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SI Text

Molecular Modeling. Molecular modeling was based on the crystal
structure (2.9 A resolution) of COX-1 complexed with linoleic
acid (PDB ID code 1IGZ) (1) due to similar length as 13'-
carboxychromanol. 13’-carboxychromanol, 9'-carboxychroma-
nol, and AA were docked into the binding pocket using
AutoDock 4 (2). The side chains of the most flexible residues
within the binding pocket were identified based on a Concord (3)
simulation and computed b-factors from a molecular dynamics
simulation of the apo protein. The side chains of these residues,
Asn-375 and Ser-530, were treated as flexible throughout the
docking simulation. To identify probable binding modes, 50
genetic algorithm runs were performed with a population size of
300, maximum number of generations of 27,000, and 50 million
energy evaluations. The best solutions were automatically clus-
tered based on geometric similarity.

To investigate the stability of the proposed docking configu-
ration and to reliably predict the relative binding affinities of
13'-, 9’-carboxychromanol, and AA, molecular dynamic (MD)
simulations were ran for all docking complexes using GRO-
MACS (4). The Amber 2003 force field was used for the protein
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and the gaff force field for the ligand. Periodic boundary
conditions were applied using a truncated octahedron with a
minimum protein-face distance of 10 A (=74,000 atoms in total).
A timestep of 2 fs was chosen using the LINCS algorithm for
constraining bonds involving hydrogen atoms. Each initial
docked structure was equilibrated using 5,000 steps of steepest-
descent minimization, 250 ps MD simulation for equilibration of
the water molecules keeping the protein restrained, and 1.25 ns
MD simulation without any restraints.

Based on a subsequent 500 ps MD simulation for data
collection, molecular mechanics Poisson-Boltzmann surface
area (MM/PBSA) method (5) and linear interaction energy
(LIE) analysis (6) were applied. Both methods failed to repro-
duce the X-ray structure of COX-1-bound AA as the energet-
ically lowest configuration. In MM/PBSA, high standard devia-
tions (on the order of 10-15 kcal/mol) in the computed entropy
contribution prevented a clear separation between different
binding modes. In LIE, the dominating electrostatic interactions
of the charged A A with protein and solvent are vastly fluctuating
and dependent on the solvent configuration. Standard deviations
were 10-20 kcal/mol.
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Fig. S1. Dose-dependent accumulation of metabolites from §-T (A) and y-T (B) in cultured media. Confluent A549 cells were incubated with §-T (A) or y-T (B)
at 10, 25, and 50 uM for 48 h. Media were collected and the metabolites were extracted and measured by HPLC. 9’, 11/, and 13’ represent 9'-, 11’-, and
13’-carboxychromanol. 9'S, 11’S, and 13’S represent sulfated 9'-, 11'-, and 13’-carboxychromanol.
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