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Here we derive the idealized Arctic sea ice–ocean–
atmosphere model that is summarized in equations [1]-[4]
of the Research Report. Note that we carry out the entire
derivation using dimensional variables, rather than following
the conventional mathematical development of such equations
through a process of non-dimensionalization, in order to make
direct contact with previous studies of the thermodynamics of
sea ice and climate.

Sea Ice
The evolution of the sea ice temperature profile is an ide-
alized version of the single-column thermodynamic model of
Maykut and Untersteiner (1) (hereafter MU71). Vertical heat
conduction in sea ice is computed in MU71 according to
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which can be derived from the general theory of mushy layers
(2). Here AR represents the absorption of shortwave radiation
that has penetrated below the surface of the ice, the effective
heat capacity ceff(T̃ , S) and thermal conductivity keff(T̃ , S)

depend on simulated temperature T̃ and specified salinity S,
and the vertical coordinate z increases upward. Note that for
the T̃ and S range in perennial ice, MU71 neglect the vertical
derivative of the effective conductivity, ∂keff(T̃ , S)/∂z, allow-
ing the first term on the right-hand side of equation [6] to

be expressed as keff(T̃ , S)∂2T̃ /∂z2. MU71 also include a layer
of snow above the ice with specified snowfall and simulated
snow melt.

The boundary condition in MU71 at the upper surface
(z = hT ) is a flux balance when the ice is below the freez-

ing temperature (T̃fr) and otherwise a Stefan condition for
surface ablation:»
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[7]
with Li the latent heat of fusion of ice, αi the surface albedo,
Ti ≡ T̃i − T̃fr the surface temperature departure from the

freezing point with T̃i ≡ T̃ (z = hT ), and Ftop(t, Ti, αi) repre-
senting the sum of sensible and latent heat fluxes and long-
wave and shortwave radiative fluxes out of the surface. The
seasonal cycle of each of these components of the surface flux
are specified in MU71 based on observations, except for the
upward longwave flux which is computed from the surface
temperature using the Stefan-Boltzmann equation. To facil-
itate an analytical solution for Ti (equation [15] below), we
approximate the Stefan-Boltzmann equation by its linearized
version, σT̃ 4

i = σ0 + σTTi, where σ is the Stefan-Boltzmann
constant and the parameters (σ0 = 316 Wm−2, σT = 3.9
Wm−2K−1) are chosen such that the equation is exact when

T̃i = −30◦C and when T̃i = 0◦C, which are the approximate
values of T̃i during most of the winter and summer, respec-
tively. This allows the temperature dependence of the surface
flux to be expressed as

Ftop(t, Ti, αi) = −(1− αi)FS(t) + F0(t) + FT (t)Ti, [8]

where FS(t) is the downwelling shortwave radiation flux, F0(t)
is σ0 plus the specified sensible and latent heat fluxes, and
FT (t) = σT . Note that here the atmosphere is specified as in

MU71, whereas in the full coupled version of the model F0(t)
and FT (t) take on a different set of values computed using the
atmospheric model (equations [39]-[40] below).

At the ice–ocean interface (z = hB), MU71 apply a Stefan
condition for ice growth or ablation,
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= −
»
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–
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− FB , [9]

with the flux from the ocean into the base of the ice specified
to take a constant value of FB = 2 Wm−2. Note that the
temperature at the ice–ocean interface must be at the freez-
ing point, T̃ (z = hB) = T̃fr. The upper and lower surfaces
of the ice, hT and hB , evolve separately in MU71, who use a
coordinate system in which each ice parcel remains stationary,
and the predicted ice thickness is hi = hT −hB (see schematic
in Fig. S1).

Here we neglect snow (MU71 report that having no snow
causes the annual mean thickness to increase by 17cm from
the standard case value of 288cm), and we neglect penetrating
shortwave radiation AR → 0 (which MU71 report causes the
annual mean ice thickness to decrease by 45cm). The impact
of neglecting both of these factors is shown in Fig. S2 (black
curves).

The thermal conductivity keff(T̃ , S) in the MU71 stan-
dard case run is always 90%–100% of the pure ice value,
and we approximate it to take the constant pure ice value,
keff(T̃ , S) = ki = 2 Wm−1K−1. The freezing temperature in

MU71 is taken to be T̃fr = −1.8◦C at the base of the ice and

T̃fr = −0.1◦C at the upper ice surface, and we approximate

it to take a constant value of T̃fr = 0◦C. Lastly, because the

Stefan number NS ≡ Li/
h
ceff(T̃ , S)∆T̃

i
is large, the temper-

ature field in the ice relaxes quickly in response to changes
in the solidification rate. The actual values of NS predicted
by the MU71 standard case seasonal cycle vary widely but
typically are NS � 1. Under these conditions, the system
[6]-[7], [9] can be expressed as a single ordinary differential
equation, as described below.

Applying the large Stefan number approximation to the
heat conduction equation [6] yields a linear temperature pro-

file, T̃ = T̃fr + (T̃i − T̃fr)(z − hB)/(hT − hB) = T̃fr + Ti(z −
hB)/hi, which can be derived using a scaling argument after
vertically integrating equation [6] and inserting the boundary
conditions [7], [9]. Next, this quasi-stationary temperature
field is inserted into equations [7], [9]. The upper bound-
ary condition [7] includes two different cases depending on
whether or not surface ablation is occurring:
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Fig. S1. Schematic showing fluxes and variables in the sea ice component of

the idealized model presented here. All fluxes are defined such that a positive value

implies an upward flux.
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Fig. S2. Effects of approximating the ice thermodynamics in the model of MU71 (1). (a) Steady-state solution seasonal cycle of ice thickness in the MU71 standard case

simulation (gray curve and circles), in a simulation with the MU71 model carried out for this study with no snow or penetrating shortwave radiation (hs = AR = 0; black

curve and circles), when the MU71 representation is replaced by the idealized sea ice model given by equations [15]-[16] (blue curve), and the standard case run with the

fully coupled idealized sea ice–ocean–atmosphere model summarized in equations [1]-[4] of the Research Report (red curve). (b) Seasonal cycle of surface temperature for

the same four solutions as in (a). Note that the surface temperature in the idealized model is diagnosed from the computed thickness and the specified surface forcing. (c)

Relaxation time to reach steady-state ice thickness from two different initial conditions in the MU71 model with hs = AR = 0 (black curves and circles) and in the idealized

sea ice model (blue curves).

(i) When the surface is below the freezing temperature
(Ti < 0), the upper boundary condition [7] with the linear
temperature profile takes the form

ki
Ti
hi

= −Ftop(t, Ti, αi). [10]

Since there is no surface ablation (dhT /dt = 0), the ice thick-
ness evolves as dhi/dt = d/dt (hT − hB) = −dhB/dt, and af-
ter inserting the linear temperature profile the lower boundary
condition [9] becomes

Li
dhi
dt

= −ki
Ti
hi
− FB . [11]

Inserting the surface temperature [10] into equation [11]
shows that ice thickness evolves according to

Li
dhi
dt

= Ftop(t, Ti, αi)− FB . [12]

(ii) During surface ablation (Ti = 0), the temperature

profile takes on a constant value of T̃ = T̃fr. Hence the upper
boundary condition [7] takes the form

Ftop(t, Ti, αi) = Li
dhT
dt

, [13]

and the lower boundary condition [9] becomes

−Li
dhB
dt

= −FB , [14]

which together imply that ice thickness, hi = hT−hB , evolves
according to an equation identical to the case with the surface
below the freezing temperature [12].

The steady-state surface temperature can be derived by
inserting equation [8] into equation [10] to yield an algebraic
solution for the case with Ti < 0, which can be combined with
the ablation case (Ti = 0) as

Ti(t, hi) = −R
»

(1− αi)FS(t)− F0(t)

−ki/hi − FT (t)

–
. [15]

Here the dependence of Ti on t and hi has been explicitly indi-
cated, and the ramp function R(x) is defined to be R(x) = 0
if x < 0 and R(x) = x if x ≥ 0. Note that the two surface
boundary conditions in equation [7] are compactly embodied
in the ramp function in equation [15]. The thickness evolu-
tion in both cases [12] can be written after inserting equation
[8] as

Li
dhi
dt

= −(1−αi)FS(t) +F0(t) +FT (t)Ti(t, hi)−FB . [16]

The sea ice model is fully contained in equations [15]-
[16]. The results of this idealized ice thermodynamics model
forced by specified surface and basal fluxes as in MU71 are
shown in Fig. S2 (blue curves), which indicates that this
approximate representation yields results in good agreement
with the full numerical solution to the partial differential equa-
tion [6] in MU71 (cf. refs. 3, 4).

While most aspects of horizontal sea ice dynamics are ne-
glected in this idealized treatment, in the coupled version of
the model (equations [1]-[4] of the Research Report) we pa-
rameterize the net annual export of sea ice out of the central
Arctic, most of which escapes through Fram Straight. Arctic
sea ice has a residence time of roughly 3-12 years (5), with
a net annual export of about 10% of the ice area (6). This
continuous export makes the ice thickness somewhat more sta-
ble: to maintain thicker ice, a larger amount of new ice must
be produced each year. We approximately account for this
by adding to the ice thickness evolution [16] a decay term
−v0Lihi, with v0 = 0.1 yr−1.

Atmosphere
In the presence of significantly different Arctic Ocean surface
conditions, such as an exposed ocean mixed layer, the atmo-
spheric energy fluxes into the surface are also expected to
change significantly. This is particularly true for the down-
welling longwave radiation which includes the effects of both
horizontal atmospheric heat flux convergence and downward
emission of absorbed upward longwave radiation due to the
opacity of the atmosphere (i.e., the greenhouse effect). Here
we use an idealized atmospheric model to account for changes
in downwelling longwave radiation. This allows us to ap-
proximate Ftop(t, T, α) over a wide range of climates. The
derivation that follows is similar to previous treatments of
two-stream radiative atmospheres (e.g., refs. 3, 7, 8).

Heat Flux Convergence. The meridional heat flux convergence
averaged over 70◦N–90◦N is equivalent to a spatially averaged
vertical flux of roughly D = 100 Wm−2 (9). Since the pole-
ward heat flux in the atmosphere is related to transport of
sensible and latent heat by eddies, it is often approximated in
idealized climate models as being proportional to the merid-
ional temperature difference (10–12), which is equivalent to
assuming meridional effective diffusion of temperature as in
typical atmospheric energy balance models (13–15). Although
a destabilizing increase in atmospheric meridional heat flux
into the Arctic may occur in response to warming due to
factors including increased humidity (16–19), if the warming
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is significant then reduced atmospheric heat transport is ex-
pected to be a principal damping mechanism (20). Here we
follow the convention of setting the meridional heat flux to be
proportional to the meridional temperature difference,

D(t, T ) = kD∆Tmerid(t), [17]

where ∆Tmerid = Tsouth(t)− T with T the simulated surface
temperature in the Arctic and Tsouth(t) the seasonally varying
temperature south of the Arctic which is specified here from
NCEP-NCAR reanalysis 1971-2000 climatological 1000mb at-
mospheric temperature (21) spatially averaged from the equa-
tor to 70◦N. We use kD = 2.7 Wm−2/K, which optimizes the
match to observed poleward heat transport (9) (although this
parameterization leads to a model annual cycle in D that is
somewhat exaggerated compared to observations).

Longwave Absorption. We use a vertically continuous dry en-
ergy balance atmospheric model. We approximate there to
be no absorption of shortwave radiation in the atmosphere
and no scattering of longwave radiation. Longwave radiation
is absorbed and emitted in continuous vertical levels with an
absorption cross section that is independent of wavelength,
temperature, and pressure, and the radiative fields are solved
using a two-stream approximation. We assume that the pole-
ward atmospheric heat transport into the Arctic, D(t, T ), is
distributed uniformly in optical height (3).

The intensity of a beam of radiation propagating verti-
cally upward from Earth’s surface will diminish with height
z according to dI/dz = −ρ(z)κ(z)I, where ρ(z) is the atmo-
spheric density and κ(z) is the extinction coefficient. This can
be solved for intensity as a function of height,

I = I0 exp

»
−
Z z

0

ρ(z′)κ(z′)dz′
–

= I0 exp[−τ(z)], [18]

where I0 is the intensity at the surface and the optical height
is τ(z) ≡

R z
0
ρ(z′)κ(z′)dz′. We measure height using τ(z) in-

stead of z, which has the advantage that κ(z) and ρ(z) are
eliminated from the equations and the atmosphere can be ap-
proximately described by a single parameter, the total opti-
cal thickness τ1 ≡ τ(z → ∞). Note that our use of optical
height differs slightly from the standard convention of using
optical depth, which is integrated from the top of the atmo-
sphere downward. Regarding the physical meaning of the op-
tical thickness τ1, note that the fraction of longwave radiation
emitted vertically from the surface that escapes to space is
exp(−τ1). A slanted optical path in the atmosphere, δτ∗, can
be related to optical height according to δτ = δτ∗ cos θ, where
θ is the angle the path makes with the vertical (Fig. S3).

The intensity of longwave radiation in the atmosphere,
I(τ, θ, φ), is a scalar field that depends on optical height and
direction, with φ being the azimuthal angle (Fig. S3). We
model the atmosphere as a grey material that absorbs a frac-
tion δτ∗ of the intensity passing through it and emits an equiv-
alent fraction δτ∗ of its blackbody radiation. The blackbody
radiation of an air parcel can be computed from the Stefan-
Boltzmann equation, B(Ta) = σT 4

a /π, where Ta is the temper-
ature of the air parcel and the factor π accounts for radiation
occurring in every direction from a point source. This gives
a change in intensity of δI = −Iδτ∗ + Bδτ∗, which becomes
the Schwarzschild equation when written in terms of optical
height:

cos θ
∂I(τ, θ, φ)

∂τ
= −I(τ, θ, φ) +B(τ). [19]

Note that B is independent of angle since a blackbody emits
radiation equally in all directions.

We assume horizontally uniform radiation from the sur-
face and a horizontally homogenous atmospheric medium,
which makes the intensity horizontally isotropic due to az-
imuthal symmetry, I(τ, θ, φ) = I(τ, θ). In thermal steady-
state, this can be written as a vertically constant divergence
of vertical net flux,

∂

∂τ

Z
dωI(τ, θ) cos θ =

D(t, T )

τ1
, [20]

where we have defined the integral over all solid angles,R
dω ≡

R π
0
dθ
R 2π

0
sin θdφ. We can rewrite the divergence con-

dition [20] as an algebraic equation by equating it with the in-
tegral over all solid angles of the Schwarzschild equation [19].
Solving this for B(τ) and inserting this into the Schwarzschild
equation [19] gives a single integro-differential equation for
I(τ, θ),

cos θ
∂I(τ, θ)

∂τ
= −I(τ, θ) +

1

4π

»
D(t, T )

τ1
+

Z
dωI(τ, θ)

–
.

[21]
The boundary conditions are that there is no downward

longwave radiation at the top of the atmosphere (τ = τ1),

I(τ1, π/2 ≤ θ ≤ π) = 0, [22]

and that the upward radiative flux from the surface (τ = 0)
is σ0 + σTT ,

I(0, 0 ≤ θ ≤ π/2) =
σ0 + σTT

π
. [23]

The system [21]-[23] uniquely specifies atmospheric long-
wave radiation I(τ, θ) given the poleward heat transport
D(t, T ), atmospheric optical thickness τ1, and surface tem-
perature T .

Here we use a standard two-stream approximation to ar-
rive at an analytical solution to the system [21]-[23]. Multi-
plying the Schwarzschild equation [19] by cos θ and integrat-
ing over the upper and lower hemispheres (i.e., the upper and
lower halves of an infinitesimal sphere surrounding a given
point in the atmosphere) leads to

∂

∂τ

Z
dω↑I(τ, θ) cos θ = −F ↑(τ) + πB(τ), [24]

∂

∂τ

Z
dω↓I(τ, θ) cos θ = F ↓(τ)− πB(τ), [25]

where we have defined total upward and downward fluxes
through a horizontal surface in the atmosphere,

F ↑(τ) ≡
Z
dω↑I(τ, θ) cos θ, [26]
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Fig. S3. Schematic of atmospheric model for computing Ftop(t, T, α).

D(t, T ) represents meridional heat transport, and (1 − α)FS is the amount of

absorbed solar radiation. Longwave radiative intensity is represented by I and optical

height is given as τ with δτ∗ an optical path at angle θ to the vertical. Note that here

the optical height increases upward, in contrast with the optical depth which increases

downward and is typically used in radiative transfer calculations. The total upward

and downward longwave radiative fluxes through a horizontal surface are F+(τ) and

F−(τ), respectively. The model allows the surface incident longwave radiation to be

represented as a function of outgoing surface longwave radiation (equation [34]).

Eisenman and Wettlaufer www.pnas.org/cgi/content/short/0806887106 PNAS Supporting Information 3 of 6



F ↓(τ) ≡ −
Z
dω↓I(τ, θ) cos θ, [27]

and the integrals over solid angles in each hemisphere

are defined as
R
dω↑ ≡

R π/2
0

dθ
R 2π

0
sin θdφ and

R
dω↓ ≡R π

π/2
dθ
R 2π

0
sin θdφ.

The type of two-stream approximation we employ, an ex-
ponential kernel approximation (sec. 2.4 of ref. 7), is equiva-
lent to assuming that radiation propagates through the atmo-
sphere only at one effective angle. This angle deviates from
the vertical to account for the fact that in the exact solution
radiation propagates in all directions. Upwelling radiation
propagates along θ = θeff and downwelling radiation propa-
gates along θ = θeff + π. This assumption allows equations
[24]-[25] to be written as

cos θeff
∂F ↑(τ)

∂τ
= −F ↑(τ) + πB(τ), [28]

cos θeff
∂F ↓(τ)

∂τ
= F ↓(τ)− πB(τ). [29]

Note that the negative sign from the definition of F ↓ [27] is
cancelled in equation[29] because cos (θeff + π) = − cos θeff.

Inserting the definitions [26]-[27] into the divergence
condition [20] leads to

∂

∂τ

h
F ↑(τ)− F ↓(τ)

i
=
D(t, T )

τ1
, [30]

which can be multiplied by cos θeff and then equated with
the sum of equations [28] and [29]. This allows us to write
the divergence condition as an algebraic relation that can be
directly solved for B(τ):

B(τ) =
1

2π

»
D(t, T ) cos θeff

τ1
+ F ↑ + F ↓

–
. [31]

Finally, inserting the definitions [26]-[27] into the bound-
ary conditions [22]-[23] leads to

F ↓(τ1) = 0, [32]

F ↑(0) = σ0 + σTT. [33]

Equations [28]-[29], [31] represent a system of two cou-
pled first order linear ordinary differential equations, which
can be solved subject to boundary conditions [32]-[33] to
give the full vertical profiles of F ↑(τ) and F ↓(τ). Note that the
temperature profile can be calculated from this solution using
equation [31] and the Stefan-Boltzmann equation. From the
full solution to the system [28]-[29], [31]-[33] (not shown),
the surface downward longwave radiation is

F ↓(0) =
σ0 + σTT

1 + 2 cos θeff
τ1

+
D(t, T )

2
. [34]

The incident surface radiation includes half of the atmospheric
heat convergence, D(t, T )/2, while the other half is emitted to
space. This arises from the assumption that D(t, T ) is evenly
distributed in optical height.

The choice of θeff can be optimized to match the ex-
act solution of the system [21]-[23] given values of D(t, T ),
τ1, and F ↑(0) = σ0 + σTT . Salby (sec. 8.4.2 of ref. 8)
finds that the effect of averaging over spectral bands sug-
gests the value cos θeff = 3

5
. Goody and Yung (sec. 9.2.1

of ref. 7) derive an atmosphere similar to the system [28]-
[29], [31], with D(t, T ) = 0, by using a version of the two-
stream approximation in which hemispheric isotropy is as-
sumed: I(τ, θ > π/2) = I+ and I(τ, θ > π/2) = I−. This
yields a result equivalent to letting cos θeff = 2

3
. Thorndike

(3) derives an atmosphere analogous to the model derived
here but with only vertically propagating radiation, arriving
at a result equivalent to cos θeff = 1. We take the optical
thickness τ1 as the tunable parameter in the model, and we
leave cos θeff unspecified because it simply scales the optical
thickness.

The net longwave radiation from the solution [34] is

F ↑(0)− F ↓(0) = κLW (σ0 + σTT )− D(t, T )

2
, [35]

where we have defined an atmospheric greenhouse factor as

κLW ≡ 1− 1

1 + 2 cos θeff
τ1

=
1

1 + τ1
2 cos θeff

. [36]

Note that 0 < κLW < 1. This makes clear the effect of the
atmospheric longwave radiation model: it mitigates surface
longwave cooling by emitting some of the energy back to the
surface, equivalent to reducing the surface upward longwave
radiation by the factor κLW , and it adds energy associated
with atmospheric heat flux convergence (i.e., net meridional
heat transport into the Arctic). By reducing the surface net
upward longwave radiation, the interactive atmospheric model
weakens the stabilizing influence of outgoing longwave radia-
tion on the ice/ocean system.

Grey two-stream atmospheres like the model used here can
capture many of the basic features of radiative transfer in an
approximate way. A thorough comparison of various types of
two-stream approximations is discussed in Goody and Yung
(sec. 2.4 of ref. 7).

The optical thickness of the atmosphere depends on water
vapor, cloud particles, and greenhouse gases such as carbon
dioxide. It is higher during summer than during winter be-
cause of increased water vapor and cloudiness. We specify
the optical thickness seasonal cycle to follow observed Arctic
cloudiness,

κLW (t) =
1

τ0 + τcfc(t)
, [37]

where fc(t) is the Arctic cloud fraction seasonal cycle speci-
fied from observations (22) and τ0 and τc are chosen to give a
sea ice seasonal cycle matching that computed using forcing
from MU71 (cf. refs. 3, 23). This leads to a choice of τ0 = 0.5
and τc = 3.6.

The actual energy flux at the top of the sea ice or ex-
posed ocean mixed layer, Ftop(t, T, α), includes components
of sensible and latent heat fluxes in addition to downward
and upward shortwave and longwave radiation. According
to the observationally-based central Arctic values specified in
MU71, the sensible and latent heat fluxes are small compared
to the radiative fluxes, and here we effectively approximate
the sensible and latent heat fluxes by incorporating them into
the computed downwelling longwave flux. The longwave emis-
sivities of ice and open water, both roughly 0.95–1, are here
approximated to unity. Under these approximations, the total
surface flux can be written

Ftop(t, T, α) = κLW (t) (σ0 + σTT )− D(t, T )

2
− (1− α)FS(t),

[38]
where the downwelling shortwave radiation incident at the
surface, FS(t), is specified from observations as in MU71. In-
serting equation [17], we see that the full temperature de-
pendence is linear, allowing us to write Ftop [38] in the form
of equation [8] with parameters

F0(t) = κLW (t)σ0 −
kD
2
Tsouth(t) [39]

and

FT (t) = κLW (t)σT +
kD
2
. [40]
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Ocean Mixed Layer
To allow the simulation of ice-free conditions, we include a rep-
resentation of an ocean mixed layer which becomes exposed
when all of the ice ablates. The mixed layer is represented
as a thermodynamic reservoir with a characteristic depth of
Hml = 50m, in agreement with observations (24). The mixed
layer temperature evolution is proportional to the net flux,

cmlHml
dTml
dt

= (1− αml)FS(t)− F0(t)− FT (t)Tml + FB ,

[41]
with mixed layer heat capacity cml = 4× 106 Jm−3K−1. We
use an open water albedo of αml = 0.2, similar to previous
studies (3, 25), to account for the presence of small amounts
of thin ice in a largely ice-free Arctic Ocean. When the ice
completely melts (hi = 0), the ocean mixed layer temperature
is evolved forward from Tml = 0, and when the mixed layer
cools back to Tml = 0, the ice thickness is evolved once again
starting from hi = 0.

Coupled Model
The separate equations for Tml and hi can be combined, since
only one is evolving at any given time. We define the energy
per unit area in the system, E, to be equal to the sum of the la-
tent heat content of the sea ice and the specific heat content of
the ocean mixed layer (equation [1] in the Research Report).
This allows the ice and ocean mixed layer components of the
idealized model [15]-[16], [41] to be expressed as equations
[2]-[3] in the Research Report. The parameters F0(t) and
FT (t), which are used to determine the surface energy flux,
have values computed using the atmospheric model [39]-[40].
An imposed annually constant surface energy flux is included
in equations [2]-[3] by replacing F0(t) with F0(t)−∆F0. Val-
ues for the parameters in equations [1]-[4] in the Research
Report are given in Table S1. The standard case simulation
with this model, illustrated in Fig. S2, produces central Arctic
sea ice conditions in fairly good agreement with MU71.

Table S1. Descriptions and default values of model parameters. Time evolution t is measured in years while fluxes are measured in Wm−2,
which allows most dimensional parameters to be approximately of order unity but requires a non-conventional choice of units for energy per unit
area E (written in Wm−2yr), heat capacity cmlHml, and latent heat Li. For the three seasonally varying parameters, the annual mean value is
given in the table; the monthly values starting with January are F0(t) = (120, 120, 130, 94, 64, 61, 57, 54, 56, 64, 82, 110) Wm−2, FT (t) =
(3.1, 3.2, 3.3, 2.9, 2.6, 2.6, 2.6, 2.5, 2.5, 2.6, 2.7, 3.1) Wm−2K−1, and FS(t) = (0, 0, 30, 160, 280, 310, 220, 140, 59, 6.4, 0, 0) Wm−2.

Symbol Description Value
Li Latent heat of fusion of ice 9.5 Wm−3yr
cmlHml Ocean mixed layer heat capacity times depth 6.3 Wm−2yrK−1

αi Albedo when surface is ice-covered 0.68
αml Albedo when ocean mixed layer is exposed 0.2
ki Ice thermal conductivity 2 Wm−1K−1

FB Heat flux into bottom of sea ice or ocean mixed layer 2 Wm−2

hα Ice thickness range for smooth transition from αi to αml 0.5 m
v0 Dynamic export of ice from model domain 0.1 yr−1

F0(t) Temperature-independent surface flux (seasonally varying) 85 Wm−2

FT (t) Temperature-dependent surface flux (seasonally varying) 2.8 Wm−1K−1

FS(t) Incident shortwave radiation flux (seasonally varying) 100 Wm−2

∆F0 Imposed surface heat flux 0 Wm−2
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Fig. S4. Robustness of the results in Fig. 3 of the Research Report to parameter

regime, illustrated here by varying the parameter governing the smoothness of the

albedo transition (hα). For each value of hα, ranges of surface heating (∆F0)

that give rise to stable solutions that are perennially ice-covered (blue region), sea-

sonally ice-free (red region), or perennially ice-free (white region) are identified. The

default parameter regime is indicated by a black diamond. Mixed shades indicate

the overlap in regions where multiple stable solutions coexist, and the bifurcation

curves marking the edges of this space are indicated by black curves. The lack of any

purple region, which would indicate an overlap between red (seasonally ice-free) and

blue (perennial ice), demonstrates that multiple states are not found with the warm

state being seasonally ice-free, while the presence of light red and light blue regions

shows that multiple states with the warm state being perennially ice-free are possible.

The variation of other model parameters (not shown) leads to similar results. This

indicates that although the size of the ∆F0 range where multiple solutions coexist

depends on hα, both (i) the lack of a bifurcation threshold during the transition

from perennial ice to seasonally ice-free conditions and (ii) the presence of multiple

states and threshold behavior during the transition to perennially ice-free conditions

are robust features of the model equations.
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Fig. S5. Seasonal cycle of Arctic sea ice and ocean conditions simulated with

the toy model of Thorndike (3). Seasonally varying solutions are plotted as closed

curves in the three-dimensional model state space, which represents changes in sea

ice thickness, sea ice surface temperature, and ocean mixed layer temperature. The

standard case solution is indicated by the black curve. Thorndike found that when the

specified atmospheric Arctic heat flux convergence D was increased, the model tran-

sitioned from perennially ice-covered to perennially ice-free conditions, with no stable

seasonally ice-free solution possible. Rather than prescribing observed seasonally-

varying forcing quantities, Thorndike assumed a step-function form for the forcing,

with shortwave radiation and optical thickness taking on constant values during the

summer and winter half-years. He found observationally consistent ice thickness with

summer and winter optical thicknesses of 4.5 and 3, respectively (black curve). When

we choose for these parameters instead 1.5 and 5, respectively, Thorndike’s toy model

simulates a relatively consistent approximation of the modern sea ice seasonal cycle

(blue curve). Increasing D from 100 Wm−2 to 145 Wm−2 in this regime, however,

produces a stable seasonally ice-free solution (red curve), in contrast to the results

reported by Thorndike. A second stable state which is perennially ice-free exists for

the solution indicated by the black curve, as discussed by Thorndike, but not for the

solution shown here by the blue curve. A second stable state which is perennially ice-

free does however exist for the solution indicated by the red curve. The coexistence

in Thorndike’s model of a stable seasonally ice-free solution and a stable perennially

ice-free solution is consistent with the results presented here (Fig. 3 of the Research

Report).
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