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Mechanical energy of the Z-ring

The energy stored in the Z-ring as a function of its radius R, total subunits S , SD of which are
hydrolyzed, assuming linear elasticity, is given by [1]
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where B is the bending modulus of a filament. κ(s) is the preferred curvature as a function of
position in the ring (s) and is defined piecewise as either 0 or κD depending on the hydrolysis state
of the ring at that point (GTP- or GDP-bound respectively).

Energy barrier of lateral bonds

Lan et al. [2] estimate the lateral bond energy between subunits in neighbouring filaments to be
about El = 0.2kBT . It is not clear if the energy barrier associated with breaking these lateral bonds
can be overcome during constriction which is an implicit assumption of the model. The number of
bonds that must be broken during sliding is approximately (N − 1)λ/2 where N is the number of
wraps the Z-ring forms around the cell and λ is the mean filament length. For a subunit size of
δ = 4 nm and a Z-ring seven subunits wide (estimated here and by Anderson et al. [3]), the force
required is (N − 1)λ/2 El/δ ≈ 18 pN. This barrier must be added to the 8 pN force prediction of
Lan et al. [4]. Although this barrier is significant, as seen in Figure 2B, the forces generated by the
Z-ring are greater than 18+8 pN at all values of R, although barely so for the largest radii plotted.
For a Hill sleeve mechanism, the barrier is a problem because thermal fluctuations cannot easily
overcome it.

Quasi-steady state of kinetic equations

The model for the ring in which subunits detach only at filament tips within the ring lattice is
given by the equations
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The quasi-steady state for this subsystem is given by the following:
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Prediction of hydrolyzed fraction in Z-ring

In the Supplemental Material we present a simpler kinetic model that ignores the spatial structure
of the Z-ring entirely. It predicts that the steady state ratio of SD to S (fD) is independent of R
and has a value of fD = 0.036, clearly too low to explain force generation based on the results in
Figure 2A

For the more structurally explicit model, the ratio of SDqss to Sqss is still independent of R and
quite a bit higher than for the simple model:
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This slight modification to the model (restricting disassembly to the tips) therefore allows for the
possibility of generating a sufficient constriction force. Also, comparing this expression to the one
for the spaceless model allows us to see the effect of tip-only disassembly; in particular, it decreases
the effective disassembly rate by a factor of λ, the mean length of incorporated filaments.

Estimation of kin in vivo

It has been reported that approximately 30% of the total FtsZ in a cell is found in the Z-ring. As
the total number of subunits is NCV ZT , to force Sqss to be 30% of the total subunits available, it
must be that G/(1 + G) = 0.3 or equivalently that G = 3/7. As estimates for all quantities other
than kin in the expression for G can be found in the literature, this constraint provides an estimate
of kin = 2.1 · 10−4 µM−1 nm−1 s−1. Varying kin by an order of magnitude or more up or down does
not effect the force-generating capacity of the ring as much as it does the percentage of FtsZ in the
ring. To be precise, over the range of kin = 3 ·10−5 to 10−2 µM−1 nm−1 s−1, the ring is still capable
of generating forces larger than 8 pN, but across this same range, the percentage of FtsZ in the
ring varies from 6% to 95%. Thus any claims we make about force scales are at least as accurate
as the extent to which our model matches measurements that have been reported and repeated
in the literature [5, 3]. In other words, even though our treatment of filament incorporation is
phenomenological, it is relatively robust.

Spaceless model – quasi-steady state, hydrolyzed fraction, time constants

The model for the ring in which subunits detach independent of location in the lattice is given by
the equations
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For the in vivo case, we are interested in treating R as a slow variable so we solve for the quasi-steady
state of the kinetic equations:

SDqss = Qkhyd

Sqss = Q(khyd + koff )

where
Q =

4πRkinZT NCV

4πRkinkhyd + 4πRkinkoff + koff NCV khyd
.

2



Note that the fraction of hydrolyzed subunits is independent of R and is, in fact, quite a simple
expression:

SDqss
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=
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τhyd + τoff
= 0.036.

There is a very simple interpretation of this: the fraction of hydrolyzed subunits is the ratio of the
average time a hydrolyzed subunit spends in the ring to the average total time the subunit spends
in the ring. Note that τoff = 1/koff for this simple model, instead of λ/koff for the full model.

Both khyd and koff are well characterized in the literature but even if the measured values are
only accurate within an order of magnitude, it is still clear that SDqss/Sqss ≈ 10−2. As explained
in the Results section, this is insufficient to generate the required force for driving the cell-wall
constriction. For this reason, we consider the more spatially explicit model described in the Model
section.

Because this system is linear, it is a simple matter to calculate analytically the time constants.
We find that the eigenvalues of the system are
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Recognizing that 4πRkin/(NCV )� khyd + koff , the eigenvalues can be approximated as α1 = khyd

and α2 = koff . This provides us with estimates of the time constants for the system: τhyd =
1/khyd = 8 seconds and τoff = 1/koff = 0.3 seconds. Hydrolysis is rate-limiting in this case.

Cytosolic filament diffusion

Anderson et al. [3] reported that FRAP experiments on cytosolic FtsZ-GFP gave a recovery half-
time of roughly twice that reported for cytosolic GFP [6]. One might expect larger differences in
half-times between monomers and filaments consisting of, on average, 30 subunits. Here we estimate
the half-time for an exponential length distribution of filaments with mean length 30 subunits given
that the monomeric form has a half-time of 0.5s. The diffusion coefficient for a filament of length
l is given by

D(l) =
kBT

6πρR

where ρ = 7 · 10−8 is the viscosity of cytosol (chosen to match the monomer data), R = l/(2s)
is the hydrodynamic radius, s = ln
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)
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√
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filament length has a time constant of τ(l) = L2/(2D(l)) where L = 1000 nm is the recovery length
scale. The normalized intensity in the bleached zone after photobleaching is roughly described by
the equation

I(t) =
∫ ∞

0

(
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)
e−l/λ dl.

Numerically integrating this expression gives a half-time of 0.8s. Although this is a crude means
of estimating the effective half-time for a filament population, it gives a rough indication that
oligomers in this length distribution do not affect the recovery half-time significantly compared to
a pure monomer population.

Incorporation of partially hydrolyzed filaments

The model described in the Model section includes the simplifying assumption that all incorporated
subunits are GTP-bound. As subunits can hydrolyze within filaments before getting incorporated,
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this is certainly a simplification. The appropriate modification to the model is to add an incorpo-
ration term to the SD equation. If the fraction of hydrolyzed subunits in an incorporated filament
is f0 then the term can be derived by multiplying the incorporation term in equation (1)by l and
integrating from zero to ∞, to get the total number of incorporated subunits, and multipling that
by f0:
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With this modification, the steady state can still be calculated. Interestingly, the effect is minor.
The only change in the steady state is that the factor G becomes
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Essentially, this says that introducing a small fraction of hydrolyzed subunits to the incorporated
filaments is equivalent to increasing the hydrolysis rate by a factor 1/(1− f0).

Estimation of kin in vitro

In the in vitro experiments of Osawa et al. [8], the FtsZ protein was modified to include a membrane
binding domain so that it did not require the presence of FtsA for membrane attachment as is the
case in vivo [9]. Because of this, we do not assume a priori that the in vivo estimate of kin is
appropriate for modeling the in vitro system. Note that the total pool of subunits ZT and the total
volume V are different for the in vitro case. In the multiple-ring liposome, we consider the volume
as a “per ring” quantity. Osawa et al. [8] reported a total of 44 rings in 575 µm of tubular liposomes
so we set V = 575πR2

0. Unfortunately, no estimate of the average ring mass in the liposome was
available but given a radius of 1 µm, a minimum of 1500 subunits are required to encircle the
liposome. Examining images from Osawa et al. [8], it appears as though Z-ring can be much larger
than estimates for in vivo Z-rings. This gives a lower bound of kin = 6 · 10−5. Remarkably, if we
assume the average ring size in vitro is similar to the ring size in vivo (SR = 4000), the predicted
value of kin = 1.7 · 10−4 falls surprisingly close to the in vivo value of 2 · 10−4. These estimates
are only made for the purpose of choosing parameters for numerics because the steady state results
only depend on the ratio FM/kin.

Although the modifications to the protein might have also effected koff and khyd in vitro, this
is not a certainty and so for simplicity we assume they remain unchanged. FRAP experiments on
the liposome rings would be one way of testing this hypothesis.

Estimation of FM

From dimensional arguments, the force-scale for membrane resistant to constriction by a Z-ring
should scale as κB/L where κB is the bending modulus of the membrane and L is some relevant
length scale. Here, we are neglecting the influence of membrane stretch. In this case, there are two
length scales to consider, the radius of the liposome (R ≈ 1000 nm) and the width of the Z-ring
(w ≈ 30 nm). As there is one to two orders of magnitude difference between these, we suggest
the relevant force scale is proportional to the larger of these two, κB/w, with a possible unknown
pre-factor. For a liposome with a single lipid bilayer, κB = 60 pN nm so the force scale is in the
range of pN. However, the liposomes used by Osawa et al. [8] were multilamellar and, in fact, Osawa
et al. [8] report being unable to generate tubular liposomes with thin walls. As a function of the
number of bilayers in a liposome wall n, the bending modulus scales like n3 [1], assuming layers
cannot sheer relative to one another. Thus, a four-layer wall can already put the force scale into
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the hundreds of pN range. With sheer between layers, a lesser but still significant increase would be
possible. The unknown pre-factor, which we have ignored, could increase this parameter further.

In vitro force-balance analysis

As described in the Model section, the force-balance equation for membrane and Z-ring, after
substituting in the steady state value of S and writing it in dimensionless form, is

α (1− r) =
r − β

r2(r + 1/γ)

where α = FMR2
0/(BδZT fDκDNCV ) is the ratio of membrane to Z-ring force scales, β = (fDκDR0)−1 =

0.024 is the ratio of GDP-bound-filament preferred curvature to membrane-preferred curvature
scaled by GDP fraction and
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is approximately the fraction of the total FtsZ in a liposome that is bound up in Z-rings. Each side
of this equation is plotted in Figure 3. Notice that for each value of α and γ, or dimensionally FM

and kin, there are either one, two or three crossing and hence solutions.
It is worthwhile to consider when the upper root disappears. For the range of values of kin given

in Table 1, γ varies from 0.015 to 0.1 and so its inverse dominates the factor in the denominator.
As we are interested in the upper solution, we can also take advantage of the fact that β << 1.
The solutions of the following equation are therefore good approximates of the two upper solutions
to equation (4):

r (1− r) =
γ

α
This equation loses its roots for γ > α/4. Translating this back into dimensional terms, we find
the upper two roots disappear when
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where q = 5 · 10−6 µM−1 nm−1 s−1 pN−1. Using the estimate FM = n3κB/w where κB is the
membrane bending modulus, w is the width of the Z-ring and n is the number of bilayers, FM

is roughly 2.4, 19, 65, and 154 pN for n = 1, 2, 3 and 4 respectively. Multiplying by q gives the
threshold values of kin above which the upper roots disappear: 1.2 · 10−5, 9.7 · 10−5, 3.3 · 10−4 and
7.7 · 10−4. Note that the first two of these is smaller than our in vivo estimate of kin, although
the second is close. The other two are above kin. This indicates that, for this particular choice
of parameters, multilamellar liposome with three or more layer have a stable constriction radius
whereas unilamellar liposomes clearly do not. This seems also be the case for two-layered liposomes.
The dividing line between having and not having a stable constriction radius is monotone in kin.
If the minimal number of bilayers in the tubular liposomes could be measured experimentally, it
might suggest an upper bound for kin.

Depletion of GTP

In order to account for experiments in which GTP is in limiting supply [8], we track total cytosolic
FtsZ-GTP (ZT ), FtsZ-GDP (ZD = Z − ZT ) and GTP (T ):

dZT

dt
= −khydZT + kex(Ztot − ZT )T
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dT

dt
= −kex(Ztot − ZT )T

Note that we have omitted the contribution of the Z-ring to the overall hydrolysis rate because
most of the FtsZ is in solution (see estimate above) so GTP dynamics are primarily dictated by
the solution concentrations of FtsZ-GTP and -GDP. Due to the large difference in concentration
scales of Z and T (4µM and 100 − 400µM respectively [8]), the value of the parameter kex makes
little impact on the time course unless it is unrealistically small (< 0.01µM−1s−1). This Michaelis-
Menten scenario leads to a gradual almost linear depletion of GTP. However, the depletion of
FtsZ-GTP is barely noticeable until the GTP concentration reaches the range of khyd/kex which is
in the µM range. For convenience, in our simulations, we do not implement this model explicitly
but instead simply artificially set ZT to zero at a predetermined time.

Liposome rupture

Lipid bilayers can tolerate a maximal strain of 2−4% before failure, depending on lipid composition
[10]. Therefore the liposomes studied in Osawa et al. [8] can sustain a maximal amount of distortion,
above which the membranes will rupture. Here we estimate this maximal distortion.

The liposomes were cylinders with radius R0 ≈ 1 µm and Z-rings appeared on average every
2L ≈ 13 µm. We assume each Z-ring has a radius R and is centered in a tube of width 2L whose
ends are perfect circles. The solution to the linearization of the membrane elasticity equations [4]
with boundary conditions R(0) = (1− r)R0 and R(±L) = R0 is

R(z) = R0(1− re−|z/R0|).

The surface area is

A = 2π

∫ L

−L
R(z)dz = 4πR0

(
L + rR0

(
1− e−L/R0

))
compared to 4πR0L for an unconstricted membrane. This increase in area leads to a strain ε, which
occurs when the invagination’s fractional amplitude is

r =
εL

R0

(
1− e−L/R0

) .
For a critical strain of 4%, this occurs when the liposome is constricted to 740 nm. For 2%, the
maximal constriction has radius 870 nm. Note that since several Z-rings share the total lipid
content of one liposome, these maximal constrictions represent liposome-wide averages – one Z-ring
can constrict beyond the maximum, provided others constrict less. An accurate prediction of when
rupture occurs would require information about all constrictions within a liposome but, assuming
a roughly uniform distribution of sizes, it is reasonable to expect some Z-rings to get as small as
500 nm but perhaps not much smaller than that.
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