Supporting Information

López et al. 10.1073/pnas.0810940106

DNAS

S A No

- Ivey DM, et al. (1993) Cloning and characterization of a putative Ca2+/H+ antiporter gene from Escherichia coli upon functional complementation of Na+/H+ antiporterdeficient strains by the overexpressed gene. J Biol Chem 268:11296–11303.
- Reuber TL, Ausubel FM (1996) Isolation of Arabidopsis genes that differentiate between resistance responses mediated by the RPS2 and RPM1 disease resistance genes. *Plant Cell* 8:241–249.
- Holtmann G, Bakker EP, Uozumi N, Bremer E (2003) Isolation of Arabidopsis genes that differentiate between resistance responses mediated by the RPS2 and RPM1 disease resistance genes. J Bacteriol 185:1289–1298.
- Endo T, Uratani B, Freese E (1983) Purine salvage pathways of Bacillus subtilis and effect of guanine on growth of GMP reductase mutants. J Bacteriol 155:169– 179.

Fig. S1. Membrane disruption is not the mechanism associated to surfactin and nystatin in biofilm formation. Pellicle formation assays were performed to test biofilm formation effects by the addition of detergents. Detergents listed were tested in different concentrations to determine whether they induced pellicle formation. No pellicle formation ability was associated with any of them. Cell lysis was observed at concentrations above 50 μ M.

SAND SAL

Fig. S2. Western immunoblot to confirm the expression of the KinC variants in *B. subtilis*. All constructs that contained a fused YFP could be detected with anti-YFP antibodies. Interestingly, the $kinC^{\Delta TMR}$ allele yields less protein, which might explain the reduced complementation seen in Fig. 3C. These results thus strongly argue that the PAS-PAC domain of KinC is responsible for sensing potassium leakage.

DN AS

DN AS

Fig. S3. (*A*) The *kinC* genetic locus. The 3 genes downstream of *kinC* are shown. The predicted proteins encoded by these 3 genes display sequence similarity to *ykqA*–AIG2 and ChaC family of proteins that bind small ligands. Both families have unknown function, but they might be related to the transport of cations (1, 2). *ktrC*, potassium channel regulator (3); adeC, adenine deaminase related to purine salvage (4). (*B*) Deletion of *ktrC* enhances biofilm formation possibly by affecting potassium reuptake. Wild type and $\Delta ktrC$ were grown in MSgg medium with different concentrations of potassium. In the absence of potassium, no growth was detected as expected because potassium is essential. At 25 mM potassium the $\Delta ktrC$ mutant forms a much more robust biofilm than the wild type. However, for both wild-type and mutant strains, biofilm formation is still suppressed by high concentrations of potassium.

Table S1. Small molecules/natural products tested

SANG SANG

Molecule	Function	Structure	Pellicle formation
Nystatin Cation-selective pore former		Macrolide polyene	Yes
Amphotericin	Cation-selective pore former	Macrolide polyene	Yes
Gramicidin	Cation-selective pore former	Peptide	Yes
Surfactin	Cation-selective pore former	Lipopeptide	Yes
Valinomycin	Potassium-selective ionophore	Peptide	Yes
Filipin	Cell wall disaggregator	Macrolide polyene	No
Iturin	Anion-selective pore former	Lipopeptide	No
Nisin	Nonselective pore former	Peptide	No
Polymyxin	Cell wall disaggregator	Lipopeptide	No
Bacitracin	Cell wall synthesis inhibitor	Peptide	No
Vancomycin	Cell wall synthesis inhibitor	Glycopeptide	No
Aculeacin	Cell wall synthesis inhibitor	Lipopeptide	No
Microcystin	Protein phosphatase inhibitor	Peptide	No
Syringomycin	Nonselective pore former	Lipopeptide	No
Nonactin	Ammonium-selective pore former	Peptide	No
Novobiocin	DNA gyrase inhibitor	Glycoside	No
Stigmatellin	Electron transport inhibitor	Quinone polyene	No
Antimycin	Electron transport inhibitor	Lipopeptide	No

Table shows a battery of small molecules tested for their ability to induce the formation of pellicle in LB cultures of *B. subtilis*. The molecules were selected according to their functionality or their similarly to surfactin or nystatin. Purified molecules and information about their mechanism of action were obtained from Sigma-Aldrich. Concentrations used covered a range between 0 and 100 μ M. Growth inhibition and cell lysis were not observed at any concentration tested with the following natural products: nystatin, amphotericine, surfactin, iturin, aculeacin, and microcystin. For valinomycin and gramicidin, pellicle formation was observed at 3 μ M, 10-fold less than the concentration needed for growth inhibition.

Table S2. Strain list

PNAS PNAS

Strain	Genotype	Source
DL1	NCIB3610 wild type	1
DL5	$\Delta sin R$::spc	2
DL107	ΔsrfAA::mls	1
SSB602	ΔsinR::spc ΔsrfAA::mls	This study
DL227	$\Delta kinC::mls$	3
DL153	∆kinD::tet	This study
DL99	$\Delta kinC::mls \Delta kinD::tet$	This study
DL340	Wild type amyE::kinC	This study
DL348	Wild type <i>amyE::kinC</i> ^{∆™R}	This study
DL356	Wild type <i>amyE</i> :: <i>kinC</i> △PAS	This study
DL344	∆kinC::mls amyE::kinC	This study
DL352	∆kinC::mls amyE::kinC ^{∆™R}	This study
DL360	$\Delta kinC::mls amyE::kinC^{\Delta PAS}$	This study
DL368	$\Delta kinD::tet amyE::kinC$	This study
DL370	∆kinD::tet amyE::kinC ^{∆™R}	This study
DL372	∆kinD::tet amyE::kinC ^{∆PAS}	This study
DL374	$\Delta kinC::mls \Delta kinD::tet amyE::kinC$	This study
DL376	∆kinC::mls ∆kinD::tet amyE::kinC ^{∆™R}	This study
DL378	$\Delta kinC::mls \Delta kinD::tet amyE::kinC^{\Delta PAS}$	This study
DL79	Wild type <i>amyE</i> ::P _{yqxM} - <i>lacZ</i>	This study
DL382	Wild type <i>amyE</i> ::P _{yqxM} -yfp	This study
DL215	∆kinC::mls amyE::P _{yqxM} -yfp	This study
DL456	∆kinC::mls lacA::P _{yqxM} -yfp	This study
DL449	∆kinC::mls amyE::kinC lacA::P _{yqxM} -yfp	This study
DL451	∆kinC::mls amyE::kinC ^{∆™R} lacA::P _{yqxM} -yfp	This study
DL453	∆kinC::mls amyE::kinC ^{∆PAS} lacA::P _{yqxM} -yfp	This study
DL346	∆kinC::mls amyE::kinC-yfp	This study
DL354	∆kinC::mls amyE::kinC ^{∆™R} -yfp	This study
DL362	$\Delta kinC::mls amyE::kinC^{\Delta PAS}-yfp$	This study
DL447	$\Delta degS::tet$	This study
DL474	∆degS::tet amyE::kinC-degS	This study
DL492	∆degS::tet amyE::kinC-degS lacA::P _{aprE} -lacZ	This study
DL272	$\Delta ktrC::tet$	This study
DL987	L. monocytogenes tRNA ^{ArgΩ} pPL2-P _{skf} -cfp	This study
DL989	L. monocytogenes tRNA ^{Arg} Ω pPL2-kinC-spo0A-P _{skf} -cfp	This study
DL1046	L. monocytogenes $tRNA^{Arg}\Omega$ pPL2 - $kinC^{\Delta PAS}$ - $spo0A$ -P _{skf} - cfp	This study

Branda SS, Gonzalez-Pastor JE, Ben-Yehuda S, Losick R, Kolter R (2001) Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci USA 98(20):11621–11626.
Heytler PG, Prichard WW (1962) A new class of uncoupling agents—Carbonyl cyanide phenylhydrazones. Biochem Biophys Res Commun 7:272–275.
Magnuson R, Solomon J, Grossman AD (1994) Biochemical and genetic characterization of a competence pheromone from B. subtilis. Cell 77(2):207–216.

Table S3. Primer list

PNAS PNAS

Purpose	Name	Sequence (5'–3')
ΔdegS::tet	degS-1	agccctacaactaccaatagtgcaa
	degS-2	caattcgccctatagtgagtcgtagcactttggaatccatctttgtttt
	degS-3	ccagcttttgttccctttagtgagataggtcttgggacatttattatgatt
	degS-4	tcaatttcttcacggtaagtctcct
∆kinD::tet	kind-1	tcttcttgtgattaacccgccaaga
	kind-2	gaacaacctgcaccattgcaagaagtattttcaatttgcatcgctccaa
	kind-3	ttgatcctttttttataacaggaattcttcatattgaaagtgaagtgcgaaga
	kind-4	tgtttaagatattcttcacctgggta
$\Delta ktrC::tet$	krtC-1	gaggaacaacgaaggcg
	ktrC-2	gagaacaacctgccattgcaagatgctttgcaaatactgc
	ktrC-3	gggatcaactttgggagagagttcgcaaccgaagtcatccac
	ktrC-4	cgaactcaatcggtgtaac
Transcriptional fusions	PyqxMfw	tggcgaattctcagagttaaatggtattgcttcact
	PyqxMrv	cctaagcttgtaaaacactgtaacttgatatgacaa
	PaprEfw	aaaagaattctcttcctcctctcaata
	PapreErv	ttttggatcccgcaaacaacaagctgatc
kinC alleles	KcPASupfw	aaaagaattcgtcatgccgattgagttgag
	KcPASuprv	ctgggattccctcgccagttcagaaagctgtttatacttc
	KcPASdwfw	ctggcgagggaatcccag
	KcPASdwrv	ttttggatccgtatacaaacagaagcgag
	KcTMRuprv	accagctgctgtttctcatcccattgatattttctcatatgaccacc
	KcTMRdwfw	gatgagaaacagcagctggt
Chimera	KinCCHlupfw	aaaaaagcttgtcatgccgattgagttgag
	KinCCHluprv	tgatagtttctgggattcc
	Degsupfw	ggaatcccagaaactatcagagcgaaaaagagtctcaa
	Degsdwrv	ttttggatccccgtcatcaccttcggc
System expressed in L. monocytogenes	Kinc-up	cactcttcattacgctgcttggccgcattgtcatgcc
	kinC-dw	gatcgagcttatgtatacac
	Spo0A-up	gtgtatacataagctcgatcgaaaattaccgatccaagac
	Spo0a-dw	aaaagtcgactacttacgattttgcaggac
	Pskf-up	aagcagcgtaatgaagagtc
	Pskf-upSall	aaaagtcgacaagcagcgtaatgaagagtg
	Pskf-cfp-dw	aaaacggccgtgatcgaaatagtacataatg