Chlorination Increases the Persistence of Semiquinone Free Radicals Derived from Polychlorinated Biphenyl Hydroquinones and Quinones

Supporting Information

Yang Song,^{\dagger ,§} Garry R. Buettner,^{§,||} Sean Parkin,[‡] Brett A. Wagner,[§] Larry W. Robertson,^{\dagger ,||}

and Hans-Joachim Lehmler $^{*,\dagger,\parallel}$

[†]The University of Iowa, Department of Occupational and Environmental Health, 100 Oakdale Campus, 124 IREH, Iowa City, IA 52242-5000, USA; [§]The University of Iowa, Free Radical and Radiation Biology Program & ESR Facility, Iowa City, IA 52242-1101, USA; ^{II}The University of Iowa, Interdisciplinary Graduate Program in Human Toxicology, Iowa City, IA 52242-5000, USA; and [‡]University of Kentucky, Department of Chemistry, Lexington, KY 40506-0055, USA

Table of Content

General Experimental Methods		

S4

Synthesis and Characterization

1-Bromo-2-chloro-4,5-dimethoxy-benzene (3)	S4
1-Chloro-2-iodo-4,5-dimethoxy-benzene (4)	S5
2-Chloro-4,5-dimethoxy-biphenyl (7)	S5
2,4'-Dichloro-4,5-dimethoxy-biphenyl (8)	S6
4-Chloro-2,5-dimethoxy-biphenyl (11)	S7
3,6,4'-Trichloro-2,5-dimethoxy-biphenyl (19)	S7
6-Chloro-biphenyl-3,4-diol (9)	S 8
6,4'-Dichloro-biphenyl-3,4-diol (10)	S9
4-Chloro-biphenyl-2,5-diol (13)	S9
3,6,4'-Trichloro-biphenyl-2,5-diol (20)	S10
3,4,6-Trichloro-biphenyl-2,5-diol (25)	S11
2,5-Dichloro-3-(4-chloro-phenyl)-[1,4]benzoquinone (21)	S11
3-Bromo-2,5-dichloro-1,4-dimethoxy-benzene (18)	S12
1,2,4,5-Tetrachloro-3,6-dimethoxy-benzene (23)	S13

Original Spectra and Gas Chromatograms

¹ H and ¹³ C NMR spectra of 1-bromo-2-chloro-4,5-dimethoxy-benzene (3)	S14
¹ H and ¹³ C NMR spectra of 1-chloro-2-iodo-4,5-dimethoxy-benzene (4)	S15
¹ H and ¹³ C NMR spectra of 1-bromo-4-chloro-2,5-dimethoxy-benzene (6)	S16
¹ H and ¹³ C NMR spectra of 2-chloro-4,5-dimethoxy-biphenyl (7)	S17
¹ H and ¹³ C NMR spectra of 2,4'-dichloro-4,5-dimethoxy-biphenyl (8)	S18
¹ H and ¹³ C NMR spectra of 6-chloro-biphenyl-3,4-diol (9)	S19
Gas chromatogram and mass spectrum of 6-chloro-biphenyl-3,4-diol (9)	S20
¹ H and ¹³ C NMR spectra of 6,4'-dichloro-biphenyl-3,4-diol (10)	S21
¹ H and ¹³ C NMR spectra of 4-chloro-2,5-dimethoxy-biphenyl (11)	S22

¹ H and ¹³ C NMR spectra of 4,4'-dichloro-2,5-dimethoxy-biphenyl (12)	S23
¹ H and ¹³ C NMR spectra of 4-chloro-biphenyl-2,5-diol (13)	S24
¹ H and ¹³ C NMR spectra of 4,4'-dichloro-biphenyl-2,5-diol (14)	S25
¹ H and ¹³ C NMR spectra of 2-chloro-5-(4-chloro-phenyl)-[1,4]benzoquinone (15)	S26
¹ H and ¹³ C NMR spectra of 2-bromo-3,6-dichloro-4-methoxy-phenol (17)	S27
¹ H and ¹³ C NMR spectra of 3-bromo-2,5-dichloro-1,4-dimethoxy-benzene (18)	S28
¹ H and ¹³ C NMR spectra of 3,6,4'-trichloro-2,5-dimethoxy-biphenyl (19)	S29
¹ H and ¹³ C NMR spectra of 3,6,4'-trichloro-biphenyl-2,5-diol (20)	S30
¹ H and ¹³ C NMR spectra of 2,5-dichloro-3-(4-chloro-phenyl)-[1,4]benzoquinone (21)	S31
¹ H and ¹³ C NMR spectra of 1,2,4,5-tetrachloro-3,6-dimethoxy-benzene (23)	S32
¹ H and ¹³ C NMR spectra of 3,4,6-trichloro-2,5-dimethoxy-biphenyl (24)	S33
Gas chromatogram and mass spectrum of 3,4,6-trichloro-2,5-dimethoxy-biphenyl (24)	S34
¹ H and ¹³ C NMR spectra of 3,4,6-trichloro-biphenyl-2,5-diol (25)	S35
¹ H and ¹³ C NMR spectra of 2,3,5-trichloro-6-phenyl-[1,4]benzoquinone (26)	S36
Gas chromatogram and mass spectrum of 2,3,5-trichloro-6-phenyl-	
[1,4]benzoquinone (26)	S37
Table S1. Crystal data and structure refinement for compound 13	S38
Table S2. Crystal data and structure refinement for compound 17	S39
Table S3. Crystal data and structure refinement for compound 20	S41
Figure S1. Molecular structure derived from the crystal structure of 17.	S40

References

S42

General Experimental Methods

All chemicals were purchased from commercial suppliers and used without further purification. Column chromatography was carried out on silica gel (100-200 mesh, FisherChemical). ¹H NMR spectra were recorded at 400 MHz at ambient temperature with CDCl₃ as solvents. ¹³C NMR spectra were recorded at 100 MHz at ambient temperature with CDCl₃ as solvents. Chemical shifts are reported in parts per million relative to CDCl₃ (¹H, δ 7.27; ¹³C, δ 77.23). 4'-Chloro-biphenyl-2,5-diol (**28**), 2-(4-chloro-phenyl)-[1,4]benzoquinone (**29**) and 4'-chloro-biphenyl-3,4-diol (**30**) were synthesized as published before.^{1,2} All dihydroxylated PCBs were silylated with BSTFA containing 1% TMCS for GC-MS analysis.³

Synthesis and Characterization

1-Bromo-2-chloro-4,5-dimethoxy-benzene (3): Hydrogen peroxide (30%, 30 mL, 290 mmol) was added over 1 h to a rapidly stirred solution of $Br - OCH_3$ 1-bromo-3,4-dimethoxy-benzene **1** (15.2 g, 70 mmol) in CHCl₃ (50 mL) and

concentrated HCl (47 mL, 560 mmol). After 16 h at room temperature, the mixture was extracted with CHCl₃ (3 × 60 mL). The organic extracts were combined, washed with 5% NaHSO₃ (50 mL), dried over Na₂SO₄, filtered, and the solvent was evaporated under reduced pressure. The product was purified by column chromatography on silica gel with *n*-hexanes : CHCl₃ = 1 : 1 (v/v), yield 12.5 g (71%) of **3** as white crystals. mp 75-77 °C (Lit.: 110-112 °C); ¹H NMR (400 MHz, CDCl₃): δ 7.01(s, 1H), 6.90(s, 1H), 3.83(s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 148.9, 148.4, 125.6, 115.8, 112.9, 112.3, 56.4, 56.3; MS *m/z* (relative intensity): 250(70, M⁺⁺), 235(34), 128(70); Anal. Calcd for C₈H₈BrClO₂: C, 38.18; H, 3.21. Found: C, 38.31; H, 3.10.

1-Chloro-2-iodo-4,5-dimethoxy-benzene (4): Hydrogen peroxide (30%, 15 mL, 145 mmol) was added over 1 h to a rapidly stirred solution of **CH**₃ 1-iodo-3,4-dimethoxy-benzen e **2** (8.8 g, 35 mmol) in CHCl₃ (30 mL) and concentrated HCl (24 mL, 280 mmol). After 16 h at room temperature, the mixture was extracted with CHCl₃ (3×30 mL). The organic extracts were combined, washed with 5% NaHSO₃ (25 mL), dried over Na₂SO₄, filtered, and the solvent was evaporated under reduced pressure. The product was purified by column chromatography on silica gel with *n*-hexanes : CHCl₃ = 1 : 1 (v/v), yield 2.34 g (24%) of **4** as white solid. mp 61-62°C (Lit.: 70-73 °C⁴); ¹H NMR (400 MHz, CDCl₃): δ 7.20(s, 1H), 6.94(s, 1H), 3.85(s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 150.0, 148.3, 130.2, 121.8, 112.3, 85.8, 56.5, 56.3; MS *m/z*(relative intensity): 298(100, M^{*+}), 283(36), 335(13), 128(44), 113(31); Anal. Calcd for C₈H₈ClIO₂: C, 32.17; H, 2.70. Found: C, 32.36; H, 2.65.

2-Chloro-4,5-dimethoxy-biphenyl (7): Sodium carbonate (10 mL, 2 M aq.) was added to a solution of 1-bromo-2-chloro-4,5-dimethoxy-benzene(3) (2.5 g, 10.0 mmol) and Pd(PPh₃)₄ (0.36 g, 3% molar ratio) in toluene(40 mL).

A solution of a phenylboronic acid (1.8 g, 15.0 mmol) in ethanol : toluene : $H_2O = 8 : 1 : 1$ (20 mL total) was added slowly to the mixture under a nitrogen atmosphere. The reaction mixture was maintained at 80 °C for 12 h. Hydrogen peroxide (30%, 2.0 mL) was added slowly to the warm reaction mixture to destroy unreacted boronic acid. The mixture was stirred at room temperature for an additional 4 h and diluted with diethyl ether (60 mL). The reaction mixture was extracted once with NaOH (20 mL, 2 M aq.) and three times with water (20 mL). The organic phase was dried over MgSO₄ and the solvents were removed under reduced pressure. Column chromatography over silica gel with *n*-hexanes : CHCl₃

= 3 : 1 (v/v) as eluent, then recrystallized with *n*-hexanes : CHCl₃ = 3 : 1 (v/v), yield 1.65 g (66%) of 7 as white crystals. mp 111-113 °C (Lit.: 108 °C⁵); ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.36(m, 5H), 6.98(s, 1H), 6.86(s, 1H), 3.93(s, 3H), 3.89(s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 148.8, 147.8, 139.6, 132.6, 129.7, 128.2, 127.6, 123.6, 113.9, 112.9, 56.4, 56.3; MS *m/z*(relative intensity): 248(100, M⁺⁺), 233(18), 205(25), 170(21), 155(18), 127(18); Anal. Calcd for C₁₄H₁₃ClO₂: C, 67.59; H, 5.27. Found: C, 67.57; H, 5.24.

Pd(PPh₃)₄ (0.61 g, 3% molar ratio) in toluene(60 mL). A solution of a phenylboronic acid (3.0 g, 25.5 mmol) in ethanol : toluene : $H_2O = 8 : 1 : 1$ (30 mL total) was added slowly to the mixture under a nitrogen atmosphere. The reaction mixture was maintained at 80 °C for 12 h. Hydrogen peroxide (30%, 2.0 mL) was added slowly to the warm reaction mixture to destroy unreacted boronic acid. The mixture was stirred at room temperature for an additional 4 h and diluted with diethyl ether (100 mL). The reaction mixture was extracted once with NaOH (35 mL, 2 M aq.) and three times with water (35 mL). The organic phase was dried over MgSO₄ and the solvents were removed under reduced pressure. Column chromatography over silica gel with *n*-hexanes : CHCl₃ = 3 : 1 (v/v) as eluent, then recrystallized with *n*-hexanes : CHCl₃ = 3 : 1 (v/v), yield 4.6 g (98%) of **8** as white solid. mp 67-69 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.42-7.36(m, 4H), 6.96(s, 1H), 6.80(s, 1H), 3.92(s, 3H), 3.88(s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 149.2, 148.1, 138.0, 133.7, 131.5, 131.1, 128.5, 123.7, 113.9, 113.2, 56.5,

56.4; MS *m/z*(relative intensity): 282(100, M^{•+}), 267(25), 239(25), 204(30), 189(21), 168(18), 126(21); Anal. Calcd for C₁₄H₁₂Cl₂O₂: C, 59.36; H, 4.27. Found: C, 59.51; H, 4.31.

4-Chloro-2,5-dimethoxy-biphenyl (11): Sodium carbonate (10 mL, 2 M aq.) OCH₃ was added to a solution of 1-bromo-4-chloro-2,5-dimethoxy-benzene(3) (2.5 g, CI H₃CO 10.0 mmol) and Pd(PPh₃)₄ (0.36 g, 3% molar ratio) in toluene(40 mL). A solution of a phenylboronic acid (1.8 g, 15.0 mmol) in ethanol : toluene : $H_2O = 8 : 1 : 1$ (20 mL total) was added slowly to the mixture under a nitrogen atmosphere. The reaction mixture was maintained at 80 °C for 12 h. Hydrogen peroxide (30%, 2.0 mL) was added slowly to the warm reaction mixture to destroy unreacted boronic acid. The mixture was stirred at room temperature for an additional 4 h and diluted with diethyl ether (60 mL). The reaction mixture was extracted once with NaOH (20 mL, 2 M aq.) and three times with water (20 mL). The organic phase was dried over MgSO₄ and the solvents were removed under reduced pressure. Column chromatography over silica gel with *n*-hexanes : CHCl₃ = 3 : 1 (v/v) as eluent, then recrystallized with *n*-hexanes : CHCl₃ = 3 : 1 (v/v), yield 1.8 g (71%) of 11 as white solid. mp 83-84 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.56-7.36(m, 5H), 7.06(s, 1H), 6.96(s, 1H), 3.92(s, 3H), 3.78(s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 150.8, 149.5, 137.9, 130.2, 129.6, 128.4, 127.6, 121.8, 115.5, 114.4, 57.1, 56.7; MS m/z (relative intensity): 248(100, M⁺⁺), 233(47), 198(80), 183(23), 155(16), 127(20); Anal. Calcd for C₁₄H₁₃ClO₂: C, 67.59; H, 5.27. Found: C, 67.30; H, 5.23.

Pd(PPh₃)₄ (0.50 g, 3% molar ratio) in toluene(40 mL). A solution of a 4-chloro-phenylboronic acid (2.5 g, 21.0 mmol) in ethanol : toluene : H₂O = 8 : 1 : 1 (30 mL total) was added slowly to the mixture under a nitrogen atmosphere. The reaction mixture was maintained at 80 °C for 12 h. Hydrogen peroxide (30%, 2.0 mL) was added slowly to the warm reaction mixture to destroy unreacted boronic acid. The mixture was stirred at room temperature for an additional 4 h and diluted with diethyl ether (90 mL). The reaction mixture was extracted once with NaOH (30 mL, 2 M aq.) and three times with water (30 mL). The organic phase was dried over MgSO₄ and the solvents were removed under reduced pressure. Column chromatography over silica gel with *n*-hexanes : CHCl₃ = 3 : 1 (v/v) as eluent, then recrystallized with *n*-hexanes : CHCl₃ = 3 : 1 (v/v), yield 3.2 g (48%) of **19** as white solid. mp 85-87 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.44-7.41(m, AA'XX' system, 2H), 7.28-7.25(m, AA'XX' system, 2H), 6.99(s, 1H), 3.91(s, 3H, 3.41(s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 152.2, 148.2, 136.4, 134.3, 133.3, 131.6, 128.6, 126.9, 112.9, 61.0, 56.9; MS *m/z*(relative intensity): 316(62, M⁺⁺), 266(100), 207(50), 160(30), 84(32); Anal. Calcd for C₁₄H₁₁Cl₃O₂: C, 52.92; H, 3.49. Found: C, 53.16; H, 3.44.

6-Chloro-biphenyl-3,4-diol (9):^{6,7} Boron tribromide (7.0 mL, 1M in OH *n*-hexanes. 2.2 equiv) ОН added solution of was to a the 2-chloro-4,5-dimethoxy-biphenyl 7 (0.85 g, 3.4 mmol) in anhydrous dichloromethane (20 mL) under a nitrogen atmosphere. The reaction mixture was stirred at room temperature for 14 hours, cooled with ice/salt and hydrolyzed with an equal volume of ice-cold water. The aqueous phase was extracted with dichloromethane (2×20 mL). The combined organic layers were washed with water (3 \times 10 mL), dried over MgSO₄ and the solvent was removed under reduced pressure. The product was purified by column chromatography on silica gel with *n*-hexanes : ethyl acetate = 1 : 1 (v/v) as eluent, followed by recrystallization using *n*-hexanes : CHCl₃ = 3 : 1 (v/v), yield 0.33 g (45%) of crude **9** as colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.35(m, 5H), 7.02(s, 1H), 6.88(s, 1H), 5.49(s, 1H), 5.34(s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 143.6, 142.4, 139.2, 133.4, 129.7, 128.2, 127.6, 123.8, 117.9, 116.9; MS *m/z*(relative intensity): 364(100, [M+TMS₂]^{•+}), 73(80, [Si(CH₃)₃]⁺); HRMS(EI) Calcd for C₁₂H₉ClO₂ *m/z*([M]^{•+}) 220.0291. Found 220.0284.

dichloromethane (50 mL) under a nitrogen atmosphere. The reaction mixture was stirred at room temperature for 14 hours, cooled with ice/salt and hydrolyzed with an equal volume of ice-cold water. The aqueous phase was extracted with dichloromethane (2 × 50 mL). The combined organic layers were washed with water (3 × 25 mL), dried over MgSO₄ and the solvent was removed under reduced pressure. The product was purified by column chromatography on silica gel with *n*-hexanes : ethyl acetate = 1 : 1 (v/v) as eluent, followed by recrystallization using *n*-hexanes : CHCl₃ = 3 : 1 (v/v), yield 1.2 g (53%) of **10** as white solid. mp 89-90 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.32(m, 4H), 7.01(s, 1H), 6.84(s, 1H), 5.31(s, 1H), 5.17(s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 143.8, 142.5, 137.6, 133.7, 132.3, 131.0, 128.5, 123.9, 117.8, 117.1; MS *m/z*(relative intensity): 398(100, [M+TMS₂]^{*+}), 276(12), 73(84, [Si(CH₃)₃]⁺); Anal. Calcd for C₁₂H₈Cl₂O₂: C, 56.48; H, 3.16. Found: C, 56.39; H, 3.28.

4-Chloro-biphenyl-2,5-diol (13): Boron tribromide (2.5 mL, 1M in *n*-hexanes,
2.2 equiv) was added to a solution of the 4-chloro-2,5-dimethoxy-biphenyl 11

(0.3 g, 1.2 mmol) in anhydrous dichloromethane (10 mL) under a nitrogen atmosphere. The reaction mixture was stirred at room temperature for 14 hours, cooled with ice/salt and hydrolyzed with an equal volume of ice-cold water. The aqueous phase was extracted with dichloromethane (2×10 mL). The combined organic layers were washed with water $(3 \times 5 \text{ mL})$, dried over MgSO₄ and the solvent was removed under reduced pressure. The product was purified by column chromatography on silica gel with *n*-hexanes : ethyl acetate = 1 : 1 (v/v) as eluent, followed by recrystallization using *n*-hexanes : $CHCl_3 = 3 : 1$ (v/v), yield 0.18 g (67%) of 13 as white crystals. mp 96-97 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.52-7.40(m, 5H), 7.00(s, 1H), 6.94(s, 1H), 5.19(s, 1H), 4.93(s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 146.5, 145.6, 136.2, 129.6, 129.1, 128.6, 128.5, 119.6, 117.2, 116.3; MS m/z(relative intensity): $364(100, [M+TMS_2]^{\bullet+})$, $349(13), 314(34), 73(35, [Si(CH_3)_3]^+)$; Anal. Calcd for C₁₂H₉ClO₂: C, 65.32; H, 4.11. Found: C, 65.35; H, 4.18.

3,6,4'-Trichloro-biphenyl-2,5-diol (20): Boron tribromide (8.0 mL, 1M in CI *n*-hexanes, 2.2 equiv) was added to а solution of the CI-HÓ 3,6,4'-trichloro-2,5-dimethoxy-biphenyl 19 (1.15 g, 3.6 mmol) in anhydrous

dichloromethane (20 mL) under a nitrogen atmosphere. The reaction mixture was stirred at room temperature for 14 hours, cooled with ice/salt and hydrolyzed with an equal volume of ice-cold water. The aqueous phase was extracted with dichloromethane (2×20 mL). The combined organic layers were washed with water (3 \times 10 mL), dried over MgSO₄ and the solvent was removed under reduced pressure. The product was purified by column chromatography on silica gel with *n*-hexanes : ethyl acetate = 1 : 1 (v/v) as eluent, followed by recrystallization using *n*-hexanes : CHCl₃ = 3 : 1 (v/v), yield 0.81 g (77%) of **20** as white solid. mp 142-143 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.48-7.45(m,

AA'XX' system, 2H), 7.28-7.25(m, AA'XX' system, 2H), 7.10(s, 1H), 5.34(s, 1H), 5.13(s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 145.7, 143.5, 134.9, 132.4, 131.6, 129.1, 127.3, 119.8, 119.0, 115.7; MS *m/z*(relative intensity): 432(81, [M+TMS₂]^{•+}), 417(18), 382(100), 93(43), 73(100, [Si(CH₃)₃]⁺); Anal. Calcd for C₁₂H₇Cl₃O₂: C, 49.76; H, 2.44. Found: C, 49.65; H, 2.37.

3,4,6-Trichloro-biphenyl-2,5-diol (25): Boron tribromide (2.5 mL, 1M in

n-hexanes, 2.2 equiv) was added to a solution of the 3,4,6-trichloro-2,5-dimethoxy-biphenyl **24** (0.35 g, 1.1 mmol) in anhydrous **HO CI**

dichloromethane (10 mL) under a nitrogen atmosphere. The reaction mixture was stirred at room temperature for 14 hours, cooled with ice/salt and hydrolyzed with an equal volume of ice-cold water. The aqueous phase was extracted with dichloromethane (2 × 10 mL). The combined organic layers were washed with water (3 × 5 mL), dried over MgSO₄ and the solvent was removed under reduced pressure. The product was purified by column chromatography on silica gel with *n*-hexanes : ethyl acetate = 1 : 1 (v/v) as eluent, followed by recrystallization using *n*-hexanes : CHCl₃ = 3 : 1 (v/v), yield 0.20 g (63%) of **25** as white solid. mp 124-125 °C (Lit.: 136-138 °C⁸); ¹H NMR (400 MHz, CDCl₃): δ 7.55-7.46(m, AA'XX' system, 3H), 7.34-7.31(m, AA'XX' system, 2H), 5.69(s, 1H), 5.22(s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 144.1, 143.1, 133.3, 130.1, 129.16, 129.14, 127.2, 119.5, 119.3, 118.8; MS *m/z*(relative intensity): 432(82, [M+TMS₂]^{•+}), 417(20), 382(63), 309(21), 93(43), 73(90, [Si(CH₃)₃]⁺); Anal. Calcd for C₁₂H₇Cl₃O₂: C, 49.76; H, 2.44. Found: C, 49.87; H, 2.42.

2,5-Dichloro-3-(4-chloro-phenyl)-[1,4]benzoquinone (21):⁹ 3,6,4'trichloro-2,5-dimethoxy-biphenyl 19 (0.80 g, 2.5 mmol) was dissolved in CI acetonitrile (15 mL) at 50 °C, a solution of cerium ammonium nitrate (5.8 g, 10.0 mmol) in water (15 mL) was added, and the reaction mixture was stirred at room temperature for 3 h. The solution was extracted with chloroform (2 × 30 mL) and washed with water (2 × 75 mL). The combined organic phase was and dried over MgSO₄ and the product was purified by column chromatography on silica gel with CHCl₃ : *n*-hexanes = 2 : 1 (v/v) as eluent, yield 0.70 g (97%) of **21** as yellow solid. mp 143-144 °C (Lit.: 143-144 °C¹⁰ and 144-145 °C¹¹); ¹H NMR (400 MHz, CDCl₃): δ 7.49-7.46(m, AA'XX' system, 2H), 7.27-7.24(m, AA'XX' system, 2H), 7.25(s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 177.5, 177.0, 144.8, 142.9, 141.5, 136.5, 133.3, 131.4, 129.1, 129.0; MS *m/z*(relative intensity): 288(30, [M+2H]^{*+}), 251(100); Anal. Calcd for C₁₂H₅Cl₃O₂: C, 50.10; H, 1.75. Found: C, 50.24; H, 1.65.

3-Bromo-2,5-dichloro-1,4-dimethoxy-benzene (18):⁷ 2-Bromo-3,6-dichloro-4-methoxy-phenol 17 (2.0 g, 7.35 mmol) and dimethyl sulfate (0.94 mL, 10 mmol) Br OCH_3 were added slowly to an aqueous solution of NaOH (0.4 g, 10 mmol). The reaction H_3CO

mixture was heated under reflux for 30 min to destroy excess dimethyl sulfate, allowed to cool to ambient temperature and extracted with diethyl ether (3 × 20 mL). The combined organic layers were dried over sodium sulfate and the solvent was removed under reduced pressure. Recrystallization from *n*-hexanes yielded 1.8 g (85%) of **18** as white solid. mp 76-77 °C; ¹H NMR (400 MHz, CDCl₃): δ 6.95(s, 1H), 3.89(s, 3H), 3.86(s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 152.8, 148.2, 127.2, 123.1, 121.2, 112.4, 60.9, 57.1; MS *m/z*(relative intensity): 284(57, M^{•+}), 269(64); Anal. Calcd for C₈H₇BrCl₂O₂: C, 33.58; H, 2.47. Found: C, 33.77; H, 2.36.

1,2,4,5-Tetrachloro-3,6-dimethoxy-benzene (23): 2,3,5,6-tetrachlorobenzene-1,4-diol 22 (12.4 g, 50.0 mmol) and dimethyl sulfate (10.3 mL, 110 mmol) $CI \rightarrow CI$ were added slowly to an aqueous solution of NaOH (4.4 g, 110 mmol). The reaction

mixture was heated under reflux for 30 min to destroy excess dimethyl sulfate, allowed to cool to ambient temperature and extracted with diethyl ether (3 × 200 mL). The combined organic layers were dried over sodium sulfate and the solvent was removed under reduced pressure. Recrystallization from *n*-hexanes yielded 7.5 g (57%) of **23** as white needles. mp 154-157 °C (Lit.: 98-99 °C¹² and 162-164 °C¹³); ¹H NMR (400 MHz, CDCl₃): δ 3.90(s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 150.7, 127.8, 61.0; MS *m/z*(relative intensity):¹⁴ 274(46, M^{•+}), 259(86, M-CH₃), 209(41), 181(18), 87(45); Anal. Calcd for C₈H₆Cl₄O₂: C, 34.80; H, 2.19. Found: C, 34.90; H, 1.97.

Gas chromatogram and mass spectrum of 6-chloro-biphenyl-3,4-diol (9)

2,5-Dichloro-3-(4-chloro-phenyl)-[1,4]benzoquinone (21)

3,4,6-Trichloro-2,5-dimethoxy-biphenyl (24), crude (contains 12.5% of 2,3,6-trichloro-1,4-dimethoxy-benzene)

Gas chromatogram and mass spectrum of 3,4,6-trichloro-2,5-dimethoxy-biphenyl (24) (contains 12.5% of 2,3,6-trichloro-1,4-dimethoxy-benzene)

2,3,5-Trichloro-6-phenyl-[1,4]benzoquinone (26)

Gas chromatogram and mass spectrum of 2,3,5-trichloro-6-phenyl-[1,4]benzoquinone (26)

Table S1. Crystal data and structure refinement for compound 13

Crystal data

$C_{12}H_9ClO_2$	Z = 4
$M_r = 220.64$	$D_x = 1.486 \text{ Mg m}^{-3}$
Monoclinic, P 21/n	Mo $K\alpha$ radiation
a = 7.4814(2) Å	Cell parameters from 2374 reflections
b = 11.3273(3) Å	$\theta = 1.0-27.5^{\circ}$
c = 11.7221(3) Å	$\mu = 0.36 \text{ mm}^{-1}$
$\beta = 97.00^{\circ}$	T = 90.0(2) K
$V = 985.97(4) \text{ Å}^3$	Block, colourless

Data collection

Nonius KappaCCD diffractometer	1800 reflections with $I > 2\sigma(I)$
$ω$ scans at fixed $\chi = 55^{\circ}$	$R_{\rm int} = 0.024$
Absorption correction: multi-scan (based	$\theta_{\text{max}} = 27.5^{\circ}$
on symmetry-related measurements)	
$T_{\min} = 0.925, T_{\max} = -0.948$	$h = -9 \rightarrow 9$
4332 measured reflections	$k = -14 \rightarrow 14$
2257 independent reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	138 parameters
	H atoms constrained to parent site
$wR(F^2) = 0.097$	$\Delta \rho_{max} = 0.29 \text{ e } \text{\AA}^{-1}$
S = 1.055	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-1}$
2257 reflections	Extinction correction: none

Table S2. Crystal data and structure refinement for compound 17

Crystal data

C ₇ H ₅ BrCl ₂ O ₂	Z = 4
$M_r = 271.92$	$D_x = 2.081 \text{ Mg m}^{-3}$
triclinic, $P \overline{1}$	Mo $K\alpha$ radiation
a = 8.10327(10) Å	Cell parameters from 14313 reflections
b = 9.2723(2) Å	$\theta = 1.00-27.48^{\circ}$
c = 12.0905(2) Å	$\mu = 5.303 \text{ mm}^{-1}$
$\alpha = 85.87^{\circ}$	T = 90.0(2) K
$\beta = 75.37^{\circ}$	Slab, colourless
$\gamma = 81.08^{\circ}$	
$V = 867.85(3) \text{ Å}^3$	

Data collection

Nonius KappaCCD diffractometer	3440 reflections with $I > 2\sigma(I)$
$ω$ scans at fixed $\chi = 55^{\circ}$	$R_{\rm int} = 0.0393$
Absorption correction: multi-scan (based on	$\theta_{\text{max}} = 27.5^{\circ}$
symmetry-related measurements)	
$T_{\min} = 0.16, \ T_{\max} = 0.588$	$h = -10 \rightarrow 10$
19069 measured reflections	$k = -12 \rightarrow 12$
3978 independent reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	222 parameters
	H atoms constrained to parent site
$wR(F^2) = 0.052$	$\Delta \rho_{\rm max} = 0.57 \ {\rm e} \ {\rm \AA}^{-1}$
S = 1.045	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-1}$
3978 reflections	Extinction correction: none

Figure S1. Molecular structure derived from the crystal structure of 17.

Table S3. Crystal data and structure refinement for compound 20

Crystal data

$C_{12}H_7Cl_3O_2$	Z = 4
$M_r = 289.53$	$D_x = 1.676 \text{ Mg m}^{-3}$
monoclinic, P 21/c	Cu <i>K</i> α radiation
a = 9.2876(4) Å	Cell parameters from 15828 reflections
b = 9.0426(4) Å	$\theta = 4.82-69.28^{\circ}$
c = 13.8328(7) Å	$\mu = 7.113 \text{ mm}^{-1}$
$\beta = 98.89^{\circ}$	T = 90.0(2) K
$V = 1147.76(9) \text{ Å}^3$	Lath, colourless

Data collection

Nonius KappaCCD diffractometer	2022 reflections with $I > 2\sigma(I)$
ϕ and ω scans	$R_{\rm int} = 0.0432$
Absorption correction: multi-scan (based on	$n\theta_{max} = 69.3^{\circ}$
symmetry-related measurements)	
$T_{\min} = 0.553, \ T_{\max} = 0.871$	$h = -11 \rightarrow 11$
15828 measured reflections	$k = -10 \rightarrow 10$
2126 independent reflections	$l = -16 \rightarrow 13$
2126 independent reflections	$l = -16 \rightarrow 13$

Refinement

Refinement on F^2	156 parameters
	H atoms constrained to parent site
$wR(F^2) = 0.070$	$\Delta \rho_{max} = 0.28 \text{ e } \text{\AA}^{-1}$
S = 1.050	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-1}$
2126 reflections	Extinction correction: none

References

- McLean, M. R.; Bauer, U.; Amaro, A. R.; Robertson, L. W. Chem. Res. Toxicol. 1996, 9, 158-164.
- (2) Amaro, A. R.; Oakley, G. G.; Bauer, U.; Spielmann, H. P.; Robertson, L. W. Chem. Res. Toxicol.
 1996, 9, 623-629.
- (3) Bauer, U.; Amaro, A. R.; Robertson, L. W. Chem. Res. Toxicol. 1995, 8, 92-95.
- (4) Homer, L.; Weber, K. H. *Chemische Berichte* **1963**, *96*, 1568-1578.
- (5) Blatchly, J. M.; McOmie, J. F. W.; Watts, M. L. f. Chem. Soc. 1962, 5085-5090.
- (6) Kania-Korwel, I.; Parkin, S.; Robertson, L. W.; Lehmler, H. J. Chemosphere 2004, 56, 735-744.
- (7) Lehmler, H.-J.; Robertson, L. W. *Chemosphere* **2001**, *45*, 1119-1127.
- (8) Wilson, J. G. Aust. J. Chem. 1972, 25, 2383-2391.
- (9) Lopez-Alvarado, P.; Avendano, C.; Menendez, J. C. *Synthetic Communications* **2002**, *32*, 3233-3239.
- (10) Cain, B. F. J. Chem. Soc. C: Organic 1966, 1041-1045.
- (11) Brassard, P.; L'Ecuyer, P. Can. J. Chem. 1958, 36, 814-819.
- (12) Dunn, J. A.; Pezacki, J. P.; McGlinchey, M. J.; Warkentin, J. J. Org. Chem. 1999, 64, 4344-4352.
- (13) Ramirez, F.; Dershowitz, S. J. Am. Chem. Soc. 1959, 81, 587-590.
- (14) Reddy, G. V. B.; Gold, M. H. *Microbiology* **2000**, *146*, 405-413.