.877671	0.396441	-2.572805	0	4.403227	0.189121	-0.903310
С	-2.666381	-1.228671	-2.239597	С	5.322323	0.864648	-0.067969
Η	1.383319	2.798023	2.608293	Η	4.837782	1.679917	0.491346
Η	-1.323968	4.515450	-0.295917	Η	6.094979	1.285774	-0.715939
Η	0.477576	4.768816	1.426893	Η	5.793926	0.178661	0.653703
Η	-0.343497	-0.353758	-3.164989	Η	-0.146450	1.022858	-2.056831
Η	-1.462171	1.032874	-3.250039				

Atom	Х	Y	Ζ	Atom	X	Y	Ζ
С	-0.679931	2.842215	-1.529461	Н	-3.943692	-2.989855	-1.210733
С	-1.277865	3.416517	-0.404878	Η	3.256876	-0.717644	2.299450
С	-1.808560	2.611745	0.615730	Η	2.371595	-0.874719	3.820998
С	-1.676546	1.242872	0.433825	Η	1.973483	-1.940990	2.459304
С	-1.065345	0.600902	-0.637682	Η	0.862755	2.097918	2.285228
С	-0.580802	1.441390	-1.649034	Η	1.682406	1.488290	3.739719
Ο	-2.211723	0.269309	1.287582	Η	2.595478	1.690708	2.242460
С	-1.986480	-0.951745	0.488740	0	2.747470	0.662282	-0.734215
Ο	-1.199980	-1.777941	1.016766	С	3.113671	-0.155673	-1.836815
Li	-0.567691	-0.553186	2.316816	Η	2.447077	0.042419	-2.690202
Ν	1.236546	0.023935	2.228521	Η	4.148988	0.051753	-2.146842
Li	1.081224	-0.165758	0.220369	С	2.995392	-1.599144	-1.389124
С	2.241615	-0.904930	2.718135	Η	3.179529	-2.270368	-2.241627
С	1.605595	1.367841	2.637930	Η	3.734715	-1.818661	-0.604211
Ν	-3.117899	-1.369682	-0.188540	0	1.681719	-1.783731	-0.881063
С	-4.000937	-0.388900	-0.802936	С	1.409573	-3.123384	-0.467975
С	-2.954307	-2.598427	-0.955702	Η	2.139464	-3.452322	0.284396
Η	-0.299930	3.486290	-2.320657	Η	0.409865	-3.109844	-0.034196
Η	-2.309562	3.042503	1.478501	Η	1.447540	-3.802529	-1.330809
Η	-1.352013	4.498251	-0.323796	С	2.959533	2.052667	-0.960584
Η	-4.946933	-0.882234	-1.046579	Η	4.024940	2.251575	-1.141057
Η	-4.203017	0.420836	-0.102515	Η	2.367754	2.407485	-1.813699
Η	-3.567642	0.034336	-1.722005	Н	2.638147	2.570059	-0.056389
Н	-2.392684	-2.422015	-1.888113	Η	-0.121712	1.026579	-2.548311
Η	-2.422082	-3.333799	-0.353324				

 $G^{\circ} = -347.557034$

Atom	Х	Y	Ζ	
С	-2.936402	-0.711691	-0.659111	
Η	-2.669726	-1.216714	-1.593644	
Н	-3.136598	-1.488965	0.105899	
Η	-3.866922	-0.157380	-0.825188	
С	-2.258336	0.964362	0.912787	
Η	-1.504543	1.720776	1.148262	
Η	-3.205232	1.483824	0.729427	
Η	-2.389286	0.320696	1.806625	
С	-0.598439	-0.480567	-0.124398	
С	0.598431	0.480551	-0.124384	
Η	-0.470842	-1.150691	-0.981694	
Η	-0.597912	-1.116121	0.783684	
Η	0.470835	1.150691	-0.981667	
Η	0.597895	1.116091	0.783710	
Ν	-1.878067	0.214677	-0.278431	
Ν	1.878065	-0.214681	-0.278430	
С	2.936381	0.711701	-0.659126	
Η	3.136576	1.488979	0.105880	
Η	3.866906	0.157402	-0.825216	
Η	2.669683	1.216719	-1.593656	
С	2.258366	-0.964357	0.912784	
Η	3.205272	-1.483795	0.729412	
Η	2.389311	-0.320688	1.806620	
Η	1.504596	-1.720790	1.148268	

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	-2.780773	1.145154	-0.220583	Н	-5.334379	-1.714849	0.688299
С	-2.436753	-0.189992	-0.029009	Η	-4.867906	-0.086735	1.260605
С	-1.148796	-0.728440	-0.082312	С	2.131704	0.217203	0.304683
С	-0.168507	0.211799	-0.355814	0	1.950971	1.022578	1.201122
С	-0.417641	1.573880	-0.565357	Ν	3.352042	-0.327014	-0.014699
С	-1.729817	2.031811	-0.492600	С	4.504495	0.026662	0.793092
Η	-3.801582	1.510668	-0.168132	Н	4.888346	-0.849876	1.335230
Η	0.398623	2.259068	-0.767803	Η	5.312575	0.415405	0.158532
Η	-1.945336	3.085559	-0.648102	Н	4.206667	0.790311	1.510160
Li	-1.980355	-2.458450	0.373116	С	3.563131	-1.326959	-1.046148
Ο	1.153967	-0.262261	-0.517087	Н	4.362021	-1.002737	-1.727212
Ο	-3.421796	-1.199977	0.260253	Н	3.866609	-2.287865	-0.604113
С	-4.773668	-0.810112	0.441376	Η	2.648573	-1.472885	-1.615800
Η	-5.182842	-0.370373	-0.476381				

Me_2		A57 G° = -676.095932 See pg S85
Me	Ģ	

				V			
Atom	Х	Y	Ζ	Atom	X	Y	Ζ
С	-2.960875	1.073834	0.003639	Н	-5.071028	-2.176591	-0.018239
С	-2.429060	-0.221031	-0.002951	Η	-4.984217	-0.638754	0.883460
С	-1.049992	-0.498257	-0.001629	С	1.998039	-0.453177	-0.003135
С	-0.257523	0.631082	0.006701	0	1.664375	-1.656240	0.017418
С	-0.706529	1.959770	0.014285	Ν	3.313132	-0.093928	-0.046485
С	-2.079396	2.163919	0.012545	С	3.774827	1.287228	-0.022795
Η	-4.029731	1.260054	0.002502	Η	4.545359	1.425020	-0.790627
Η	-0.006118	2.789761	0.021648	Η	2.947110	1.962625	-0.222264
Η	-2.476997	3.175705	0.017894	Η	4.213799	1.535569	0.953381
Li	-0.058307	-2.198981	0.011293	С	4.347816	-1.114470	0.021560
0	1.190734	0.599448	0.009984	Η	5.047360	-0.994110	-0.814826
Ο	-3.233919	-1.350452	-0.010443	Η	4.913771	-1.028924	0.959251
С	-4.636040	-1.173928	-0.011974	Η	3.887567	-2.098746	-0.031043
Η	-4.981004	-0.629030	-0.902767				
	Atom C C C C C C H H H Li O O C H	Atom X C -2.960875 C -2.429060 C -1.049992 C -0.257523 C -0.706529 C -2.079396 H -4.029731 H -0.006118 H -2.476997 Li -0.058307 O 1.190734 O -3.233919 C -4.636040 H -4.981004	AtomXYC-2.9608751.073834C-2.429060-0.221031C-1.049992-0.498257C-0.2575230.631082C-0.7065291.959770C-2.0793962.163919H-4.0297311.260054H-0.0061182.789761H-2.4769973.175705Li-0.058307-2.198981O1.1907340.599448O-3.233919-1.350452C-4.636040-1.173928H-4.981004-0.629030	AtomXYZC-2.9608751.0738340.003639C-2.429060-0.221031-0.002951C-1.049992-0.498257-0.001629C-0.2575230.6310820.006701C-0.7065291.9597700.014285C-2.0793962.1639190.012545H-4.0297311.2600540.002502H-0.0061182.7897610.021648H-2.4769973.1757050.017894Li-0.058307-2.1989810.011293O1.1907340.5994480.009984O-3.233919-1.350452-0.010443C-4.636040-1.173928-0.011974H-4.981004-0.629030-0.902767	AtomXYZAtomC -2.960875 1.073834 0.003639 HC -2.429060 -0.221031 -0.002951 HC -1.049992 -0.498257 -0.001629 CC -0.257523 0.631082 0.006701 OC -0.706529 1.959770 0.014285 NC -2.079396 2.163919 0.012545 CH -4.029731 1.260054 0.002502 HH -0.006118 2.789761 0.021648 HH -2.476997 3.175705 0.017894 HLi -0.058307 -2.198981 0.011293 CO 1.190734 0.599448 0.009984 HO -3.233919 -1.350452 -0.010443 HH -4.636040 -1.173928 -0.011974 HH -4.981004 -0.629030 -0.902767 -0.902767	AtomXYZAtomXC-2.9608751.0738340.003639H-5.071028C-2.429060-0.221031-0.002951H-4.984217C-1.049992-0.498257-0.001629C1.998039C-0.2575230.6310820.006701O1.664375C-0.7065291.9597700.014285N3.313132C-2.0793962.1639190.012545C3.774827H-4.0297311.2600540.002502H4.545359H-0.0061182.7897610.021648H2.947110H-2.4769973.1757050.017894H4.213799Li-0.058307-2.1989810.011293C4.347816O1.1907340.5994480.009984H5.047360O-3.233919-1.350452-0.010443H4.913771C-4.636040-1.173928-0.011974H3.887567H-4.981004-0.629030-0.902767H-0.002767	AtomXYZAtomXYC -2.960875 1.073834 0.003639 H -5.071028 -2.176591 C -2.429060 -0.221031 -0.002951 H -4.984217 -0.638754 C -1.049992 -0.498257 -0.001629 C 1.998039 -0.453177 C -0.257523 0.631082 0.006701 O 1.664375 -1.656240 C -0.706529 1.959770 0.014285 N 3.313132 -0.093928 C -2.079396 2.163919 0.012545 C 3.774827 1.287228 H -4.029731 1.260054 0.002502 H 4.545359 1.425020 H -0.006118 2.789761 0.021648 H 2.9477110 1.962625 H -2.476997 3.175705 0.017894 H 4.213799 1.535569 Li -0.058307 -2.198981 0.011293 C 4.347816 -1.114470 O 1.190734 0.599448 0.009984 H 5.047360 -0.994110 O -3.233919 -1.350452 -0.010443 H 4.913771 -1.028924 H -4.981004 -0.629030 -0.902767 H 3.887567 -2.098746

<		Me ₂	¢			A61 G° = -660.8 See pg \$	350820 586
Atom	Х	Y	Z	` Atom	Х	Y	Z
С	-3.442433	0.624823	-0.000564	0	1.433475	-1.619597	0.018663
С	-2.758451	-0.586645	-0.008080	Ν	2.916932	0.100499	-0.044348
С	-1.378755	-0.752051	-0.004600	С	3.237922	1.521603	-0.023294
С	-0.702682	0.459397	0.007366	Η	3.989098	1.734037	-0.793058
С	-1.292606	1.728782	0.016361	Η	2.346797	2.111039	-0.221917
С	-2.683657	1.799092	0.012191	Η	3.652049	1.812872	0.951629
Η	-4.528103	0.646860	-0.004126	С	4.050214	-0.810615	0.020422
Η	-0.680955	2.626121	0.026676	Η	4.731391	-0.618370	-0.817370
Η	-3.177430	2.767031	0.018620	Η	4.605757	-0.668041	0.957095
Li	-0.220170	-2.346236	0.009198	Η	3.692357	-1.836514	-0.032247
0	0.735744	0.577174	0.013122	F	-3.533469	-1.718609	-0.018926
С	1.646866	-0.389881	-0.000869				

Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	0.519181	3.855405	-0.118039	С	-3.420636	-0.425914	0.554664
С	-0.183882	2.655787	-0.119625	Η	-4.372594	-0.653325	1.069793
С	0.337478	1.372632	-0.101891	Η	-3.466002	0.623170	0.247933
С	1.723082	1.389596	-0.062655	С	-3.299525	-1.317335	-0.685276
С	2.536938	2.529525	-0.055103	Η	-4.212434	-1.205406	-1.298227
С	1.915319	3.776418	-0.086335	Η	-3.258146	-2.368693	-0.381306
Η	0.000400	4.809635	-0.138527	С	-2.288964	-1.828817	2.203009
Η	3.619364	2.439978	-0.025345	Η	-2.276884	-2.679461	1.515936
Η	2.514223	4.683282	-0.083689	Η	-1.393381	-1.893856	2.827863
Li	-0.639769	-0.425417	0.057792	Η	-3.178103	-1.918459	2.853520
Ο	2.529706	0.195882	-0.045310	С	-2.207582	0.570894	2.397632
С	2.110949	-1.060415	0.107742	Η	-1.320243	0.469820	3.029598
Ο	0.944688	-1.447886	0.271726	Η	-2.118965	1.498882	1.829996
Ν	3.156764	-1.944518	0.056439	Η	-3.098215	0.618818	3.049806
С	4.551150	-1.534848	-0.031128	С	-1.713295	-2.163945	-2.314397
Η	5.086830	-2.226905	-0.691219	Н	-0.779981	-1.934541	-2.837239
Η	4.621647	-0.529128	-0.437889	Н	-1.547509	-3.050426	-1.694088
Η	5.037377	-1.556175	0.955140	Н	-2.484288	-2.402285	-3.069174
С	2.919451	-3.351001	0.336263	С	-2.245132	0.184970	-2.289965
Η	3.405339	-3.970003	-0.427839	Н	-2.399126	1.061334	-1.658534
Η	3.329003	-3.631883	1.317367	Η	-1.324009	0.356548	-2.852823
Η	1.848174	-3.541590	0.330107	Н	-3.085760	0.087001	-3.000935
Ν	-2.268828	-0.563351	1.463461	F	-1.573624	2.780696	-0.131730
Ν	-2.086098	-1.026135	-1.468290				

Atom	Х	Y	Z	Atom	Х	Y	Z
С	0.519181	3.855405	-0.118039	С	-3.420636	-0.425914	0.554664
С	-0.183882	2.655787	-0.119625	Н	-4.372594	-0.653325	1.069793
С	0.337478	1.372632	-0.101891	Н	-3.466002	0.623170	0.247933
С	1.723082	1.389596	-0.062655	С	-3.299525	-1.317335	-0.685276
С	2.536938	2.529525	-0.055103	Η	-4.212434	-1.205406	-1.298227
С	1.915319	3.776418	-0.086335	Η	-3.258146	-2.368693	-0.381306
Η	0.000400	4.809635	-0.138527	С	-2.288964	-1.828817	2.203009
Η	3.619364	2.439978	-0.025345	Н	-2.276884	-2.679461	1.515936
Η	2.514223	4.683282	-0.083689	Н	-1.393381	-1.893856	2.827863
Li	-0.639769	-0.425417	0.057792	Н	-3.178103	-1.918459	2.853520
Ο	2.529706	0.195882	-0.045310	С	-2.207582	0.570894	2.397632
С	2.110949	-1.060415	0.107742	Н	-1.320243	0.469820	3.029598
Ο	0.944688	-1.447886	0.271726	Н	-2.118965	1.498882	1.829996
Ν	3.156764	-1.944518	0.056439	Н	-3.098215	0.618818	3.049806
С	4.551150	-1.534848	-0.031128	С	-1.713295	-2.163945	-2.314397
Η	5.086830	-2.226905	-0.691219	Н	-0.779981	-1.934541	-2.837239
Η	4.621647	-0.529128	-0.437889	Н	-1.547509	-3.050426	-1.694088
Η	5.037377	-1.556175	0.955140	Н	-2.484288	-2.402285	-3.069174
С	2.919451	-3.351001	0.336263	С	-2.245132	0.184970	-2.289965
Η	3.405339	-3.970003	-0.427839	Н	-2.399126	1.061334	-1.658534
Η	3.329003	-3.631883	1.317367	Н	-1.324009	0.356548	-2.852823
Η	1.848174	-3.541590	0.330107	Н	-3.085760	0.087001	-3.000935
Ν	-2.268828	-0.563351	1.463461	F	-1.573624	2.780696	-0.131730
Ν	-2.086098	-1.026135	-1.468290				

<		Me ₂				A64 G° = -561.5 See pg	595229 586
Atom	Х	Y	Ζ	Atom	Х	Y	Ζ
С	3.790035	-0.041585	-0.006320	Ο	-1.356695	1.637312	0.011185
С	3.016530	1.121400	-0.014112	Ν	-2.592207	-0.269410	-0.043252
С	1.601876	1.132757	-0.008075	С	-2.715847	-1.720422	-0.013640
С	1.056460	-0.148588	0.005755	Н	-3.428983	-2.039224	-0.783036
С	1.771190	-1.350273	0.014858	Н	-1.751448	-2.182654	-0.206952
С	3.161664	-1.290054	0.008692	Η	-3.088084	-2.060434	0.962559
Η	4.876698	0.020014	-0.011502	С	-3.838503	0.479112	0.017974
Η	1.248318	-2.303197	0.026760	Η	-4.488113	0.191704	-0.817892
Η	3.744164	-2.208010	0.015206	Η	-4.369996	0.268119	0.955964
Li	0.199109	2.528045	0.003236	Η	-3.623700	1.543905	-0.040775
Ο	-0.366462	-0.440995	0.014470	Η	3.547095	2.074987	-0.025197
С	-1.398833	0.388651	-0.003020				

Atom	Х	Y	Z	Atom	Х	Y	Z
С	-1.582750	3.878130	0.105214	С	3.596549	0.124750	-0.602088
С	-0.516082	2.978851	0.202327	Н	4.504173	-0.205959	-1.140064
С	-0.648392	1.569016	0.166974	Н	3.743096	1.184253	-0.368508
С	-1.974742	1.175708	0.024248	С	3.468388	-0.674841	0.700250
С	-3.089283	2.013452	-0.082744	Н	4.404071	-0.570041	1.280045
С	-2.884154	3.390443	-0.042150	Н	3.364407	-1.739842	0.467117
Η	-1.406014	4.952261	0.143005	С	2.326697	-1.267885	-2.148557
Η	-4.087179	1.594893	-0.191279	Н	2.343255	-2.096005	-1.435691
Η	-3.730132	4.069222	-0.121470	Н	1.383617	-1.327591	-2.698016
Li	0.758317	0.087216	-0.001984	Н	3.163708	-1.396990	-2.858829
Ο	-2.410290	-0.208533	0.008921	С	2.310306	1.124607	-2.404917
С	-1.662924	-1.299177	-0.102659	Н	1.383829	1.033739	-2.978788
Ο	-0.435988	-1.355028	-0.283391	Н	2.278223	2.076898	-1.868586
Ν	-2.418031	-2.440343	0.008382	Н	3.161347	1.136352	-3.109587
С	-3.870039	-2.427077	0.110662	С	1.899246	-1.315364	2.440641
Η	-4.188195	-3.238251	0.775617	Н	0.992551	-0.998484	2.964519
Η	-4.207350	-1.478013	0.520463	Н	1.675864	-2.242453	1.904294
Η	-4.345129	-2.580606	-0.869555	Н	2.683163	-1.518833	3.192427
С	-1.805424	-3.732056	-0.250395	С	2.493268	1.001887	2.182872
Η	-2.097554	-4.445706	0.529669	Н	2.742529	1.791553	1.469895
Η	-2.125602	-4.136248	-1.222173	Н	1.562276	1.292783	2.675322
Η	-0.723016	-3.620233	-0.252335	Н	3.300418	0.938569	2.935384
Ν	2.394390	0.017535	-1.445055	Η	0.483361	3.409159	0.316646
Ν	2.291010	-0.274371	1.485834				

Figure 79. The key structural data for the crystal structure of **5b** have been archived in the Cambridge Crystallographic Database (CCDC 684578).

Table 1. Crystal data and structure refinement for 5b .							
Identification code	5b						
Empirical formula	C12 H17 N O3						
Formula weight	223.27						
Temperature	173(2) K						
Wavelength	0.71073 Å						
Crystal system	Monoclinic						
Space group	P2(1)/n						
Unit cell dimensions	a = 7.2430(4) Å	α= 90°.					
	b = 17.1827(10) Å	β=95.266(2)°.					
	c = 9.5958(4) Å	$\gamma = 90^{\circ}$.					
Volume	1189.20(11) Å ³						
Z	4						
Density (calculated)	1.247 Mg/m ³						
Absorption coefficient	0.089 mm ⁻¹						
F(000)	480						
Crystal size	0.60 x 0.35 x 0.20 mm ³						
Theta range for data collection	2.37 to 27.88°.						
Index ranges	-9<=h<=9, -22<=k<=22, -12<=l<=12						
Reflections collected	10590						
Independent reflections	2837 [R(int) = 0.0420]						
Completeness to theta = 27.88°	99.9 %						
Absorption correction	Semi-empirical from equivalent	ts					
Max. and min. transmission	0.9823 and 0.9483						
Refinement method	Full-matrix least-squares on F ²						
Data / restraints / parameters	2837 / 0 / 213						
Goodness-of-fit on F ²	1.067						
Final R indices [I>2sigma(I)]	R1 = 0.0433, $wR2 = 0.0943$						
R indices (all data)	R1 = 0.0656, $wR2 = 0.1033$						
Largest diff. peak and hole	0.209 and -0.200 e.Å ⁻³						

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å² $x \ 10^3$) for **5b**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	У	Z	U(eq)
 O(1)	1295(1)	2499(1)	6177(1)	28(1)
O(2)	3685(1)	199(1)	8203(1)	33(1)
O(3)	4370(1)	1909(1)	8979(1)	28(1)
N(1)	1301(1)	1826(1)	9267(1)	24(1)
C(1)	1724(1)	1738(1)	5973(1)	23(1)
C(2)	1462(2)	1377(1)	4673(1)	28(1)
C(3)	1955(2)	609(1)	4563(1)	33(1)
C(4)	2728(2)	190(1)	5699(1)	32(1)
C(5)	2970(2)	550(1)	6992(1)	26(1)
C(6)	2450(1)	1326(1)	7143(1)	22(1)
C(7)	2764(2)	1715(1)	8543(1)	22(1)
C(8)	-610(2)	1642(1)	8712(1)	28(1)
C(9)	-1214(2)	844(1)	9116(2)	46(1)
C(10)	1510(2)	2228(1)	10620(1)	29(1)
C(11)	1472(2)	3102(1)	10445(1)	34(1)
C(12)	4277(2)	-590(1)	8124(2)	44(1)

Table 3. Bond lengths [Å] and angles [°] for **5b**.

	O(1)-C(1)		1.3617(13)
	O(2)-C(5)		1.3682(13)
	O(2)-C(12)		1.4272(15)
	O(3)-C(7)		1.2449(13)
	N(1)-C(7)		1.3330(14)
	N(1)-C(10)		1.4660(14)
	N(1)-C(8)		1.4712(14)
	C(1)-C(6)		1.3896(14)
	C(1)-C(2)		1.3904(15)
	C(2)-C(3)		1.3745(17)
	C(3)-C(4)		1.3807(17)
	C(4)-C(5)		1.3831(16)
	C(5)-C(6)		1.3952(15)
	C(6)-C(7)		1.4995(14)
	C(8)-C(9)		1.5011(19)
	C(10)-C(11)		1.5109(18)
C(5)-O(2)-O	C(12)	117.77(9)	
C(7)-N(1)-0	C(10)	120.45(9)	
C(7)-N(1)-0	C(8)	123.12(9)	
C(10)-N(1)	-C(8)	116.07(9)	
O(1)-C(1)-C	C(6)	116.60(9)	
O(1)-C(1)-C	C(2)	122.89(10)	
C(6)-C(1)-C	C(2)	120.51(10)	
C(3)-C(2)-C	C(1)	118.82(10)	
C(2)-C(3)-C	C(4)	121.94(11)	
C(3)-C(4)-C	C(5)	118.96(11)	
O(2)-C(5)-0	C(4)	124.86(10)	
O(2)-C(5)-0	C(6)	114.69(9)	
C(4)-C(5)-C	C(6)	120.44(10)	
C(1)-C(6)-C	C(5)	119.28(9)	
C(1)-C(6)-C	C(7)	120.73(10)	

C(5)-C(6)-C(7)	119.92(9)
O(3)-C(7)-N(1)	123.32(10)
O(3)-C(7)-C(6)	118.70(10)
N(1)-C(7)-C(6)	117.98(9)
N(1)-C(8)-C(9)	112.93(10)
N(1)-C(10)-C(11)	111.74(9)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å²x 10³) for **5b**. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a^{*2}U¹¹ + ... + 2 h k a* b* U¹²]

J12	U ¹³	U ²³	U ³³	U ²²		U ¹¹
3(1	-4(1)	2(1)	22(1)	27(1)	34(1)	O(1)
8(1	1(1)	3(1)	32(1)	25(1)	42(1)	O(2)
0(1	-3(1)	-5(1)	24(1)	34(1)	23(1)	O(3)
1(1	0(1)	-1(1)	19(1)	29(1)	25(1)	N(1)
-3(1	1(1)	0(1)	22(1)	27(1)	19(1)	C(1)
-3(1	-1(1)	-1(1)	21(1)	39(1)	25(1)	C(2)
-7(1	5(1)	-13(1)	26(1)	41(1)	31(1)	C(3)
-2(1	7(1)	-9(1)	38(1)	28(1)	32(1)	C(4)
-1(1	3(1)	0(1)	28(1)	27(1)	23(1)	C(5)
-3(1	1(1)	-2(1)	20(1)	25(1)	20(1)	C(6)
2(1	-2(1)	3(1)	20(1)	20(1)	25(1)	C(7)
1(1	3(1)	0(1)	26(1)	35(1)	23(1)	C(8)
-11(1	5(1)	7(1)	54(1)	47(1)	37(1)	C(9)
4(1	2(1)	-2(1)	19(1)	39(1)	29(1)	C(10)
8(1	-2(1)	-10(1)	36(1)	38(1)	28(1)	C(11)
14(1)	14(1)	8(1)	48(1)	30(1)	55(1)	C(12)

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3)

for **5b**.

 	X	у	Z	U(eq)
H(10B)	2705(17)	2063(7)	11123(12)	31(3)
H(10A)	491(17)	2070(7)	11144(12)	30(3)
H(8B)	-714(18)	1687(7)	7670(13)	37(3)
H(3)	1736(17)	356(7)	3673(13)	37(3)
H(12C)	5260(20)	-636(8)	7470(14)	49(4)
H(11C)	1422(19)	3351(8)	11358(14)	45(4)
H(11B)	327(19)	3263(7)	9840(13)	38(4)
H(8A)	-1441(17)	2025(7)	9083(12)	28(3)
H(4)	3061(18)	-335(8)	5610(13)	37(3)
H(2)	880(18)	1666(7)	3871(13)	39(4)
H(11A)	2606(19)	3287(7)	10004(13)	38(4)
H(9C)	-400(20)	428(10)	8702(17)	75(5)
H(12B)	4789(19)	-725(8)	9083(14)	46(4)
H(12A)	3180(20)	-929(8)	7846(15)	58(4)
H(9B)	-2520(20)	756(9)	8764(15)	59(4)
H(9A)	-1120(20)	806(8)	10126(15)	54(4)
H(1O)	570(20)	2674(8)	5384(15)	54(4)

REFERENCES

1. Briggs, T. F.; Winemiller, M. D.; Collum, D. B.; Parsons, R. L., Jr.; Davulcu, A. K.; Harris, G. D.; Fortunak, J. D.; Confalone, P. N. *J. Am. Chem. Soc.* **2004**, *126*, 5427.

2. Zhao, P.; Lucht, B. L.; Kenkre, S. L.; Collum, D. B. *J. OrG*°. *Chem.* **2004**, *69*, 242.

3. Free energy was determined at STP and hydrogens omitted for clarity. Gaussian 03, Revision B.04, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazvev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004.

4. GaussView, Version 3.09, Dennington II, R.; Keith, T.; Millam, J.; Eppinnett, K.; Hovell, W. L.; Gilliland, R.; Semichem, Inc., Shawnee Mission, KS, 2003.