Facile N-Arylation of Amines and Sulfonamides and O-Arylation of Phenols and Arenecarboxylic Acids

Zhijian Liu and Richard C. Larock *

Department of Chemistry, Iowa State University, Ames, Iowa 50011

larock@iastate.edu

	Page(s)
General	2S
¹ H and ¹³ C NMR Data for all new compounds	38-128
References	13S-15S
Copies of ¹ H and ¹³ C NMR Spectra	16S-62S

Supporting Information

General. The ¹H and ¹³C NMR spectra were recorded at 300 and 75.5 MHz or 400 and 100 MHz respectively. All melting points are uncorrected. High resolution mass spectra were recorded on a Kratos MS50TC double focusing magnetic sector mass spectrometer using EI at 70 eV. All reagents were used directly as obtained commercially unless otherwise noted. All yields reported represent an average of at least two independent runs. The substituted silylaryl triflates (**1b**, **1c**, **1d**, and **1e**) were prepared according to a literature procedure.¹ The product characterization data, and ¹H and ¹³C NMR spectra for compounds **1**, **2**, **9**, **14**, **21**, **22**, **32**, **35**, **36**, **37**, **38**, **44**, **46**, **48**, and **53** have been reported in our previous communication.² The product characterization data, and ¹H and ¹³C NMR spectra for compounds **62**, **63**, **64**, **67**, **68**, **69**, **70**, **71**, **75**, **76**, **83**, **84**, **85**, **86**, **89**, and **91** have been reported in our previous communication.³ **General Procedure for the Mono** *N*-**Arylation of Aromatic Amines (Table 1)**.

For this experimental procedure, see the text.

General Procedure for the Mono N-Arylation of Alkylamines (Table 2).

For this experimental procedure, see the text.

General Procedure for the Diarylation of Amines and Sulfonamides (Tables 2 and 3).

For this experimental procedure, see the text.

General Procedure for the O-Arylation of Phenols (Table 4).

For this experimental procedure, see the text.

General Procedure for the O-Arylation of Carboxylic Acids (Table 5).

For this experimental procedure, see the text.

Characterization Data:

N-(4-Nitrophenyl)aniline (3). The indicated compound was obtained in an 85% yield as a light yellow solid: mp 135-136 $^{\circ}$ C (lit.⁴ 134-135 $^{\circ}$ C); the ¹H and ¹³C NMR spectra match the literature data.⁵

4-(Phenylamino)benzonitrile (4). The indicated compound was obtained in a 90% yield as a white solid: mp 99-100 °C (lit.⁶ 101-102 °C); the ¹H and ¹³C NMR spectra match the literature data.⁵

Ethyl 4-(phenylamino)benzoate (5). The indicated compound was obtained in a 92% yield as light yellow oil. The ¹H and ¹³C NMR spectra match the literature data.⁷

N-(4-Acetylphenyl)aniline (6). The indicated compound was obtained in a 94% yield as a light yellow solid: mp 105-106 $^{\circ}$ C (lit.⁸ 104-105 $^{\circ}$ C); the ¹H and ¹³C NMR spectra match the literature data.⁹

N-[(3-(Phenylamino)phenyl]acetamide (7). The indicated compound was obtained in a 95% yield as a light yellow oil: ¹H NMR (300 MHz, CDCl₃) δ 2.04 (s, 3H), 5.79 (s, 1H), 6.77 (dd, *J* = 8.1, 1.5 Hz, 1H), 6.88 (t, *J* = 7.2 Hz, 1H), 6.94-7.01 (m, 3H), 7.09 (t, *J* = 7.8 Hz, 1H), 7.19 (t, *J* = 7.8 Hz, 2H), 7.29 (t, *J* = 1.8 Hz, 1H), 8.15 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 24.7, 109.4, 112.6, 113.2, 118.6, 121.5, 129.6, 129.9, 139.4, 142.9, 144.3, 169.5; HRMS m/z 226.1109 (calcd C₁₄H₁₄N₂O, 226.1106).

N-(4-Methoxyphenyl)aniline (8). The indicated compound was obtained in an 89% yield as a white solid: mp 101-102 °C (lit.¹⁰ 102-103 °C); the ¹H and ¹³C NMR spectra match the literature data.⁹

N-Phenyl-4-iodoaniline (10). The indicated compound was obtained in a 92% yield as a light yellow solid: mp 100-102 °C (lit.¹¹ 102-104 °C); the ¹H and ¹³C NMR spectra match the literature data.¹¹

N-Phenyl-4-bromoaniline (11). The indicated compound was obtained in a 91% yield as a light yellow solid: mp 87-89 °C (lit.⁸ 87-89 °C); the ¹H and ¹³C NMR spectra match the literature data.¹²

N-Phenyl-2-*tert*-butylaniline (12). The indicated compound was obtained in a 77% yield as a yellow solid: mp 64-65 °C; ¹H NMR (300 MHz, CDCl₃) δ 1.46 (s, 9H), 5.42 (s, 1H), 6.82-6.86 (m, 3H), 7.09-7.47 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 30.8, 35.1, 116.2, 119.4, 124.2, 126.2, 127.1, 127.3, 129.5, 141.4, 143.6, 146.2; IR (CDCl₃, cm⁻¹) 3454, 3047, 2962, 2097, 2870, 1595, 1497; HRMS m/z 225.1520 (calcd C₁₆H₁₉N, 225.1517).

N-Phenyl-2,4,6-trimethylaniline (13). The indicated compound was obtained in a 90% yield as a yellow solid: mp 54-56 °C (lit.¹³ 56 °C); the ¹H and ¹³C NMR spectra match the literature data.¹³

N-Methyl-*N*-phenyl-3,4-dimethylaniline (15). The indicated compound was obtained in a 97% yield as a yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 2.75 (s, 3H), 2.28 (s, 3H), 3.33 (s, 3H), 6.87-6.98 (m, 5H), 7.12 (d, *J* = 8.1 Hz, 1H), 7.24-7.30 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 19.4, 20.3, 40.6, 118.1, 119.8, 120.6, 124.5, 129.2, 130.7, 131.3, 137.8, 147.2, 149.7; IR (CDCl₃, cm⁻¹) 3021, 2920, 2863, 1595, 1497; HRMS m/z 211.1364 (calcd C₁₅H₁₇N, 211.1361).

N-Methyl-*N*-phenyl-3-methoxyaniline (16). The indicated compound was obtained in a 47% yield as a yellow oil; the ¹H and ¹³C NMR spectra match the literature data.¹⁴

N-Methyl-*N*-phenyl-4-methoxyaniline (17). The indicated compound was obtained in a 47% yield as a yellow oil; the ¹H and ¹³C NMR spectra match the literature data.¹⁴

N-Methyl-*N*-phenyl-2-iodoaniline (18). The indicated compound was obtained in a 97% yield as a white solid: mp 31-33 °C; ¹H NMR (300 MHz, CDCl3) δ 3.20 (s, 3H), 6.54 (d, J = 8.8 Hz, 2H), 6.75 (t, J = 7.2 Hz, 1H), 6.95-7.00 (m, 3H), 7.35 (t, J = 7.2 Hz, 1H), 7.94 (d, J = 8.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 39.3, 101.4, 113.6, 117.9, 128.3,

129.1, 129.9, 130.2, 140.5, 148.7, 150.7; IR (CDCl₃, cm⁻¹) 3054, 3035, 2918, 2881, 2811, 1609, 1497; HRMS m/z 309.0019 (calcd C₁₃H₁₂IN, 309.0014).

N-Allyl-*N*-phenylaniline (19). The indicated compound was obtained in a 97% yield as a yellow oil; the ¹H and ¹³C NMR spectra match the literature data.¹⁵

1-Phenylindoline (20). The indicated compound was obtained in a 97% yield as a yellow oil; the ¹H and ¹³C NMR spectra match the literature data.¹⁵

N-(**3,4-Dimethylphenyl**)-*N*-(**4-methoxyphenyl**)-**3,4-dimethylaniline** (**23**). The indicated compound was obtained in a 93% yield as a white solid: mp 110-111 °C; ¹H NMR (300 MHz, CDCl₃) δ 2.14 (s, 6H), 2.19 (s, 6H), 6.74-6.82 (m, 6H), 6.95-7.03 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 19.3, 20.2, 55.7, 114.8, 120.9, 124.7, 126.6, 130.2, 130.4, 137.4, 141.7, 146.5, 155.7; IR (CDCl₃, cm⁻¹) 3017, 2963, 2932, 2918, 2858, 1606, 1501; HRMS m/z 331.1942 (calcd C₂₃H₂₅NO, 331.1936).

N,*N*-Diphenyl-4-methoxyaniline (24). The indicated compound was obtained in a 90% yield as a yellow solid: mp 98-100 $^{\circ}$ C (lit.¹⁶ 98-100 $^{\circ}$ C); the ¹H and ¹³C NMR spectra match the literature data.¹⁷

N,*N*-Diphenyl-4-nitroaniline (25). The indicated compound was obtained in a 55% yield as a yellow solid: mp 139-141 °C (lit.¹⁸ 138-139 °C); the ¹H and ¹³C NMR spectra match the literature data.¹⁹

1-Phenyl-1*H***-imidazole (26).** The indicated compound was obtained in a 76% yield as a yellow oil; the ¹H and ¹³C NMR spectra match the literature data.²⁰

N,*N*-Diphenylnaphthalen-1-amine (27). The indicated compound was obtained in an 81% yield as a white solid: mp 135-137 °C (lit.¹⁶ 136-137 °C); the ¹H and ¹³C NMR spectra match the literature data.¹⁶

2-Phenyl-2*H***-benzo[***d***][1,2,3]triazole (28). The indicated compound was obtained in a 20% yield as a white solid: mp 109-110 °C (lit.²¹ 108-110 °C); ¹H NMR (300 MHz, CDCl₃) δ 7.40-7.49 (m, 3H), 7.54-7.60 (m, 2H), 7.92-7.96 (m, 2H), 8.36 (dd,** *J* **= 9.0, 1.2 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 118.6, 120.8, 127.4, 129.2, 129.6, 140.6, 145.2.**

1-Phenyl-1*H***-benzo[***d***][1,2,3]triazole (29). The indicated compound was obtained in a 72% yield as a white solid: mp 85-86 °C (lit.²² 85-87 °C); the ¹H and ¹³C NMR spectra match the literature data.²³**

N-Benzylaniline (30). The indicated compound was obtained in a 70% yield as a yellow oil; the ¹H NMR spectrum matches the literature data.²⁴

N-Benzyl-3-methoxyaniline (31). The indicated compound was obtained in a 71% yield as a yellow oil; the ¹H and ¹³C NMR spectra match the literature data.²⁵

N-(2-Phenylethyl)aniline (33). The indicated compound was obtained in a 66 % yield as a yellow oil; the ¹H and ¹³C NMR spectra match the literature data.²⁶

N,*N*-Diphenylaniline (34). The indicated compound was obtained in a 97% yield as a yellow solid: mp 86-87 °C (lit.²⁷ 88-89 °C); the ¹H and ¹³C NMR spectra match the literature data.²⁷

1-Phenylpyrrolidine (39). The indicated compound was obtained in a 95% yield as a yellow oil; the ¹H and ¹³C NMR spectra match the literature data.²⁸

N-(3-Methoxyphenyl)pyrrolidine (40). The indicated compound was obtained in a 97% yield as a yellow oil; the ¹H and ¹³C NMR spectra match the literature data.²⁹

4-Phenylmorpholine (41). The indicated compound was obtained in an 81% yield as a yellow oil; the ¹H and ¹³C NMR spectra match the literature data.³⁰

N,*N*-Dibenzylaniline (42). The indicated compound was obtained in a 99% yield as a yellow oil; The ¹H and ¹³C NMR spectra match the literature data.³¹

N-Phenylphenylalanine ethyl ester (43). The indicated compound was obtained in a 65% yield as a colorless oil; The ¹H and ¹³C NMR spectra match the literature data.³²

N,N-Diphenyltrifluoromethanesulfonamide (45). The indicated compound was obtained in a 78% yield as a white solid: mp 105-106 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.33-7.49 (m, 10H); ¹³C NMR (75 MHz, CDCl₃) δ 120.6 (q, *J* = 322 Hz), 128.6, 129.1, 130.0, 140.1; IR (CDCl₃, cm⁻¹) 3087, 3071, 3017, 1589, 1492; HRMS m/z 301.0388 (calcd C₁₃H₁₀F₃NO₂S, 301.0384).

N,N-Diphenyl-4-methylbenzenesulfonamide (47). The indicated compound was obtained in a 100% yield as a yellow solid: mp 138-139 °C; ¹H NMR (CDCl₃, 300 MHz) δ 2.43 (s, 3H), 7.25-7.32 (m, 12H), 7.60 (d, *J* = 7.2 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 21.8, 127.6, 128.0, 128.6, 129.5, 129.8, 137.8, 141.8, 143.8; IR (CDCl₃, cm⁻¹) 3098, 3067, 2922, 1592, 1345; HRMS m/z 323.0986 (calcd C₁₉H₁₇NO₂S, 323.0980).

N,N-Diphenyl-2-methylbenzenesulfonamide (49). The indicated compound was obtained in a 99% yield as a yellow solid: mp 65-67 °C; ¹H NMR (CDCl₃, 300 MHz) δ 2.51 (s, 3H), 7.20-7.33 (m, 12H), 7.44 (td, *J* = 7.2, 0.9 Hz, 1H), 7.83 (d, *J* = 7.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 21.0, 126.3, 127.7, 128.8, 129.5, 130.9, 132.8, 133.3, 138.4, 138.5, 141.7; IR (CDCl₃, cm⁻¹) 3062, 3037, 2933, 1589, 1487; HRMS m/z 323.0986 (calcd C₁₉H₁₇NO₂S, 323.0980).

N,*N*-**Diphenyl-4-methoxybenzenesulfonamide (50).** The indicated compound was obtained in a 100% yield as a yellow solid: mp 122-123 °C; ¹H NMR (CDCl₃, 300 MHz) δ 3.86 (s, 3H), 6.93 (dd, *J* = 6.9, 2.1 Hz, 2H), 7.22-7.34 (m, 10H), 7.32 (dd, *J* = 6.9, 2.1 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 55.8, 114.3, 127.6, 128.6, 129.5, 130.1, 132.4, 141.8, 163.2; IR (CDCl₃, cm⁻¹) 3076, 3006, 2985, 2945, 2844, 1594, 1493; HRMS m/z 339.0934 (calcd C₁₉H₁₇NO₃S, 339.0929).

N,*N*-Diphenyl-4-(trifluoromethyl)benzenesulfonamide (51). The indicated compound was obtained in a 91% yield as a white solid: mp 128-129 °C; ¹H NMR (CDCl₃, 300 MHz) δ 7.24-7.37 (m, 10H), 7.75 (d, *J* = 8.7 Hz, 2H), 7.82 (d, *J* = 8.7 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 123.5 (q, *J* = 271.4 Hz), 126.3 (q, *J* = 3.7 Hz), 128.2, 128.4, 128.6, 129.7, 134.7 (q, *J* = 32.9 Hz), 141.2, 144.2 (q, *J* = 1.3 Hz); IR (CDCl₃, cm⁻¹) 3063, 2919, 1587, 1490; HRMS m/z 337.0700 (calcd C₁₉H₁₄F₃NO₂S, 337.0697).

N,*N*-**Diphenyl-4**-(**phenylamino**)**benzenesulfonamide** (**52**). The indicated compound was obtained in a 75% yield as a pale yellow solid: mp 206-208 °C; ¹H NMR (acetone-d₆, 300 MHz) δ 7.03-7.17 (m, 3H), 7.25-7.39 (m, 14H), 7.54 (dt, *J* = 9.0, 2.7 Hz, 2H), 8.11 (s, 1H); ¹³C NMR (75 MHz, acetone-d₆) δ 114.2, 120.6, 123.0, 127.3, 128.6, 129.3, 129.5, 129.6, 129.9, 141.3, 142.3, 149.0; IR (CDCl₃, cm⁻¹) 3367, 3055, 3034, 1743, 1591, 1145; HRMS m/z 400.1252 (calcd C₂₄H₂₀N₂O₂S, 400.1245).

N-(3-Methoxyphenyl)-*N*-methyl-4-methylbenzenesulfonamide (54). The indicated compound was obtained in a 91% yield as a colorless oil; ¹H NMR (CDCl₃, 300 MHz) δ 2.41 (s, 3H), 3.14 (s, 3H), 3.76 (s, 3H), 6.61-6.64 (m, 1H), 6.71 (t, *J* = 2.4 Hz, 1H), 6.79-6.82 (m, 1H), 7.18 (t, *J* = 8.4 Hz, 1H), 7.24 (d, *J* = 8.1 Hz, 2H), 7.46 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 21.8, 38.4, 55.6, 112.9, 113.3, 118.6, 128.1, 129.5, 133.7, 143.0, 143.8, 160.0; IR (CDCl₃, cm⁻¹) 3058, 3027, 2932, 1589, 1485; HRMS m/z 291.0932 (calcd C₁₅H₁₆NO₃S, 291.0929).

N-Benzyl-*N*-phenyl-4-methylbenzenesulfonamide (55). The indicated compound was obtained in a 94% yield as a yellow solid: mp 139-140 °C; ¹H NMR (CDCl₃, 400 MHz) δ 2.44 (s, 3H), 4.74 (s, 2H), 6.98-7.01 (m, 2H), 7.18-7.29 (m, 10H), 7.55 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 21.9, 54.9, 127.8, 127.9, 128.0, 128.6, 128.7, 129.1, 129.2, 129.7, 135.7, 136.2, 139.2, 143.8; IR (CDCl₃, cm⁻¹) 3062, 3027, 2918, 1595, 1491; HRMS m/z 337.1140 (calcd C₂₀H₁₉NO₂S, 337.1136).

Methyl 3-iodo-4-(*N*-**phenylmethanesulfonylamino**)**benzoate** (**56**)**.** The indicated compound was obtained in a 98% yield as a pale yellow solid: mp 135-137 °C; ¹H NMR

(CDCl₃, 400 MHz) δ 3.27 (s, 3H), 3.92 (s, 3H), 7.25-7.27 (m, 1H), 7.36 (t, *J* = 7.2 Hz, 2H), 7.46 (d, *J* = 7.6 Hz, 2H), 7.69 (d, *J* = 8.0 Hz, 1H), 8.10 (dd, *J* = 8.0, 1.2 Hz, 1H), 8.58 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 41.7, 52.9, 101.7, 126.0, 127.1, 129.6, 130.7, 131.8, 132.0, 140.0, 146.5, 164.9; IR (CDCl₃, cm⁻¹) 3065, 3026, 2952, 2930, 2849, 2256, 1724, 1351; HRMS m/z 430.9693 (calcd C₁₅H₁₄INO₄S, 430.9688).

N-Phenylsaccharin (57). The indicated compound was obtained in a 72% yield as a white solid: mp 187-189 °C (lit.³³ 189-191 °C); the ¹H and ¹³C NMR spectra match the literature data.³³

N-Phenylphthalimide (59). The indicated compound was obtained in a 60% yield as a white solid: mp 207-209 °C (lit.³⁴ 207.9-209.9 °C); the ¹H and ¹³C NMR spectra match the literature data.³⁵

Ethyl *N*,*N*-**diphenylcarbamate** (**60**). The indicated compound was obtained in a 96% yield as a white solid: mp 69-70 °C (lit.³⁶ 69-70 °C); the ¹H NMR spectrum matches the literature data.³⁶

Ethyl *N*-(4-chloro-2-iodophenyl)-*N*-phenylcarbamate (61). The indicated compound was obtained in a 93% yield as a colorless oil; ¹H NMR (CDCl₃, 300 MHz) δ 1.25 (t, *J* = 7.2 Hz, 3H), 4.21-4.26 (m, 2H), 7.13-7.19 (m, 2H), 7.25-7.35 (m, 5H), 7.90 (d, *J* = 2.4 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 14.8, 62.8, 100.9, 125.2, 125.8, 128.9, 129.8, 130.7, 133.9, 139.5, 141.5, 143.6, 153.9; IR (CDCl₃, cm⁻¹) 3065, 2980, 2932, 2906, 1721, 1493, 1308; HRMS m/z 440.9684 (calcd C₁₅H₁₃ClINO₂, 440.9679).

(4-*tert*-Butylphenyl) phenyl ether (65). The indicated compound was obtained in an 85% yield as a colorless oil; the ¹H and ¹³C NMR spectra match the literature data.³⁷

N-(4-Phenoxyphenyl)acetamide (66). The indicated compound was obtained in a 91% yield as a white solid: mp 130-131°C (lit.³⁸ 128-129 °C); the ¹H and ¹³C NMR spectra match the literature data.³⁹

2,4-Dimethylphenyl 4-iodophenyl ether (72) and 3,5-dimethylphenyl 4-iodophenyl ether (73). The indicated compounds were obtained as a 1:1.5 mixture in a 92% yield as a colorless oil; ¹H NMR (CDCl₃, 300 MHz) δ 2.18 (s, 3H), 2.32 (s, 8H), 2.35 (s, 3H), 6.66-6.69 (m, 5H), 6.76-6.80 (m, 4H), 6.85 (d, *J* = 8.1 Hz, 1H), 7.02 (d, *J* = 8.1 Hz, 1H), 7.09 (s, 1H), 7.55-7.65 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 16.3, 21.1, 21.6, 84.6, 85.9, 117.1, 119.1, 120.6, 121.1, 125.8, 128.1, 130.2, 132.5, 134.5, 138.7, 138.8, 140.0, 151.5, 156.7, 157.9, 158.7.

2-Iodophenyl phenyl ether (74). The indicated compound was obtained in a 90% yield as a pale yellow solid: mp 52-54 °C (lit.⁴⁰ 53-54 °C); the ¹H and ¹³C NMR spectra match the literature data.⁴⁰

2-Naphthyl phenyl ether (77). The indicated compound was obtained in an 84% yield as a pale yellow solid: mp 46-47 °C (lit.⁴¹ 45-46 °C); ¹H NMR (CDCl₃, 300 MHz) δ 7.07 (d, *J* = 7.8 Hz, 2H), 7.14 (t, *J* = 7.5 Hz, 1H), 7.24-7.47 (m, 6H), 7.69 (d, *J* = 7.8 Hz, 1H), 7.80-7.84 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 114.3, 119.4, 120.2, 123.7, 124.9, 126.7, 127.4, 127.9, 130.0, 130.1, 130.4, 134.5, 155.3, 157.4.

Benzyl phenyl ether (78). The indicated compound was obtained in a 25% yield as a colorless oil; the ¹H and ¹³C NMR spectra match the literature data.⁴²

2-Bromobenzyl phenyl ether (79). The indicated compound was obtained in a 36% yield as a pale yellow solid: mp 35-37 °C (lit.⁴³ 34-36 °C); the ¹H and ¹³C NMR spectra match the literature data.⁴⁴

4-Phenoxybenzyl alcohol (80). The indicated compound was obtained in a 36% yield as a white solid: mp 54-55 °C (lit.⁴⁵ 54.5 °C); ¹H NMR (CDCl₃, 300 MHz) δ 1.93 (s, 1H), 4.64 (s, 2H), 7.00 (dd, J = 9.0, 2.1 Hz, 4H), 7.09 (t, J = 7.2 Hz, 1H), 7.30-7.35 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 65.1, 119.1, 119.2, 123.5, 128.9, 130.0, 135.9, 157.0,

157.4; IR (CDCl₃, cm⁻¹) 3385, 063, 3053, 2949, 2887, 1591, 1491; HRMS m/z 200.0840 (calcd C₁₃H₁₂O₂, 200.0836).

Diphenyl sulfide (81). The indicated compound was obtained in a 70% yield as a colorless oil; the ¹H and ¹³C NMR spectra match the literature data.⁴⁶

3-Methoxyphenyl phenyl sulfide (82). The indicated compound was obtained in a 66% yield as a colorless oil; ¹H NMR (CDCl₃, 300 MHz) δ 3.74 (s, 3H), 6.74-6.78 (m, 1H), 6.85-6.92 (m, 2H), 7.17-7.38 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 55.5, 113.0, 116.1, 123.2, 127.5, 129.5, 130.2, 131.7, 135.5, 137.5, 160.3; IR (CDCl₃, cm⁻¹) 3059, 3002, 2957, 2935, 2833, 1588, 1476; HRMS m/z 216.0611 (calcd C₁₃H₁₂OS, 216.0608).

Phenyl 2-methoxybenzoate (87). The indicated compound was obtained in an 84% yield as a pale yellow solid: mp 54-56 °C; ¹H NMR (CDCl₃, 300 MHz) δ 3.92 (s, 3H), 7.01-7.06 (m, 2H), 7.20-7.27 (m, 3H), 7.38-7.56 (m, 3H), 8.00 (d, *J* = 7.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 56.3, 112.5, 120.4, 122.1, 125.9, 129.6, 132.4, 134.5, 151.2, 160.1, 164.6; IR (CDCl₃, cm⁻¹) 3071, 2963, 2941, 2839, 1743, 1487; HRMS m/z 228.0789 (calcd C₁₄H₁₂O₃, 228.0786).

3,4-Dimethylphenyl 4-iodobenzoate (88). The indicated compound was obtained in an 81% yield as a pale yellow solid: mp 79-80 °C; ¹H NMR (CDCl₃, 300 MHz) δ 2.28 (s, 3H), 2.29 (s, 3H), 6.93 (dd, J = 6.1, 2.4 Hz, 1H), 6.99 (d, J = 2.4 Hz, 1H), 7.18 (d, J = 8.1 Hz, 1H), 7.85-7.93 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 19.5, 20.2, 101.7, 118.8, 122.7, 129.5, 130.7, 131.7, 134.6, 138.1, 138.3, 148.9, 165.3; IR (CDCl₃, cm⁻¹) 3085, 2970, 2935, 1728; HRMS m/z 351.9965 (calcd C₁₅H₁₃IO₂, 351.9960).

Phenyl 2-iodo-5-methylbenzoate (90). The indicated compound was obtained in an 89% yield as a yellow oil; ¹H NMR (CDCl₃, 300 MHz) δ 2.37 (s, 3H), 7.01-7.05 (m, 1H), 7.24-7.29 (m, 3H), 7.40-7.45 (m, 2H), 7.83 (d, *J* = 1.8 Hz, 1H), 7.91 (d, *J* = 8.1 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 21.1, 90.7, 121.8, 126.3, 129.7, 132.5, 134.5, 138.5, 141.6,

151.0, 165.3; IR (CDCl₃, cm⁻¹) 3059, 3042, 2952, 2921, 2854, 1742, 1591; HRMS m/z 337.9808 (calcd C₁₄H₁₁IO₂, 337.9803).

Phenyl phenylacetate (92). The indicated compound was obtained in a 45% yield as a white solid: mp 39-40 °C (lit.⁴⁷ 40-41.5 °C); the ¹H NMR spectrum matches the literature data.⁴⁷

Phenyl benzenesulfonate (93). The indicated compound was obtained in a 33 % yield as a colorless oil: ¹³C NMR (75 MHz, CDCl₃) δ 120.7, 122.6, 127.4, 128.7, 129.3, 129.8, 134.4, 149.8. The ¹H NMR spectrum matches the literature data.⁴⁸

References

- (1) (a) Peña, D.; Pérez, D.; Guitián, E.; Castedo, L. J. Am. Chem. Soc. 1999, 121, 5827-5828. (b) Yoshida, H.; Sugiura, S.; Kunai, A. Org. Lett. 2002, 4, 2767-2769.
- (2) Liu, Z.; Larock, R. C. Org. Lett. 2003, 5, 4673-4675.
- (3) Liu, Z.; Larock, R. C. Org. Lett. 2004, 6, 99-102.
- (4) Rahman, M. T.; Roy, A. R.; Hossain, K. M. J. Organomet. Chem. 1977, 127, 105-110.
- (5) Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F. J. Org. Chem. 2002, 67, 5553-5566.
- (6) Yoshida, K.; Fueno, T. J. Org. Chem. 1972, 37, 4145-4147.
- (7) Gajare, A. S.; Toyota, K.; Yoshifuji, M.; Ozawa. F. J. Org. Chem. 2004, 69, 6504-6506.
- (8) Anderson, K. W.; Mendez-Perez, M.; Priego, J.; Buchwald, S. L. J. Org. Chem.
 2003, 68, 9563-9573.
- (9) Kuwano, R.; Utsunomiya, M.; Hartwig, J. F. J. Org. Chem. 2002, 67, 6479-6486.
- (10) Zhang, H.; Cai, Q.; Ma, D. J. Org. Chem. 2005, 70, 5164-5173.
- (11) Kosynkin, D. V.; Tour, J. M. Org. Lett. 2001, 3, 991-992.
- (12) Quach, T. D.; Batey, R. A. Org. Lett. 2003, 5, 4397-4400.
- (13) Desmarets, C.; Schneider, R.; Fort, Y. J. Org. Chem. 2002, 67, 3029-3036.
- (14) Urgaonkar, S.; Verkade, J. G. J. Org. Chem. 2004, 69, 9135-9142.
- (15) Moreno-Mañas, M.; Morral, L.; Pleixats, R. J. Org. Chem. 1998, 63, 6160-6166.
- (16) Chen, C.; Yang, L.-M. Org. Lett. 2005, 7, 2209-2211.
- (17) Kataoka, N.; Quinetta, S.; Stambuli, J. P.; Hartwig, J. F. J. Org. Chem. 2002, 67, 5553-5566.
- (18) Haga, K.; Iwaya, K.; Kaneko, R. Bull. Chem. Soc. Jpn. 1986, 59, 803-807.
- (19) Urgaonkar, S.; Xu, J.-H.; Verkade, J. G. J. Org. Chem. 2003, 68, 8416-8423.
- (20) Sezen, B.; Sames, D. J. Am. Chem. Soc. 2003, 125, 5274-5275.
- (21) Rosevear, J.; Wilshire, J. F. K. Austral. J. Chem. 1984, 37, 2489-2497.
- (22) Oae, S.; Iida, K.; Shinhama, K.; Takata, T. Bull. Chem. Soc. Jpn. 1981, 54, 2374-2378.

- (23) Begtrup, M.; Elguero, J.; Faure, R.; Camps, P. Estopa, C. *Magn. Reson. Chem.* 1988, 26, 134-151.
- (24) Ma, D.; Cai, Q.; Zhang, H. Org. Lett. 2003, 5, 2453-2455.
- (25) Ali, M. H.; Buchwald, S. L. J. Org. Chem. 2001, 66, 2560-2565.
- (26) Suwa, T.; Sugiyama, E.; Shibata, I.; Baba, A. Synthesis 2000, 789-800.
- (27) Bordwell, F.; Hughes, D. L. J. Am. Chem. Soc. 1984, 106, 3234-3240.
- (28) Ju, Y.; Varma, R. Org. Lett. 2005, 7, 2409-2411.
- (29) Desmarets, C.; Schneider, R.; Fort, Y. J. Org. Chem. 2002, 67, 3029-3036.
- (30) Lee, D.-Y.; Hartwig, J. F. Org. Lett. 2005, 7, 1165-1172.
- (31) Beller, M.; Breindl, C.; Riermeier, T. H.; Tillack, A. J. Org. Chem. 2001, 66, 1403-1412.
- (32) Bachmann, S.; Fielenbach, D.; Jorgensen, K. A. Org. Biomol. Chem. 2004, 3044-3049.
- (33) Togo, H.; Hoshina, Y.; Muraki, T.; Nakayama, H.; Yokoyama, M. J. Org. Chem.
 1998, 63, 5193-5120.
- (34) Le, Z.-G.; Chen, Z.-C.; Hu, Y.; Zheng, Q.-G. Synthesis 2004, 995-998.
- (35) Chiang, G. C. H.; Olsson, T. Org. Lett. 2004, 6, 3079-3082.
- (36) Yoshida, Y.; Ishii, S.; Akinori, K.; Yamashita, T.; Yano, M.; Inoue, S. *Bull. Chem. Soc. Jpn.* **1988**, *61*, 2913-2916.
- (37) He, H.; Wu, Y.-J. Tetrahedron Lett. 2003, 44, 3445-3446.
- (38) Szajnman, S. H.; Yan, W.; Bailey, B. N.; Docampo, R.; Elhalem, E.; Rodriguez, J. B. J. Med. Chem. 2000, 43, 1826-1840.
- (39) Dickerson, T. J.; Tremblay, M. R.; Hoffman, T. Z.; Ruiz, D. I.; Janda, K. D. J. *Am. Chem. Soc.* **2003**, *125*, 15395-15401.
- (40) Parisien, M.; Valette, D.; Fagnou, K.; J. Org. Chem. 2005, 70, 7578-7584.
- (41) Barton, D. H. R.; Finet, J. P.; Giannotti, C.; Halley, F. J. Chem. Soc., Perkin I 1987, 241-249.
- (42) Shintou, T.; Mukaiyama, T. J. Am. Chem. Soc. 2004, 126, 7359-7367.
- (43) Huston, R. C.; Neeley, A.; Fayerweather, B. L.; D'Arcy, H. M.; Maxfield, F. H.;Ballard, M. M.; Lewis, W. C. J. Am. Chem. Soc. 1933, 55, 2146-2149.

- (44) Campeau, L.-C.; Parisien, M.; Leblanc, M.; Fagnou, K. J. Am. Chem. Soc. 2004, 126, 9186-9187.
- (45) Haydock, D. B.; Mulholland, T. P. C.; Telford, B.; Thorp, J. M.; Wain, J. S. *Eur. J. Med. Chem.* 1984, *19*, 205-214.
- (46) Taniguchi, N. J. Org. Chem. 2004, 69, 6904-6906.
- (47) Bordwell, F. G.; Fried, H. E. J. Org. Chem. 1991, 56, 4218-4230.
- (48) Choi, J. H.; Lee, B. C.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 1277-1281.

aaliu112/300/12/18/4

alliu187/300/12/07/05

fliuzhj1-064/300/08/19/03

fliuzhj1-065/300/08/19/03

aliu118/300/9/12/4

11-7/300/04/24/03

62S